
Characterizing and Optimizing the Performance of
Multithreaded Programs Under Interference

Yong Zhao Jia Rao

The University of Texas at Arlington

yong.zhao@mavs.uta.edu

jia.rao@uta.edu

Qing Yi

The University of Colorado Colorado Springs

qyi@uccs.edu

ABSTRACT
As virtualization becomes ubiquitous in datacenters, there is
a growing interest in characterizing application performance
in multi-tenant environments to improve datacenter resource
management. The performance of parallel programs is noto-
riously di�cult to reason about in virtualized environments.
Although performance degradations caused by virtualization
and interferences have been extensively studied, there still
lacks a comprehensive understanding why parallel programs
have unpredictable slowdowns when co-located with di↵er-
ent types of workloads.

This paper presents a systematic and quantitative study
of multithreaded performance under interference. We de-
sign synthetic workloads to emulate di↵erent types of in-
terference and study the behavior of parallel programs un-
der such interferences. We find that unpredictable perfor-
mance is the result of complex interplays between the design
of the program, the memory hierarchy of the host system,
and the CPU scheduling at the hypervisor. To understand
the intricate relationships between multiple factors, we de-
compose parallel runtime into compute, synchronization and
steal time, and use the runtime breakdown to measure pro-
gram progress and identify execution ine�ciency under in-
terference. Based on these findings, we develop an online
approach to predicting performance slowdown without re-
quiring parallel programs to be completed, and devise two
scheduling optimizations at the hypervisor to reduce slow-
downs. Experimental results with Xen and representative
parallel workloads show that the online performance pre-
diction achieves on average less than 4.5% error and the
optimizations reduce runtime slowdown by as much as 38%
compared to stock Xen.

Keywords
Virtual Machine Scheduling; Multicore Systems; Performance
Modeling; Parallel Program Optimization

1. INTRODUCTION
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PACT ’16, September 11-15, 2016, Haifa, Israel
c� 2016 ACM. ISBN 978-1-4503-4121-9/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2967938.2967939

 0

 1

 2

 3

 4

 5

 6

streamcluster

canneal
facesim

fluidanimate

swaptions
vips ferret

dedup
raytrace

blackscholes

lu sp

N
or

m
al

iz
ed

 ru
nt

im
e No interference

w/ while(1) loop
w/ streamcluster

w/ fluidanimate

Figure 1: The runtime slowdown of parallel work-

loads under di↵erent interference scenarios.

Cloud computing, powered by warehouse-scale datacen-
ters, provides users with abundant parallelism and poten-
tially unlimited scalability. While the cloud is believed to
be an ideal platform for hosting parallel applications, its
nature of multi-user sharing and resource over-commitment
makes parallel performance often quite disappointing and
unpredictable. Although many studies [11, 16, 23, 29, 32,
33] have identified the excessive synchronization delays due
to multi-tenant interferences as the culprit, there lacks a
full understanding of the quantitative relationship between
changes in synchronization and the overall performance loss.
As performance modeling plays a fundamental role in design-
ing traditional parallel systems, a systematic and quantita-
tive study of parallel performance under cloud interferences
would help improve the resource and power management in
datacenters. Most importantly, predicting parallel perfor-
mance allows users to evaluate the outcome of their cloud
lease without completing long-running applications and se-
lect cloud services wisely to meet their expectations.

However, parallel performance is notoriously di�cult to
reason about in a shared cloud environment. Memory lo-
cality and resource contentions on the CPU function units,
shared cache and memory bandwidth could all a↵ect the
speed of individual threads. Moreover, the performance of
parallel programs as a whole also depends critically on the
cooperation of multiple threads. Contentions on CPU time
cause the well-known lock-holder preemption (LHP) prob-
lem [32], in which threads holding important locks are pre-
maturely de-scheduled, leading to exceedingly long synchro-
nizations and out-of-sync executions at multiple threads.
The major challenges in modeling parallel performance are
twofold: 1) individual threads have varying slowdowns when
co-located with di↵erent interferences; 2) the quantitative
relationship between slowdowns at individual threads and
the overall slowdown remains unclear.

To demonstrate the severity of performance degradation
and its unpredictability in multi-tenant clouds, Figure 1
shows the slowdown of various parallel programs under dif-
ferent interference scenarios. The parallel workloads in-
clude programs from the PARSEC [31] and NASA parallel
benchmarks (NPB) [2] with di↵erent synchronization meth-
ods (i.e., busy-waiting and blocking), varying task granular-
ities, and di↵erent work assignment policies (i.e., static and
dynamic/work-stealing assignments). The interferences con-
tain a synthetic workload that only competes for CPU cycles
(i.e., while(1) loop) and two real workloads from the PAR-
SEC benchmarks. Both the parallel workloads and the inter-
ferences run with 4 threads (see Section 3.1 for detailed set-
tings). From the figure, we can see that performance slow-
downs vary substantially across di↵erent workloads, even
under the same type of interference. For example, the syn-
thetic loop incurred more than 100% slowdown to lu while it
merely slowed sp by 13%. More interestingly, slowdowns be-
come more unpredictable when the background interference
changes. For example, while facesim su↵ers a 165% slow-
down with streamcluster, its degradation with fluidanimate
is only 53%. In contrast, some workloads su↵er more se-
vere slowdowns under fluidanimate compared to that under
streamcluster, e.g., lu and vips. The di↵erence in memory
contentiousness of the interfering workloads alone can not
explain the varying slowdowns. The unpredictability is the
result of complex interplays between the designs of the pro-
gram, the memory hierarchy of the host machine, and the
underlying CPU scheduling at the hypervisor. Understand-
ing how these factors interact with each other is crucial to
fully understanding parallel performance in the cloud.

