
Scheduler Activations for Interference-
Resilient SMP Virtual Machine Scheduling

Yong Zhao, Kun Suo, Luwei Cheng, Jia Rao

1

The University of Texas at Arlington Facebook

Middleware 2017

11 1

1

2

2

CPU Utilization in the Cloud

2

Average CPU utilization across over
20000 servers in Google data center

(January ~ March. 2013).

CPU utilization of a physical server on
Amazon EC2.

1 VM is active.
Only 10%!

2 or 3 VMs are active.
At most 28%!

2
1

A Measurement Study of Server Utilization in Public Clouds. 2

An Introduction to the Design of Warehouse-Scale Machines. 1

10% ~ 57%

A high consolidation ratio is necessary
for improving hardware utilization

Conservative Consolidation Policy

• Partitions resources rather than sharing resources

- No CPU sharing among SMP VMs or CPU oversubscription in Amazon EC2,
Microsoft Azure, Google Compute Engine, and Alibaba Cloud

• Leads to low resource utilization and high user cost

- Existing clouds do not have economic competitive advantage compared to DOE
centers in scientific computing [Magellan report]

- Rule of thumb: it is more economic to do it in-house rather than on cloud if you can
keep a machine more than half busy for more than half of the time [NAG consulting]

3

Why cloud providers are overly conservative in
workload consolidation, especially for SMP VMs?

4

Performance Slowdown

Re
la

tiv
e

to
 n

o
in

te
rfe

re
nc

e

0

1

2

3

4

Fluidanimate UA Raytrace

No Interference. w/ Interference.

5

Performance Loss and Variability

better 2X
2.3X

1.08X

(Mutex lock) (Spin lock) (Work-stealing)

pCPU0 pCPU1 pCPU2 pCPU3

VM1
vCPU1

VM1
vCPU2

VM1
vCPU3

VM1
vCPU4

VM2
vCPU1

4-thread
parallel program

Single-thread
interfering program

Observations:
• Significant performance loss,

disproportionate to the level of contention
• Programs respond differently to interference

LHP and LWP

vCPU1 vCPU2 vCPU3 vCPU4

Waiter preempted

Lock-waiter preemption (LWP)Lock-holder preemption (LHP)

vCPU1

vCPUn

…

Holder
preempted vCPU1

vCPUnNo progress

The delay of one vCPU affects the progress of all
other vCPUs, thereby slowing down the entire program

6

7

Existing Efforts

• Hypervisor Level Approaches
Co-scheduling, relaxed co-scheduling [VMware’10]-
Balance scheduling [Sukwong-EuroSys’11]-
Demanded-based coordinated scheduling [Kim-ALPLOS’13]-

• Guest OS-Assisted Approaches
Dynamic adaptive scheduling [Weng-HPDC’10]-
Delay scheduling [Uhlig-VM’04]-

• Hardware-Assisted Approaches
Intel Pause-Loop Exiting (PLE) [Riel’11]-

8

The Unexploited Potential of the Guest OS
No

rm
al

ize
d

to
 fa

ir
sh

ar
e

0

0.2

0.4

0.6

0.8

1

1.2

stream
cluster

canneal

fluidanim
ate

bodytrack

x264

facesim

BT CG M
G

FT SP UAbetter
0

0.2

0.4

0.6

0.8

1

1.2

Raytrace

44% loss

User-level work stealing:
threads that do not have

interference steal the work
from slow threads

Sibling vCPUs block/idle if LHP or LWP occurs

If the guest OS can balance load among
running and preempted vCPUs and

timely schedule critical threads, any
application can be made resilient to

interference

8% slowdownMuch CPU time is wasted

Load balancing
is the key

A Hidden Semantic Gap

pCPU pCPU...
idle

"running" X
no need

to migrate

VM-1

VM-2

running

preempted

To the guest OS, a critical thread on a preempted
vCPU still appears to be “running”. Therefore, it

thinks that there is no need to migrate it.

The semantic gap: the guest OS is unaware of
the scheduling activities at the hypervisor.

9

Interference-Resilient Scheduling (IRS)

• Idea

- before a vCPU is preempted, the guest OS migrates the critical thread on this vCPU to
another running vCPU to avoid LHP or LWP

