Scheduler Activations for Interference-
Resilient SMP Virtual Machine Scheduling

Yong Zhao, Kun Suo] Luwei Cheng; Jia Rao'

The University of Texas at Arlington' Facebook’

Middleware 2017

1

Fraction of Time at Average Utilization

CPU Utilization in the Cloud

10% ~ 57%

Average CPU utilization across over
20000 servers in Google data center
(January ~ March. 2013).

CPU utilization %

35
30
25
20

15 -
10

2 or 3 VMs are active.

At m]st 28%!

E : 1 VM is active. :

. E 0n|y10°/o! "

¥ : n‘J‘H (PN e
Sun Mon E Tues.i Wed. Thurs. Fri. Sat.

CPU utilization of a physical server on

Amazon EC2.°

A high consolidation ratio is necessary
for improving hardware utilization

1 An Introduction to the Design of Warehouse-Scale Machines.
2 A Measurement Study of Server Utilization in Public Clouds.

Conservative Consolidation Policy

* Partitions resources rather than sharing resources

- No CPU sharing among SMP VMs or CPU oversubscription in Amazon EC2,
Microsoft Azure, Google Compute Engine, and Alibaba Cloud

* |eads to low resource utilization and high user cost

- Existing clouds do not have economic competitive advantage compared to DOE
centers in scientific computing [Magellan report]

- Rule of thumb: it is more economic to do it in-house rather than on cloud if you can
keep a machine more than half busy for more than half of the time [NAG consulting]

Why cloud providers are overly conservative in
workload consolidation, especially for SMP VMs?

better

gt

Relative to no interference

Performance Loss and Variability

Performance Slowdown

M No Interference. Il w/ Interference.

Fluidanimate UA Raytrace
(Mutex lock) (Spinlock) (Work-stealing)

Single-thread
interfering program

VM2
vCPUT1

VM1 VM1 VM1 VM1
vCPU1 vCPU2 vCPUS3 vCPU4
pCPUO pCPU1 pCPU2 pCPU3

Observations:

* Significant performance loss,
disproportionate to the level of contention
* Programs respond differently to interference

4-thread
parallel program

o

vCPU1

vCPUn

Holder
preempted

No progress

LHP and LWP

o

vCPU1

a

vCPUn

d\ Waiter preempted

Lock-holder preemption (LHP)

vCPU1

-

vCPU2

—

vCPU3

4

The delay of one vCPU affects the progress of all

other vCPUs, thereby slowing down the entire program

vCPU4

Lock-waiter preemption (LWP)

Existing Efforts

* Hypervisor Level Approaches

- Co-scheduling, relaxed co-scheduling [VMware’10]
- Balance scheduling [Sukwong-EuroSys'11]
- Demanded-based coordinated scheduling [Kim-ALPLOS'13]

* (Guest OS-Assisted Approaches
- Dynamic adaptive scheduling [Weng-HPDC'10]

- Delay scheduling [Uhlig-VM’'04]

* Hardware-Assisted Approaches
- Intel Pause-Loop Exiting (PLE) [Riel’11]

The Unexploited Potential of the Guest 0S

Much CPU time is wasted 8% slowdown User-level work stealing:
o 1.2 1.2 threads that do not have
_‘c:: 1 1 interference steal the work
= from slow threads
"é 0.8 44% loss 0.8 _/
@ 0.6 0.6
N
e 0.4 0.4 Load balancing
= 0.2 0.2 is the key
- 0 0
better = 8 £ ¢ X & ¥ 8 5 4 B § Raytrace

- s 2 8 % * ¢

s = S 3 3

If the guest OS can balance load among
running and preempted vCPUs and
Sibling vCPUs block/idle if LHP or LWP occurs ~ timely schedule critical threads, any
application can be made resilient to
interference

A Hidden Semantic Gap

! !
 eecone .\. VM-1

no need
: VM-2
to migrate idle |
——— running
pCPU e pcPU | 7T preempted

The semantic gap: the guest OS is unaware of
the scheduling activities at the hypervisor.

To the guest 0S, a critical thread on a preempted
vCPU still appears to be “running”. Therefore, it
thinks that there is no need to migrate it.

9

Interference-Resilient Scheduling (IRS)

e |dea

- before a vCPU is preempted, the guest OS migrates the critical thread on this vCPU to
another running vCPU to avoid LHP or LWP

* Motivation & objective
- Inspired by scheduler activation (SA) [Anderson TOCS'92] in hybrid threading

- Minimize interference-induced idling and CPU waste

* Results
- |IRS outperformed state-of-the-art relaxed co-scheduling and PLE approaches

- IRS mitigated CPU stacking

10

IRS Design

Linux

Context
Switcher

—/

(o

\(

Hardware
_

IRS Design

VM3
2

VM
Linux Vm

vCPU, it sends a notification Context _
to the guest OS via SA sender Switcher grator

(s) 1500 £
__®

o* .