In this paper, we aim to uncover the mystery of paral-
lel performance under interference. Our methodology is to
study parallel performance in controlled experiments so that
individual factors can be examined separately. To this end,
we design a set of synthetic workloads to emulate di↵er-
ent types of interference. The synthetic workloads include
while(1) loops with persistent, periodic and intermittent
interference patterns and configurable CPU demands. To
further pinpoint the source of unpredictability, we design a
profiling tool, vProfile, to derive a detailed breakdown of
parallel runtime, and to report important scheduling and
hardware statistics. With the help of fine-grained profiling,
we have the following findings: 1) the slowdown of individ-
ual threads depends on the amount of CPU allocated to
the thread, which is largely a↵ected by the synchronization
granularity of the program in a shared environment; 2) while
interference is believed to slow down individual threads due
to contentions on shared resources, it can constructively ac-
celerate threads in memory-bound applications due to the
alleviation of intra-program contentions; 3) Uncoordinated
scheduling of co-running parallel programs causes out-of-
sync execution between multiple threads, leading to further
performance degradation.
Based on these findings, we develop an online approach

to predicting the performance of parallel programs under
interference. Our online prediction first profiles parallel ex-
ecution under interference for a short period of time and
compares the completed useful work during sampling with
that in a dedicated environment during the same length of
period. The di↵erence in completed useful work is used to
predict the overall slowdown. We define useful work as the
necessary computation needed by a thread assuming an ideal

memory system with zero latency and perfect synchroniza-
tion with no spinning and blocking cost. Specifically, we
determine useful work by removing cycles that are stolen by
other tenants, perform spinning or context switching (i.e.,
sleep and wakeup), and are spent in the memory hierarchy
from the profiling sample. Experimental results show that,
for regular parallel programs in which individual threads
are assigned the same amount of work and perform iterated
computations, the online approach achieves on average less
than 4.5% errors in predicting the overall slowdown.

We also devise two scheduling optimizations at the hyper-
visor to reduce slowdowns. To avoid premature preemptions,
we propose delayed preemption (DP) to interleave the com-
putations of the parallel program and background interfer-
ences. We further make DP adaptive to the varying synchro-
nization granularities for di↵erent programs. Experimental
results show that DP improves the performance of PAR-
SEC benchmarks by up to 23%. Another optimization mo-
tivated by our analysis is di↵erential scheduling (DS), which
purposely avoids co-scheduling of parallel threads by having
di↵erent time slices on multiple CPUs. Results show that
this simple technique outperforms stock Xen by as much as
38% in NPB benchmarks.

The rest of the paper is organized as follows. Section 2
introduces the design of vProfile and the synthetic interfer-
ences. Section 3 provides an in-depth analysis of parallel
performance under di↵erent types of interference. Section 4
and 5 present an approach for online performance predic-
tion and two hypervisor-level optimizations motivated by
the analysis, respectively. Section 6 discusses limitations
and future work. Section 7 discusses related work and Sec-
tion 8 concludes this paper.

2. PROFILING THE PERFORMANCE OF
MULTITHREADED PROGRAMS

The key to understanding parallel performance under in-
terference is to identify the sources of slowdown. A break-
down of parallel runtime from experiments in a controlled
environment would help pinpoint the culprit and inspire pos-
sible remedies. In general, parallel runtime consists of com-
pute time and idle time. Traditionally, idle time due to
load imbalance and synchronization is considered the ma-
jor source of parallel overhead as no progress can be made
during idle time. In a virtualized environment, guest op-
erating systems (OSes) schedule application threads onto
virtual CPUs (vCPUs) and multiple vCPUs from di↵erent
virtual machines (VMs) can share the same physical CPU
(pCPU). Steal time is the time a vCPU waits to run on
a pCPU while the hypervisor is servicing another vCPU.
A large steal time indicates severe contentions on the CPU
allocation. Therefore, we decompose parallel runtime into
compute, synchronization and steal time to study the causes
of slowdown. We design vProfile to report the breakdown
of parallel runtime and record important scheduling statis-
tics in the hypervisor. vProfile provides two hypercalls 1:
vprofile_start and vprofile_stop to mark the start and
end of a profiling period.

2.1 Decomposing Parallel Runtime
During profiling, vProfile tracks per-vCPU state changes

1We describe the design of vProfile in a Xen environment. Other
hypervisors can be easily modified to support vProfile.

in the hypervisor. Xen defines four vCPUs states, i.e., run-
ning, runnable, blocked, and offline. Steal time can be
accounted using time spent in the runnable state, which
counts the time a vCPU is ready to run but fails to ac-
quire the pCPU. The accounting of synchronization time
depends on the synchronization methods used by the par-
allel program. For blocking synchronization, such as mutex
and semaphore, synchronization time is simply the time a
vCPU stays in the blocked state.

Accounting synchronization time is more challenging for
programs using busy-waiting synchronization (e.g., spinlocks)
as vCPUs are always in the running state. There is ex-
isting work detecting spinning by instrumenting guest OS
kernels [33], tracking user-kernel mode switches [32], and
monitoring hardware performance events [5, 25]. We use
the lightweight spin detection proposed in [25] to break the
time in the running state into compute and synchronization
(or spinning) time. As spin loops usually contain only a few
instructions and are executed repeatedly, spinning vCPUs
show high branch per instruction and low branch miss pre-
diction rates compared to sibling vCPUs that are performing
regular computation. We add a new spinning state to Xen
and place a vCPU to such a state when spinning is detected.
Synchronization time is then the time a vCPU stays in the
spinning state.