• Motivation & objective

- Inspired by scheduler activation (SA) [Anderson TOCS’92] in hybrid threading

- Minimize interference-induced idling and CPU waste

• Results

- IRS outperformed state-of-the-art relaxed co-scheduling and PLE approaches

- IRS mitigated CPU stacking

10

11

IRS Design

Hardware

Xen

pCPU …

Linux VM1
VM2

VM3

VM2
vCPU1

VM1
vCPU1

pCPU pCPU

VM1
vCPU2

VM1
vCPU

SA
Sender

VM1
vCPU1

VM1

vCPU2
VM1
vCPU

…

…

SA
Receiver

Context
Switcher Migrator

12

IRS Design

Hardware

Xen

pCPU …

Linux VM1
VM2

VM3

VM2
vCPU1

VM1
vCPU1

pCPU pCPU

VM1
vCPU2

VM1
vCPU

SA
Sender

VM1
vCPU1

VM1

vCPU2
VM1
vCPU

…

…

SA
Receiver

Context
Switcher Migrator

1

1 Before Xen preempts a
vCPU, it sends a notification
to the guest OS via SA sender

13

IRS Design

Hardware

Xen

pCPU …

Linux VM1
VM2

VM3

VM2
vCPU1

VM1
vCPU1

pCPU pCPU

VM1
vCPU2

VM1
vCPU

SA
Sender

VM1
vCPU1

VM1

vCPU2
VM1
vCPU

…

…

SA
Receiver

Context
Switcher Migrator

1

1 Before Xen preempts a
vCPU, it sends a notification
to the guest OS via SA sender

22 Upon receiving the
notification, the SA receiver
in the guest activates load
balancing

14

IRS Design

Hardware

Xen

pCPU …

Linux VM1
VM2

VM3

VM2
vCPU1

VM1
vCPU1

pCPU pCPU

VM1
vCPU2

VM1
vCPU

SA
Sender

VM1
vCPU1

VM1

vCPU2
VM1
vCPU

…

…

SA
Receiver

Context
Switcher Migrator

1

1 Before Xen preempts a
vCPU, it sends a notification
to the guest OS via SA sender

22 Upon receiving the
notification, the SA receiver
in the guest activates load
balancing

3

3 CS deschedules the thread on
the to-be-preempted vCPU
and marks it as migrating

15

IRS Design

Hardware

Xen

pCPU …

Linux VM1
VM2

VM3

VM2
vCPU1

VM1
vCPU1

pCPU pCPU

VM1
vCPU2

VM1
vCPU

SA
Sender

VM1
vCPU1

VM1

vCPU2
VM1
vCPU

…

…

SA
Receiver

Context
Switcher Migrator

1

1 Before Xen preempts a
vCPU, it sends a notification
to the guest OS via SA sender

22 Upon receiving the
notification, the SA receiver
in the guest activates load
balancing

3

3 CS deschedules the thread on
the to-be-preempted vCPU
and marks it as migrating

4

4 Migrator moves the thread to
a sibling vCPU with the least
waiting time

16

IRS Design

Hardware

Xen

pCPU …

Linux VM1
VM2

VM3

VM2
vCPU1

VM1
vCPU1

pCPU pCPU

VM1
vCPU2

VM1
vCPU

SA
Sender

VM1
vCPU1

VM1

vCPU2
VM1
vCPU

…

…

SA
Receiver

Context
Switcher Migrator

1

1 Before Xen preempts a
vCPU, it sends a notification
to the guest OS via SA sender

22 Upon receiving the
notification, the SA receiver
in the guest activates load
balancing

3

3 CS deschedules the thread on
the to-be-preempted vCPU
and marks it as migrating

4

4 Migrator moves the thread to
a sibling vCPU with the least
waiting time

After the thread if migrated,
Xen finishes vCPU switching

5

Optimizations & Practical Considerations

• Preserving data locality

- Prevent ping-pong migration by preferably moving threads that were migrated from
preempted vCPUs since their locality is already lost

- Timely scheduling > data locality

• Preventing security exploit

- Set an upper bound of 1ms at the hypervisor for SA completion

17

Limitations
• Inability to eliminate all idle or wasted CPU time

- Load estimate is not always accurate

- Proactively migrating the critical thread from to-be-preempted vCPU does not
guarantee an optimal placement of the thread

• (slightly) undermined fairness

- Rogue users can exploit the 1ms SA completion upper bound to gain an additional
1ms time slice

• The delay of vCPU preemption can hurt I/O latency

18

Evaluation

• Baseline systems

- Vanilla Xen 4.5.0

- VMware relaxed co-scheduling (Relaxed-co)

- Intel Pause-Loop Exiting (PLE)

• Benchmarks

- PARSEC benchmarks (gcc-pthreads+ blocking sync + native input)

- NASA parallel benchmarks (spin sync + class C)

- Apache HTTP benchmarks

- SPECjbb 2005

• Experiments

- Controlled experiments: vCPUs pinned to pCPUs, increasing level of interference

- Realistic experiments: vCPUs free to run any pCPUs

19

20

PARSEC benchmarks (blocking)

w/ Streamcluster

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%)

-60
-40
-20

0
20
40
60
80

blackscholes

dedup

streamcluster
canneal
fluidanimate

vips

bodytrack

ferret

swaptions

x264

raytrace

facesim

1-inter. PLE 1-inter. Relaxed-Co 1-inter. IRS 2-Inter. PLE 2-inter. Relaxed-Co 2-inter. IRS
4-inter. PLE 4-inter. Relaxed-Co 4-inter. IRS

better

Running in the foreground VM with
 4 threads in 4 vCPUs

Running in the interfering VM with
 1, 2, 4 threads.