\/
>
)
-
)
&
22
®
P e

Hardware
_

12

IRS Design

Linux Vm

@ Before Xen preempts a

vCPU, it sends a notification Context _

to the guest 0S via SA sender (Switcher SIS
9 Upon receiving the QI

nOtiﬂcation’ the SA receiver ----------------------------

in the guest activates load SA §

balancing Receiver | 200

O
VM2

\/
>¢
((*]
-
)
&
3 L
®
P 3

Hardware
_

13

IRS Design

VM3
2

VM
Linux Vm
@ Before Xen preempts a
vCPU, it sends a notification (Context W © (M,g,ator)

to the guest OS via SA sender Switcher |

® Upon receiving the QI
notification, the SA receiver § :
ln the guest aCtlvateS |Oad (SA] E ; E..............;

balancing | |\ Receiver) i i i1

A
© CS deschedules the thread on k (1)

the to-be-preempted vCPU ~ ———————
and marks it as migrating T w2

f

N\

14

IRS Design

VM3
2

VM
Linux Vm
@ Before Xen preempts a
vCPU, it sends a notification (Context W © (M,g,ator)

to the guest OS via SA sender

® Upon receiving the (2]
notification, the SA receiver
in the guest activates load SA
balancing Receiver

© CS deschedules the thread on K o
~

the to-be-preempted vCPU
and marks it as migrating

SA
@ WMigrator moves the thread to Xen (Sender g:

a sibling vCPU with the least
waiting time

AY4

Hardware
_

15

IRS Design

VM3
2

VM
Linux Vm
@ Before Xen preempts a
vCPU, it sends a notification (Context W © (M,g,ator)

to the guest OS via SA sender

® Upon receiving the (2]
notification, the SA receiver
in the guest activates load SA
balancing Receiver

© CS deschedules the thread on K o
~

the to-be-preempted vCPU
and marks it as migrating

. Xen (e)
@ WMigrator moves the thread to Sender
a sibling vCPU with the least L
waiting time ~
© After the thread if migrated, Hardware
Xen finishes vCPU switching _

16

Optimizations & Practical Considerations

* Preserving data locality

- Prevent ping-pong migration by preferably moving threads that were migrated from
preempted vCPUs since their locality is already lost

- Timely scheduling > data locality

* Preventing security exploit

- Set an upper bound of Tms at the hypervisor for SA completion

17

Limitations

* Inability to eliminate all idle or wasted CPU time

- Load estimate is not always accurate

- Proactively migrating the critical thread from to-be-preempted vCPU does not
guarantee an optimal placement of the thread

e (slightly) undermined fairness

- Rogue users can exploit the Tms SA completion upper bound to gain an additional
Tms time slice

* The delay of vCPU preemption can hurt I/0 latency

18

Evaluation

Baseline systems

- Vanilla Xen 4.5.0

- VMware relaxed co-scheduling (Relaxed-co)

- Intel Pause-Loop Exiting (PLE)

Benchmarks

- PARSEC benchmarks (gcc-pthreads+ blocking sync + native input)
- NASA parallel benchmarks (spin sync + class C)

- Apache HTTP benchmarks

- SPECjbb 2005

Experiments
- Controlled experiments: vCPUs pinned to pCPUSs, increasing level of interference

- Realistic experiments: vCPUs free to run any pCPUs

19

PARSEC benchmarks (blocking)

Running in the interfering VM with

b
w/ Streamcluster 12 4 threads.

80

60 B 1-inter. PLE [1-inter. Relaxed-Co [] 1-inter. IRS ¥ 2-Inter. PLE [2-inter. Relaxed-Co [2-inter. IRS
B 4-inter. PLE B 4-inter. Relaxed- Co [] 4- |nter IRS V 43%

40 V /')

I |] T] -
2 | | | ||[
40 -110.3%
0 —1628%

zﬁj IJL._ﬂJL ol A i

Performance Improvement (%)

iy Q Y, b @ + 7~ A
J'é 01' '01' : %
) () Co 2
% 2

better 6/

Running in the foreground VM with

, e |RS improved performance compared to Xen
4 threads in 4 vCPUs

e |RS consistently outperformed co-scheduling and PLE
e |RS had diminishing gain as interference ramped up

20

NASA parallel benchmarks (spinning)

Running in the interfering VM with

w/ UA 1, 2, 4 threads.

