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Fraction of Time at Average Utilization

CPU Utilization in the Cloud

10% ~ 57%

Average CPU utilization across over
20000 servers in Google data center
(January ~ March. 2013).
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A high consolidation ratio is necessary
for improving hardware utilization

1 An Introduction to the Design of Warehouse-Scale Machines.
2 A Measurement Study of Server Utilization in Public Clouds.



Conservative Consolidation Policy

* Partitions resources rather than sharing resources

- No CPU sharing among SMP VMs or CPU oversubscription in Amazon EC2,
Microsoft Azure, Google Compute Engine, and Alibaba Cloud

* |eads to low resource utilization and high user cost

- Existing clouds do not have economic competitive advantage compared to DOE
centers in scientific computing [Magellan report]

- Rule of thumb: it is more economic to do it in-house rather than on cloud if you can
keep a machine more than half busy for more than half of the time [NAG consulting]



Why cloud providers are overly conservative in
workload consolidation, especially for SMP VMs?
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Performance Loss and Variability
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* Significant performance loss,
disproportionate to the level of contention
* Programs respond differently to interference

4-thread
parallel program



o

vCPU1

vCPUn

Holder
preempted

No progress

LHP and LWP

o

vCPU1

a

vCPUn

d\ Waiter preempted

Lock-holder preemption (LHP)

vCPU1

-

vCPU2

—

vCPU3

4

The delay of one vCPU affects the progress of all

other vCPUs, thereby slowing down the entire program

vCPU4

Lock-waiter preemption (LWP)




Existing Efforts

* Hypervisor Level Approaches

- Co-scheduling, relaxed co-scheduling [VMware’10]
- Balance scheduling [Sukwong-EuroSys'11]
- Demanded-based coordinated scheduling [Kim-ALPLOS'13]

* (Guest OS-Assisted Approaches
- Dynamic adaptive scheduling [Weng-HPDC'10]

- Delay scheduling [Uhlig-VM’'04]

* Hardware-Assisted Approaches
- Intel Pause-Loop Exiting (PLE) [Riel’11]



The Unexploited Potential of the Guest 0S

Much CPU time is wasted 8% slowdown  User-level work stealing:
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If the guest OS can balance load among
running and preempted vCPUs and
Sibling vCPUs block/idle if LHP or LWP occurs ~ timely schedule critical threads, any
application can be made resilient to
interference



A Hidden Semantic Gap
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The semantic gap: the guest OS is unaware of
the scheduling activities at the hypervisor.

To the guest 0S, a critical thread on a preempted
vCPU still appears to be “running”. Therefore, it
thinks that there is no need to migrate it.
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Interference-Resilient Scheduling (IRS)

e |dea

- before a vCPU is preempted, the guest OS migrates the critical thread on this vCPU to
another running vCPU to avoid LHP or LWP

* Motivation & objective
- Inspired by scheduler activation (SA) [Anderson TOCS'92] in hybrid threading

- Minimize interference-induced idling and CPU waste

* Results
- |IRS outperformed state-of-the-art relaxed co-scheduling and PLE approaches

- IRS mitigated CPU stacking

10



IRS Design

Linux

Context
Switcher

—/

(o

\(

Hardware
\_




IRS Design

VM3
2

VM
Linux Vm

vCPU, it sends a notification Context _
to the guest OS via SA sender Switcher grator

(s ) 1500 £
\__®

----------
o* .

\/
>
)
-
)
&
22
®
P e

Hardware
\_

12



IRS Design

Linux Vm
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IRS Design
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IRS Design
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Optimizations & Practical Considerations

* Preserving data locality

- Prevent ping-pong migration by preferably moving threads that were migrated from
preempted vCPUs since their locality is already lost

- Timely scheduling > data locality

* Preventing security exploit

- Set an upper bound of Tms at the hypervisor for SA completion
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Limitations

* Inability to eliminate all idle or wasted CPU time

- Load estimate is not always accurate

- Proactively migrating the critical thread from to-be-preempted vCPU does not
guarantee an optimal placement of the thread

e (slightly) undermined fairness

- Rogue users can exploit the Tms SA completion upper bound to gain an additional
Tms time slice

* The delay of vCPU preemption can hurt I/0 latency
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Evaluation

Baseline systems

- Vanilla Xen 4.5.0

- VMware relaxed co-scheduling (Relaxed-co)

- Intel Pause-Loop Exiting (PLE)

Benchmarks

- PARSEC benchmarks (gcc-pthreads+ blocking sync + native input)
- NASA parallel benchmarks (spin sync + class C)

- Apache HTTP benchmarks

- SPECjbb 2005

Experiments
- Controlled experiments: vCPUs pinned to pCPUSs, increasing level of interference

- Realistic experiments: vCPUs free to run any pCPUs
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PARSEC benchmarks (blocking)
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Running in the foreground VM with

, e |RS improved performance compared to Xen
4 threads in 4 vCPUs

e |RS consistently outperformed co-scheduling and PLE
e |RS had diminishing gain as interference ramped up
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NASA parallel benchmarks (spinning)

Running in the interfering VM with

w/ UA 1, 2, 4 threads.
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Running in the foreground VM with

A threads in 4 vCPUs * RS effectively reduces futile spinning

e |RS consistently outperformed co-scheduling and PLE
e |RS had diminishing gain as interference ramped up
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Mitigating CPU Stacking
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Running in the foreground VM with * [RS greatly mitigated CPU stacking
4 threads in 4 vCPUs e Co-scheduling and PLE incurred more serious CPU

stacking compared to vanilla Xen

22



Conclusion

Interference Resilient Scheduling (IRS): a coordinated approach that
bridges the guest-hypervisor semantic gap at the Guest OS side.

- Inspired by Scheduler Activation (SA) [Anderson TOCS'92)]

- Enhances Guest OS load balancing to make any parallel applications
resilient to interference

- Mitigates the LHP and LWP problems
- Alleviates the CPU stacking problem

- Qutperforms relaxed co-scheduling and PLE
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NASA parallel benchmarks
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PARSEC benchmarks
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PARSEC benchmarks
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Details about CPU Stacking

Caused by an inherent deficiency in existing multicore schedulers

- Multicore schedulers balance threads/vCPUs based on load — threads’
CPU usage in previous rounds

- Deceptive idleness: parallel programs experience idleness on lock waiter
threads due to LHP or LWP, showing decreasing CPU usage as LHP or
LWP worsens

- Parallel threads are moved to a few cores to consolidate the load that
cannot be justified to run a dedicated core

- This exacerbates LHP or LWP
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