2.2 Recording Performance Events
The breakdown of execution time alone is not su�cient to

identify the causes of slowdown. For example, an increase of
synchronization could be due to long latencies at a few syn-
chronization points or prolonged wait time at many places.
Detailed execution statistics can help find the root cause and
develop approaches to mitigate slowdowns. vProfile reports
per-vCPU statistics of the scheduling and hardware perfor-
mance events listed in Table 1. Events YIELD and PREEMPT

Event Description

YIELD Voluntary yield to other vCPUs due to idling

PREEMPT Involuntary preemption by the scheduler

IDLE The time the pCPU in the idle state

HARDWARE_STAT Statistics from hardware performance counters

Table 1: vProfile performance events.

shed light on the contentions between co-located VMs while
IDLE reflects the overall utilization of the pCPU as well as
the e�ciency of the scheduler. Performance statistics from
hardware counters can trace the low-level program behav-
iors under interference and reveal the complex interactions
between the program and the hardware. vProfile can be con-
figured to track various hardware statistics, including cycles
spent in the o↵core memory system (OFFCORE_STALL), LLC
misses per thousand instructions (MPKI), and other events
related to cache coherence tra�c between private L2 caches.

2.3 Enabling Dedicated Mode
vProfile enables online performance prediction by tem-

porarily throttling co-located workloads to estimate their
reference performance. It provides a short period of dedi-
cated execution to emulate the performance on a dedicated
machine. We assume that the sampling should cover a num-
ber of major iterations of the parallel program and contain
su�cient information for performance prediction. The ded-
icated mode can be enabled multiple times once program

phase change is detected. vProfile can integrate existing
phase change detection techniques.

vProfile exports a new hypercall sys_enable_dedicated
to the VM hosting the parallel application. Upon receiving
the hypercall, the hypervisor takes vCPUs other than the
calling VM’s vCPUs o↵ pCPUs’ run queues and places them
into the offlinemode. The hypervisor freezes vCPUs of co-
running VMs for a pre-defined period (e.g., 300 scheduling
epochs). To minimize the impact of the dedicated mode on
regular scheduling, we disable CPU time accounting (i.e.,
credit debiting in Xen’s credit scheduler) during dedicated
mode. As such, fair CPU allocation is not a↵ected when
normal execution is resumed.

2.4 Synthetic Interference
Synthetic workloads should slow down individual threads

to faithfully reflect contentions on CPU time and shared
resources, such as the last-level cache (LLC) and memory
bandwidth. It should also be able to emulate the complex
patterns of real workloads that simultaneously interfere with
multiple threads. To this end, we design the synthetic work-
loads as simple CPU loops consisting of interleaved busy and
idle intervals. The busy-to-idle ratio, which is configurable,
determines the intensity of the interference. While the syn-
thetic interference only contends for CPU cycles, it can em-
ulate contentions on shared hardware resources because a
decrease in allocated CPU time is equivalent to an increase
in memory access cost for the parallel applications under
test. We create the following three types of interference to
study the complex interplay between the parallel program,
the memory hierarchy and the underlying CPU scheduling:

• Persistent interference comprises of simple while(1)

loops demanding 100% of CPU time. It emulates the
CPU demand of long-running sequential jobs or par-
allel applications with busy-waiting synchronization.
Due to its simplicity, it is scheduled by hypervisors at
predictable time points and does not incur preemp-
tions to the parallel threads.

• Periodic interference demands CPU at regular inter-
vals or otherwise stays idle. The ratio of the CPU burst
and the idle period determines the level of contention
(i.e., CPU demand). Periodic interference has fixed
burst-to-idle ratio and fixed length of computation at
each interval. It emulates regular parallel applications
that have predictable computations and synchroniza-
tions. Periodic interference is more complex than per-
sistent interference as it sleeps and wakes up periodi-
cally, leading to preemptions of parallel threads.

• Intermittent interference demands CPU at irregular in-
tervals. The ratio of CPU burst and sleep remains un-
changed, but the length of computation changes ran-
domly. It emulates multi-programmed workloads with
independent (random) demands from individual threads
or parallel applications with irregular CPU demands.
Compared to periodic interference, whose computa-
tion and idling are predictable, intermittent interfer-
ence has unpredictable demands. This helps to study
the behavior of parallel programs when their execution
is out-of-sync.

We use the method of di↵erential analysis [18, 20] to com-
pare the execution profiles of parallel programs under dif-
ferent types of interference. The low-level metrics that are

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

sp ferret
streamcluster

vips
raytrace

canneal

facesim
lu dedup

bt blackscholes

fluidanimate

swaptions

St
ea

l t
im

e
re

la
tiv

e
to

 c
om

pu
te

Figure 2: Varying resilience to interference.

highly correlated to the overall performance are examined
to identify the causes of performance slowdown. We set the
CPU demand of periodic and intermittent interference to
50% of the pCPU. The periodic interference performs 10ms
computation and stays idle for 10ms. In contrast, the com-
putation in intermittent interference varies randomly from
1ms to 40ms with the idle period changing accordingly to
generate the 50% CPU demand. We use single-threaded in-
terferences to study the slowdown of individual threads and
the multi-threaded version to evaluate the e�ciency of mul-
tiple parallel threads.

3. UNDERSTANDING PARALLEL PERFOR-
MANCE

In this section, we use the statistics reported by vPro-
file to explain the mystery of parallel performance under
interferences. We found that programs show di↵erent levels
of resilience to interferences, leading to varying CPU allo-
cations to the parallel program (Section 3.2). Interference
may accelerate program execution by reducing the compute
time needed in normal execution (Section 3.3). Finally, the
overall performance is determined by the complex interplay
between multiple factors (Section 3.4).

3.1 Experimental Setup
We ran shared-memory multi-threaded programs on an In-

tel multicore machine with three types of interference. The
host machine has a NUMA architecture with 16GB mem-
ory and two Intel Xeon E5620 2.40GHz 4-core processors.
Each core in the processor has a private 256KB L2 cache
and shares a 12MB L3 cache. Hyperthreading was disabled
for all experiments. To isolate program performance from
other factors, e.g., memory locality, we created the VM host-
ing the parallel programs in one memory node and pinned
vCPUs of the VM to the processor a�liated with the node.
Thus, all memory accesses were local and parallel threads
shared the same last-level cache. We configured the VM
running parallel programs with 4GB memory and 4 vCPUs,
each pinned to a separate core in the same memory node.
The background interfering VM had an identical configura-
tion with all its vCPUs pinned to the same set of cores. Note
that pinning vCPUs to pCPUs is to obtain reproducible re-
sults. We observed on average 55% performance slowdown
and 15% variation when CPU a�nity was turned o↵. We as-
signed equal weights to both VMs, assuming a fair allocation
of the CPU.