80

e:, 60 B 1-inter. PLE [1-inter. Relaxed-Co T1-inter. IRS B 2-Inter. PLE [2-inter. Relaxed-Co [2-inter. IRS
é W 4-inter. PLE [l 4-inter. Relaxed-Co 4-inter. IRS

2 40

S

b e 1L

(¢}

£

L -20

o

S e
5 BT LU CG EP FT IS MG SP UA
etter

Running in the foreground VM with

A threads in 4 vCPUs * RS effectively reduces futile spinning

e |RS consistently outperformed co-scheduling and PLE
e |RS had diminishing gain as interference ramped up

21

Mitigating CPU Stacking

w/ Streamcluster ——» Running in the interfering VM with
4 threads.

o))
o

B PLE B Relaxed-co IRS

N B
o O

S I W R IR R
w I [I B

» Performance Improvement (%)
N
o

—80% —60%
40 °\
-60
o) % & o, 7 L. O . 8 + 4 5
better {5’0% @02/ /}@& 9 A C//O, '/Od‘ 00} @/,0 %0 96% % 00&
S 0 %, S5, %, A v Wy O
%4 ¢, Y %, %y o, @ 2
% ({,,f O (y
> A e
Running in the foreground VM with * [RS greatly mitigated CPU stacking
4 threads in 4 vCPUs e Co-scheduling and PLE incurred more serious CPU

stacking compared to vanilla Xen

22

Conclusion

Interference Resilient Scheduling (IRS): a coordinated approach that
bridges the guest-hypervisor semantic gap at the Guest OS side.

- Inspired by Scheduler Activation (SA) [Anderson TOCS'92)]

- Enhances Guest OS load balancing to make any parallel applications
resilient to interference

- Mitigates the LHP and LWP problems
- Alleviates the CPU stacking problem

- Qutperforms relaxed co-scheduling and PLE

23

Thanks!
&

Questions?

FANY
P

Backup Slides ...

NASA parallel benchmarks

Running in the interfering VM with
—
w/ UA 1,2, 4 threads.)

180
160 B 1-inter. PLE [1-inter. Relaxed-Co [1-inter.IRS [2-Inter. PLE [2-inter. Relaxed-Co [2-inter. IRS
£ 140 W 4-inter. PLE M 4-inter. Relaxed-Co 4-inter. IRS

EP FT IS

|

Running in the foreground VM with
4 threads in 4 vCPUs

20

PARSEC benchmarks

w/ Streamcluster ——» | Running in the interfering VM with
1, 2, 4 threads.

180
160 B 1-inter. PLE [1-inter. Relaxed-Co | 1-inter. IRS [2-Inter. PLE [2-inter. Relaxed-Co [2-inter. IRS

140 ™ 4-inter. PLE [4-inter. Relaxed-Co 4-inter. IRS

120
100

Weighted Speedup (%)

4 threads in 4 vCPUs

Gunning in the foreground VM witg

27

»Performance Improvement (%)

better
]

—_
(@)}

—_
N

oo

~

o

Apache HTTP benchmarks

(a) Throughput

B 1-inter. 8 2-inter.

3-inter. [4-inter.

specjbb

Ll
ab

60
50
40
30
20
10

28

(b) Latency

B 1-inter. B 2-inter.

3-inter. [4-inter.

specjbb

ab (99th)

PARSEC benchmarks

(a) x264 (Mutex) (b) EP (blocking) (c) MG (Spinning)
~ 80 80 : : : 80
3*&-’/ B 1-inter. @ 2-inter. A-inter. W t-inter. 2-|nter./ 4-inter. B 1-inter. [2-inter. A-inter.
2 60 60 10% 60
g 40 40 40
= 20 I 20 20 l
Y 0 0
f 1VM 2VM 3VM 1VM 2 VM 3VM 1 VM 2VM 3VM
beier \ ' J

(Number of interfering VMs)

29

Details about CPU Stacking

Caused by an inherent deficiency in existing multicore schedulers

- Multicore schedulers balance threads/vCPUs based on load — threads’
CPU usage in previous rounds

- Deceptive idleness: parallel programs experience idleness on lock waiter
threads due to LHP or LWP, showing decreasing CPU usage as LHP or
LWP worsens

- Parallel threads are moved to a few cores to consolidate the load that
cannot be justified to run a dedicated core

- This exacerbates LHP or LWP

30