43%

—110.3%
—162.8%

• IRS improved performance compared to Xen
• IRS consistently outperformed co-scheduling and PLE
• IRS had diminishing gain as interference ramped up

21

NASA parallel benchmarks (spinning)

w/ UA

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%)

-40

-20

0

20

40

60

80

BT LU CG EP FT IS MG SP UA

1-inter. PLE 1-inter. Relaxed-Co 1-inter. IRS 2-Inter. PLE 2-inter. Relaxed-Co 2-inter. IRS
4-inter. PLE 4-inter. Relaxed-Co 4-inter. IRS

better

Running in the foreground VM with
 4 threads in 4 vCPUs

Running in the interfering VM with
 1, 2, 4 threads.

• IRS effectively reduces futile spinning
• IRS consistently outperformed co-scheduling and PLE
• IRS had diminishing gain as interference ramped up

Mitigating CPU Stacking
w/ Streamcluster

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%)

-60

-40

-20

0

20

40

60

blackscholes
dedup
streamcluster
canneal
fluidanimate
vips
bodytrack
ferret
swaptions
x264
raytrace
facesim

PLE Relaxed-co IRS

—80% —60%

better

• IRS greatly mitigated CPU stacking
• Co-scheduling and PLE incurred more serious CPU

stacking compared to vanilla Xen

Running in the interfering VM with
 4 threads.

Running in the foreground VM with
 4 threads in 4 vCPUs

22

Conclusion

• Interference Resilient Scheduling (IRS): a coordinated approach that
bridges the guest-hypervisor semantic gap at the Guest OS side.

- Inspired by Scheduler Activation (SA) [Anderson TOCS’92]

- Enhances Guest OS load balancing to make any parallel applications
resilient to interference

- Mitigates the LHP and LWP problems

- Alleviates the CPU stacking problem

- Outperforms relaxed co-scheduling and PLE

23

Thanks!
&

Questions?

24

Backup Slides …

25

26

NASA parallel benchmarks

w/ UA

W
ei

gh
te

d
Sp

ee
du

p
(%

)

0
20
40
60
80

100
120
140
160
180

BT LU CG EP FT IS MG SP UA

1-inter. PLE 1-inter. Relaxed-Co 1-inter. IRS 2-Inter. PLE 2-inter. Relaxed-Co 2-inter. IRS
4-inter. PLE 4-inter. Relaxed-Co 4-inter. IRS

better

Running in the foreground VM with
 4 threads in 4 vCPUs

Running in the interfering VM with
 1, 2, 4 threads.

27

PARSEC benchmarks

w/ Streamcluster

W
ei

gh
te

d
Sp

ee
du

p
(%

)

0
20
40
60
80

100
120
140
160
180

blackscholes

dedup

streamcluster
canneal
fluidanimate

vips

bodytrack

ferret

swaptions

x264

raytrace

facesim

1-inter. PLE 1-inter. Relaxed-Co 1-inter. IRS 2-Inter. PLE 2-inter. Relaxed-Co 2-inter. IRS
4-inter. PLE 4-inter. Relaxed-Co 4-inter. IRS

better

Running in the foreground VM with
 4 threads in 4 vCPUs

Running in the interfering VM with
 1, 2, 4 threads.

28

Apache HTTP benchmarks

better

(a) Throughput

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%)

0

4

8

12

16

specjbb ab

1-inter. 2-inter. 3-inter. 4-inter.

(b) Latency

0
10
20
30
40
50
60

specjbb ab (99th)

1-inter. 2-inter. 3-inter. 4-inter.

29

PARSEC benchmarks

better

(a) x264 (Mutex)

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%)

0

20

40

60

80

1 VM 2 VM 3 VM

1-inter. 2-inter. 4-inter.

(b) EP (blocking)

0

20

40

60

80

1 VM 2 VM 3 VM

1-inter. 2-inter. 4-inter.

(c) MG (Spinning)

0

20

40

60

80

1 VM 2 VM 3 VM

1-inter. 2-inter. 4-inter.

Number of interfering VMs

70%

Details about CPU Stacking

30

• Caused by an inherent deficiency in existing multicore schedulers

- Multicore schedulers balance threads/vCPUs based on load — threads’
CPU usage in previous rounds

- Deceptive idleness: parallel programs experience idleness on lock waiter
threads due to LHP or LWP, showing decreasing CPU usage as LHP or
LWP worsens

- Parallel threads are moved to a few cores to consolidate the load that
cannot be justified to run a dedicated core

- This exacerbates LHP or LWP