We implemented vProfile in Xen 4.0.2 and modified Linux
guest kernel 2.6.32 to use the profiling hypercalls. We se-
lected the benchmarks in PARSEC 2.1 and the NAS Paral-
lel Benchmark suite. The PARSEC benchmarks were com-
piled with gcc-pthreads and blocking synchronizations. We

 0

 0.5

 1

 1.5

 2

 2.5

N
or

m
al

iz
ed

 ru
nt

im
e

streamcluster sp bt lu

No inter.
Persistent inter.

Steal
Sync

Compute

Figure 3: Interference reduces compute time.

used the OpenMP version of the NPB benchmarks and set
the environment variable OMP_WAIT_POLICY to active to use
busy-waiting synchronization. All benchmarks were config-
ured with 4 threads. We set vProfile to report performance
statistics for the entire execution after programs complete.

3.2 Varying Resilience to Interference
First, we study the slowdown at individual threads due to

contentions on the CPU time. We placed a single-threaded
persistent interference with one parallel thread and mea-
sured how much time was stolen (i.e., steal time) from the
thread by the persistent interference. In this simple sce-
nario, the thread co-located with the persistent loop would
be the slowest thread in the parallel program, thereby decid-
ing the overall performance. Figure 2 shows the steal time
of various benchmarks relative to their compute time under
the 1-loop persistent interference. Intuitively, the ratio of
steal and compute time should be 1 if CPU is fairly allo-
cated to the parallel program and the interference. How-
ever, Figure 2 suggests that some programs (i.e., canneal,
streamcluster and facesim) be more resilient to interference
and were stolen less time. An examination of program code
revealed these benchmarks have fine-grained synchroniza-
tions and block frequently at synchronizing barriers. Zhou
et al., also showed that deliberately designed attacks can
obtain excessive CPU allocations by exploiting the account-
ing vulnerabilities in Xen [37]. Harris et al. found the CPU
time that each job receives can be drastically di↵erent and
hard to control when multiple jobs run together [13]. In
our experiments, the varying CPU allocation is due to the
prioritization of latency-sensitive workloads in Xen.

Xen’s credit scheduler considers vCPUs that wake up from
sleep as latency-sensitive and assigns them a higher prior-
ity (i.e., the boost priority). Such vCPUs will preempt the
current running vCPUs. Although the prioritization mecha-
nism in theory benefits any programs that block, the granu-
larity of synchronization plays an important role in gaining
more CPU allocations. Xen implements a coarse-grained
CPU scheduler which checks if the current running vCPU
should be de-scheduled every 30ms (i.e., the default time
slice). Whenever a vCPU is prioritized, it gains a full time
slice unless voluntarily giving up the CPU, e.g., blocking due
to synchronization. Thus, programs with fine-grained syn-
chronization, e.g., those with computation less than 30ms
between synchronization, are never forcibly de-scheduled by
Xen due to the expiration of time slices, thereby being re-
silient to CPU contention. This issue is not specific to Xen
and has also been observed in KVM [3].

As parallel programs have varying CPU allocations in re-
sponse to interference, it is important to monitor steal time
to determine the slowdowns at individual threads. However,
the resilience to interference alone does not explain the un-
expected marginal slowdown of sp in Figure 1, though it

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

R
el

at
iv

e
to

 n
o

in
te

rfe
re

nc
e

(a) OFFCORE_STALL

stcluster sp bt lu

No inter.
Persistent inter.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

(b) MPKI

stcluster sp bt lu

No inter.
Persistent inter.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

(c) L3 reference

stcluster sp bt lu

No inter.
Persistent inter.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

(d) L2 cache miss

stcluster sp bt lu

Capacity/conflict miss
Coherence miss

Figure 4: Interference alleviates intra-program contentions.

su↵ers significant steal in Figure 2. We uncover the reasons
in the next subsection.

3.3 Varying Compute Time under Interference
In addition to the varying steal time, we find another fac-

tor that a↵ects the slowdown at individual threads – the
cost to access the memory hierarchy can change due to in-
terference, leading to varying compute time. Figure 3 shows
the runtime breakdown for programs that have unexpected
slowdowns. These programs are expected to have slowdowns
as much as their stolen time. The figure suggests that the
computations needed to complete these programs decrease
under the 1-loop persistent interference. The compute times
for streamcluster, sp, bt, and lu in the complete program ex-
ecution drop by 12%, 49%, 19%, and 29%, respectively.

To find the reasons for the reduced compute time, we show
the statistics of hardware performance counters in dedicated
execution and execution with 1 persistent interference in
Figure 4 (a) - (d). The figures only show the statistics of
the thread with interference and data is normalized to the
no interference case (left bar in each group). OFFCORE_STALL
refers to the cycles spent in the o↵core memory subsystem
on Intel processors. It measures the overall cost of accessing
LLC and DRAM. MPKI measures LLC misses per thousand
instructions. Figure 4 (a) suggests that these programs had
fewer OFFCORE stalls under interference because on average
there were fewer threads running simultaneously, thereby in-
curring less contention on the memory hierarchy. Figure 4
(b) shows that MPKI also drops under interference. Since
the straggling thread progressed slower than sibling threads,
it spent little time spinning and its instruction count de-
creased. A drop in the overall MPKI then indicates a signif-
icant drop in the number of LLC misses. Intuitively, the
total LLC footprint of the parallel threads should remain
unchanged, thus the LLC miss rate should not change.

We find that interference changes the way parallel appli-
cations interact with the memory hierarchy. Figure 4 (c)
shows that the reduction in LLC misses was mainly due to
fewer LLC references. For example, the number of LLC ref-
erences for streamcluster, sp, bt, lu drop by 2%, 37%, 24%,
15%, respectively. Since LLC (L3 in our testbed) reference is
the result of L2 misses, we further draw the breakdown of L2
misses in Figure 4 (d) to pinpoint the culprits of reduced L3
reference. Figure 4 (d) only shows demand data and instruc-
tion misses. Prefetching misses are excluded from the fig-
ure. We used L2 events DEMAND.I_STATE and RFO.I_STATE

to count coherence misses and the remaining misses were
capacity or conflict misses. The data shown in Figure 4 (c)
and (d) is normalized to the no interference case.

From Figure 4 (d), we can see that the change in L2 coher-
ence miss contributes most to the overall L2 miss reduction.

-40
-20

 0
 20
 40
 60
 80

cg ep ua mg ft is canneal

fluidanimate

swaptions

ferret
blackscholes

raytrace

bodytrack

x264
dedup

vips

C
ha

ng
es

 to
 o

ffc
or

e
st

al
ls

 (%
)

Figure 5: Interference changes memory access time.

A study of program source code reveals that most coher-
ence misses are caused by false sharing between threads.
The out-of-sync execution of parallel threads due to inter-
ference can constructively alleviate the contention on shared
cache lines. Threads with di↵erent progression will see fewer
cache line invalidations from sibling cores. Interference not
only reduces the inter-core cache coherence tra�c but also
avoids some unnecessary L3 references. For example, miss
on an unmodified L2 cacheline can be serviced by forward-
ing the line from a sibling core without sending requests to
the L3 cache. This e↵ectively reduces the number of capac-
ity/conflict misses on the L3 cache. An exception is stream-
cluster whose change in compute time is mostly attributed
to prefetching misses.

Next, we show that most programs in the NBP and PAR-
SEC benchmarks have varying memory cost under interfer-
ence. Figure 5 shows the changes in OFFCORE_STALL un-
der interference relative to the no interference case for the
benchmarks not shown in Figure 4. Negative values suggest
reductions in memory cost and vice versa. As we can see, the
cost to access memory varies wildly from -30.9% to 80.2%,
with most programs susceptible to such changes. If the
compute time comprises mostly memory access time (i.e.,
memory-bound), the changes in memory cost due to inter-
ference could greatly a↵ect the overall performance. While
the increase in memory access time can be attributed to the
loss of locality, e.g., threads dynamically stealing work from
straggling threads in raytrace and bodytrack, the reduction
in memory cost due to the mitigation of intra-program con-
tentions can be exploited to improve datacenter e�ciency.
We carefully co-located sp with four intermittent interfer-
ences, with 5%, 8%, 10%, 15% CPU demands, respectively.
The setting is to create out-of-sync execution at parallel
threads to mitigate the false sharing between them.

Table 2 shows that sp achieved 9.0% better performance
with 9.2% less allocated resource. This case study suggests

a group of symbiotic datacenter workloads, in which seem-
ingly destructive competitions help constructively mitigate
intra-program contentions on shared resources.

 0
 0.5

 1
 1.5

 2
 2.5

 3

No inter. Persistent Periodic Intermittent

N
or

m
al

iz
ed

 ru
nt

im
e

(a) streamcluster

Steal
Sync
Compute

 0
 0.5

 1
 1.5

 2
 2.5

 3

No inter. Persistent Periodic Intermittent

(b) canneal

Steal
Sync
Compute

 0
 0.5

 1
 1.5

 2
 2.5

 3

No inter. Persistent Periodic Intermittent

(c) sp

Steal
Sync
Compute

 0
 0.5

 1
 1.5

 2
 2.5

 3

No inter. Persistent Periodic Intermittent

(d) lu

Steal
Sync
Compute

Figure 6: Program performance under di↵erent types of interference (4-loop).

No inter. w/ inter.
CPU % 400% 363% (-9.2%)
Runtime 1004s 914s (+9.0%)

Table 2: Improving sp performance with less re-

sources.

 0

 0.5

 1

 1.5

 2

steal sync idle yield preempt

N
or

m
al

iz
ed

 v
al

ue

(a) streamcluster

Intermittent
Periodic

 0

 0.5

 1

 1.5

 2

steal sync idle yield preempt

(b) canneal

Intermittent
Periodic

Figure 7: Low-level metrics under interference.

3.4 Complex Interactions with the Scheduler
Performance is even harder to characterize if all threads of

the parallel program are a↵ected by interference. In the sim-
ple one persistent interference scenario, program resilience
to CPU contention or the change in compute time plays a
major role in performance. In contrast, when all vCPUs
have interference, the overall performance is a function of
compute, sync, and steal time. Figure 6 shows the perfor-
mance of parallel programs under di↵erent types of 4-loop
interference, i.e., persistent, periodic, and intermittent. As
shown in Figure 6(a) and (b), both streamcluster and canneal
achieved the best performance under persistent interference
but su↵ered under the other two. However, these two bench-
marks behaved di↵erently under periodic and intermittent
interferences. While streamcluster had the largest slowdown
under the periodic interference, canneal su↵ered most under
the intermittent interference. Such uncertainty is due to the
complex interactions among the parallel program, the in-
terference, and the scheduler. For example, as discussed in
Section 3.2, steal time is a↵ected by the granularity of syn-
chronization. A drop in compute time due to out-of-sync
execution will decrease steal time but lead to increased sync
time. The overall slowdown is determined by the interplays
between these factors.

Figure 7(a) and (b) show the low-level performance met-
rics of streamcluster and canneal when co-running with pe-
riodic and intermittent interferences, respectively. The fig-
ures summarize the statistics for all vCPUs in the parallel
VM. We find that low-level metrics shed light on the unpre-
dictability of high-level performance. Except sync time, all
other low-level metrics are highly correlated with the overall
slowdown. Among these metrics, idle time is the key to un-
derstanding the performance di↵erence. Idle refers to the
time neither the parallel program nor the interference was

running. A longer idle time indicates a larger overlap be-
tween parallel program’s computation and the CPU burst of
the interfering loop. This results in more severe contentions
on the pCPU. From the figure, we can see that longer idle
time always leads to more preemptions of the parallel pro-
gram and more yields, which is the sign of vCPU blocking
due to imbalanced execution. The implications from these
observations are that reducing the number of preemptions
would help improve performance under interference and the
system idle time is a good indicator of scheduling e�ciency.

For programs with busy-waiting synchronization, such as
NPB benchmarks sp and lu, both spin (or sync) time and
compute time are counted as the CPU consumption of the
parallel VM. Since steal time depends on the CPU usage
of the VM, the performance of sp and lu is determined by
their combined spin and compute time. Figure 6 (c) and (d)
show the runtime breakdown of sp and lu, respectively. We
make three key observations. First, co-running with inter-
mittent interference achieved the best performance among
the three interference scenarios. Second, persistent inter-
ference caused longer spin time than the other two. Third,
periodic interference did not significantly increase sync time.
These observations provide valuable insight into the complex
interplays between busy-waiting workloads and interference.

The asynchrony in scheduling multiple vCPUs contributed
most to the reduction of compute time under persistent
and intermittent interferences. When co-locating the paral-
lel program with persistent interference, individual vCPUs
are likely scheduled in an uncoordinated manner on multi-
ple pCPUs and the asynchrony remains until the comple-
tion of the parallel program because the scheduling rhythm
(i.e., switching vCPUs at time slice expirations) on multi-
ple pCPUs will not change for compute-bound workloads
(i.e., spinning workload and persistent interference). How-
ever, the constant asynchrony continuously incurs exceeding
spinning at faster vCPUs and eventually degrades overall
performance. The randomness in intermittent interference
also creates asynchrony on multiple vCPUs and helps reduce
memory access cost. Contrary to persistent interference, it
does not cause long spin time and neither does the periodic
interference. The frequent switching between computation
and idling (i.e., 10ms in periodic and 1-30ms in intermittent
interferences) in these two interferences forces the hypervi-
sor to perform scheduling at a much finer granularity com-
pared to the default 30ms time slice in Xen. There have
been studies using small time slices to improve the perfor-
mance of virtualized IO [1, 34]. In our case, the fine-grained
scheduling helps stop spinning vCPUs in a timely manner,
which not only reduces the overall sync time but also saves
the precious CPU time for useful work in the parallel pro-
gram. Our analysis motivates a possible optimization at

the hypervisor to improve the performance of busy-waiting
workloads: di↵erentiating scheduling on multiprocessors.

4. ONLINE PERFORMANCE PREDICTION
In this section, we present an approach for online perfor-

mance prediction based on the breakdown of parallel run-
time. The idea is to sample parallel execution under in-
terference and compare the execution profile with that in
an interference-free environment. The key is to compare the
amount of useful work completed in the two profiles and infer
the slowdown from the di↵erence in the speed of program
progression. We define useful work as the necessary work
needed to complete the parallel job assuming an ideal mem-
ory system with zero latency and perfect load balancing. As
we have shown, the cost of accessing memory and performing
synchronization can vary under interference, leading to dy-
namic computations required to complete parallel programs.
In a machine with an ideal memory system, computation is
performed in the CPU front-end which is an invariant in the
presence of interference or unpredictable thread scheduling.
With perfect load balancing, the time spent in synchroniza-
tion, i.e., spinning or performing context switches, is almost
zero. Thus, the compute time in such an ideal platform is
only determined by compilation and the dynamic instruc-
tion scheduling on individual CPUs. As these two factors
are not a↵ected by interference, the ideal compute time is a
reliable metric to measure program progress.

To measure useful work, or the compute time on an ideal
platform, we remove the time spent in the memory hierarchy,
synchronization, and the time stolen by other users, from the
total time. Specifically, we calculate useful work t

ideal

in a
sampling period as follows:

t
ideal

= t
total

� t
steal

� t
sync

� t
mem

,

where t
steal

measures the resilience of the program to in-
terference and is reported directly by vProfile. We use the
time spent on Intel’s o↵core memory subsystem (i.e., OFF-
CORE_STALL) to approximate t

mem

. For programs with busy-
waiting synchronization, t

sync

refers to the spinning time
recorded by vProfile. For programs with blocking synchro-
nization, t

sync

includes the time in the blocked state and the
time performing vCPU context switches. While the blocked
time is already included in the execution profile, we infer the
cost of context switching by comparing the cycles spent by
di↵erent threads in the same parallel program. Specifically,
after removing t

steal

and t
mem

from the total time, we com-
pare the remaining time of individual threads and attribute
the di↵erence to the varying numbers of context switches
performed by them, assuming that each thread has been as-
signed an equal amount of work. As such, we calculate the
per context switch cost (in CPU cycles) and multiply the
number of vCPU blocking to derive t

sync

.
The online sampling profiles parallel execution in two steps.

First, it enables the dedicated mode to collect statistics for an
interference free execution. The dedicated mode sampling is
then followed by a normal sampling with interference turned
on. The length of the sampling can be tuned to produce the
best accuracy. We empirically set the sampling length to
30 seconds. vProfile reports the runtime breakdown of all
vCPUs in the VM under the two execution modes, respec-

tively. The overall slowdown is then calculated as
t

0
ideal
tideal

,

where t0
ideal

and t
ideal

are the amount of useful work done

-20

-10

 0

 10

 20

 30

Ab
so

lu
te

 p
er

ce
nt

ag
e

er
ro

r (
%

)

1-persistent
4-persistent

1-streamcluster
4-streamcluster

-20

-10

 0

 10

 20

 30

Ab
so

lu
te

 p
er

ce
nt

ag
e

er
ro

r (
%

)

-20

-10

 0

 10

 20

 30 (c) Prediction based on useful work

(b) Prediction based on CPI

(a) Prediction based on MPKI

-32%

-25%

-20%

sp bt lu cg ep mg ua streamcluster

canneal

fluidanimate

blackscholes

swaptions

raytrace

Ab
so

lu
te

 p
er

ce
nt

ag
e

er
ro

r (
%

)

Figure 8: The accuracy of performance prediction.

by all threads in the parallel program during the dedicated
mode and under interference, respectively.

Figure 8 shows the accuracy of the proposed online predic-
tion compared with two representative prediction approaches
based on misses per thousand instructions (MPKI) and cy-
cles per instruction (CPI). We employed the same sampling-
based method to predict the overall program slowdown using
these two metrics. For example, the slowdown is predicted as
CPI

CPI

0 when using CPI to measure program progress under in-
terference and under the dedicated mode. We used the syn-
thetic workload and the real streamcluster workload as the
interferences, respectively. For each type of interference, we
evaluated the prediction with both the single-threaded (i.e.,
1-persistent and 1-stcluster) and the multi-threaded (i.e., 4-
persistent and 4-stcluster) interferences. With the synthetic
persistent interference, which has predictable CPU demands
and almost zero memory footprint, we test how well the pre-
diction deals with the uncertainties due to parallel programs’
varying resilience and memory accessing cost in response to
interference. Then, we evaluate how accurate the prediction
would be with real workload streamcluster that has varying
CPU demands and contends on shared memory resources.

As shown in Figure 8 (a) and (b), MPKI and CPI-based
predictions incurred significant prediction errors with on av-
erage 20.3% and 15.2% mean absolute percentage errors
(MAPE), respectively, across all workloads. The inaccu-
racies were due to the misrepresentation of parallel perfor-
mance by these two metrics. As shown in Figure 5, memory
access cost can either increase or decrease under interference
but the overall performance is determined by multiple fac-
tors. Thus, memory-related metrics alone, e.g., MPKI, fail
to accurately predict performance slowdown. CPI is a ef-
fective metric to predict the performance of serial programs
as it measures the cost to execute instructions, assuming
that the number of instructions needed to complete a pro-

 0

 0.5

 1

 1.5

 2

 2.5

streamcluster

facesim
canneal

raytrace
fluidanimate

vips dedup
ferret

swaptions
blackscholes

bodytrack
x264

N
or

m
al

iz
ed

 ru
nt

im
e

(a) Co-run with streamcluster

Xen
DP(2ms)
DP(8ms)

Adaptive-DP

 0

 0.5

 1

 1.5

 2

 2.5

streamcluster

facesim
canneal

raytrace
fluidanimate

vips dedup
ferret

swaptions
blackscholes

bodytrack
x264

(b) Co-run with fluidanimate

Xen
DP(2ms)
DP(8ms)

Adaptive-DP

Figure 9: Performance of PARSEC benchmarks under delayed preemption (DP).

gram is constant. However, this assumption does not hold in
parallel programs. The number of instructions executed by
individual threads is variable due to the spinning and block-
ing performed by threads. For example, it is possible that
a spinning thread making no execution progress can have a
decreasing CPI because waiting on spinlocks does not cause
any memory accesses and has a low CPI. Therefore, CPI
alone does not capture synchronization in parallel programs
and is not accurate in predicting the overall performance.

In contrast, as shown in Figure 8 (c), the performance
predictions based on the useful work were accurate with an
average MAPE of 4.5% across all workloads. In general, pre-
dictions with the synthetic interference are more accurate
than that with streamcluster and predictions with single-
threaded interference tend to incur less error. Except for
cg, all predictions caused less than 10% errors even for ray-
trace, which implements dynamic work assignment at the
user level to improve load balancing. While dynamic work
assignment at the application level mitigates interference by
assigning less work to straggling threads, it presents chal-
lenges to online performance prediction as the work done
by individual threads does not reflect the overall progress.
Our online prediction addressed this issue by counting useful
work on all threads to measure program progress as a whole
and achieved less than 10% prediction error for raytrace.
Sources of inaccuracy The accuracy of the prediction re-
lies on one assumption: the sampling is representative of
the overall parallel execution. This assumption do not al-
ways hold, leading to inaccurate predictions. For example,
some applications, e.g., cg, have quite dynamic memory foot-
print at di↵erent execution stages. The dynamism can a↵ect
the e↵ectiveness of the sampling-based prediction, especially
when the interference is also dynamic. As shown in Figure 8,
the prediction incurred 32% error on cg under the 4-thread
streamcluster interference. As discussed in Section 3.2, the
CPU allocation to streamcluster depends on its synchroniza-
tion granularity. As cg’s memory demand changed, stream-
cluster had varying computation between synchronizations,
thereby a↵ecting the CPU allocation to cg. Thus, predic-
tions based on one sample of the execution of such applica-
tions will be likely inaccurate.

5. OPTIMIZATIONS
Our analysis in Section 3 found that involuntary preemp-

tions are especially detrimental to performance and random-
ness in CPU scheduling help mitigate intra-program con-
tentions on shared resources. Inspired by these findings, we
developed two simple optimizations, delayed preemption and
di↵erential scheduling, at the hypervisor to improve parallel

performance under interference. Results show that the two
optimizations derived from our analysis with the synthetic
workloads are e↵ective in reducing performance slowdowns
when real parallel applications are co-located.

5.1 Delayed Preemption
Harmful preemptions happen when parallel programs co-

locate with periodic or intermittent interference. The fre-
quent wakeups of interfering vCPUs can cause longer steal
time and synchronization time in the parallel VM. While
preemptions due to the expiration of CPU time quantum
are necessary for fair allocation, the boosted wakeups are
needed for minimizing latencies of interactive or IO work-
loads. In a contended environment, such premature preemp-
tions may cause cascading performance degradations in par-
allel programs. Figure 7 suggests that even CPU is heavily
contended, there still exists idle time in which both parallel
threads and the interfering loops are in blocked (or sleep)
state. When these vCPUs wake up, preemptions between
the two competing sides cause ping-pong scheduling. To
address this issue, we propose delayed preemption (DP) to
overlap computations with blocking/sleeping, and to mini-
mize premature preemptions.

Inspired by the design of hybrid synchronization, which
uses a spin-then-block approach to attain a balance between
low latency and wasting CPU time, our approach temporar-
ily delays a wakeup vCPUs for a short period of time in the
hope that current running vCPU would voluntarily yield
CPU due to waiting for synchronization. Our implementa-
tion in Xen is quite simple and the change only consists of
50 lines of code. We added a single shot timer to the pCPU
that has a waking vCPU. If the current running vCPU vol-
untarily yields CPU, the timer is stopped. Otherwise, the
expiration of the timer forces a call to the schedule function
in Xen to preempt the current vCPU. However, the selection
of the delayed period is challenging as di↵erent applications
attain the best performance with di↵erent delays.

Figure 9 shows the performance of PARSEC benchmarks
due to stock Xen and DP. We co-located PARSEC bench-
marks with two background workloads. streamcluster has
fine-grained synchronizations at the granularity of 20-30ms
while fluidanimate has coarse-grained synchronizations ev-
ery 6 seconds. Benchmarks in Figure 9(a) su↵er involuntary
preemptions caused by the background streamcluster and
the background fluidanimate in Figure 9(b) is the victim of
premature preemptions. In general, the optimal delay set-
ting varies across benchmarks. As shown in Figure 9(a),
short delay (i.e., DP(2ms)) is more desirable for streamclus-
ter, facesim, dedup, and bodytrack, while long delay (i.e.,

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

N
or

m
al

iz
ed

 ru
nt

im
e

(a) Persistent

sp lu cg ua ft bt

Xen
DS

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

(b) Periodic

sp lu cg ua ft bt

Xen
DS

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

(c) Corun with SP

sp lu cg ua ft bt

Xen
DS

Figure 10: Performance of NPB benchmarks under di↵erential scheduling (DS).

DP(8ms)) worked best for other workloads. Similarly, work-
loads also have their respective preferences of delay in Fig-
ure 9(b).

To meet applications’ diverse needs of preemption delay,
we make DP adaptive (i.e., adaptive-DP). As discussed in
Section 3, the idle time on pCPUs is a key indicator of the
e�ciency of parallel scheduling. For PARSEC benchmarks,
vCPUs become idle/blocked when synchronizing with sib-
ling vCPUs. Interference could slowdown sibling vCPUs
and prolong the idle period. In multiprocessor scheduling,
uncooperative preemptions could leave CPU time on pC-
PUs unused when vCPUs from competing workloads are all
blocked by synchronization. The objective of adaptive-DP is
to dynamically adjust the preemption delays for co-running
parallel workloads so that the overall preemptions and the
idle time on pCPUs are minimized. We decompose runtime
into compute and idle time and the latter includes sync and
steal time. We adaptively change the preemption delay for a
vCPU until its compute time approximates its expected fair
share in a shared environment. If all vCPUs from co-running
applications attain their fair share, the idle time would be
dominated by the steal time, thereby minimizing the sync
time and preemptions. Specifically, the preemption delay is
updated as follows:

lag =
t
comp

� t
fair

t
comp

+ t
idle

, (1)

delay = delay + lag ⇥ (delay + MICROSECS(10)), (2)

where t
fair

and t
comp

refer to the ideal fair allocation of
CPU time and the actual attained compute time, respec-
tively. The preemption delay is updated according to the
lag relative to the ideal fair CPU allocation. A positive lag
increases the delay a vCPU waits to preempt the current
running vCPU, giving other applications more time to ex-
ecute. MICROSECS(10) is to ensure no-zero changes in case
delay becomes zero.

As shown in Figure 9 (a) and (b), adaptive-DP automati-
cally determines the optimal delay for di↵erent applications.
When co-running with fine-grained streamcluster (Figure 9
(a)), adaptive-DP outperformed both DP (2ms) and DP
(8ms) for applications with fine-grained synchronizations,
e.g., streamcluster, facesim, and canneal. Adaptive-DP ef-
fectively identified better delay values for such workloads
compared to the manually determined 2ms and 8ms delays.
For coarse-grained workloads, such as swaptions, blacksc-
holes, and x264, adaptive-DP struck a balance between the
foreground and background workloads and achieved perfor-
mance in-between the manually tuned delays. When co-
running with fluidanimate (Figure 9 (b)), adaptive-DP had
similar performance to stock Xen as Xen with zero pre-

emption delays always prioritized the foreground workloads
with fine-grained synchronization. We calculated the geo-
metric mean of the slowdowns of the foreground and back-
ground workloads relative to their performance in dedicated
systems. The background workloads were repeated until
all foreground workload completed. Adaptive-DP outper-
formed Xen by 12% in the overall slowdown, indicating more
e�cient scheduling in a shared environment.

5.2 Differential Scheduling
Di↵erential Scheduling (DS) is also motivated by our ob-

servations in Section 3. We found that the randomness in
intermittent interference helps alleviate the contention on
shared memory resources, which significantly reduces the re-
quired computation. The irregularity in CPU demand and
sleep intervals forces the CPU scheduling on multiproces-
sors to proceed at di↵erent paces. This e↵ectively leads to
di↵erent lengths of time slice at di↵erent CPUs because the
intermittent loops yield CPU at irregular intervals. The re-
sult is not only the release of pressure placed by the concur-
rent vCPUs to the memory hierarchy but also a reduction
of wasted spinning time due to fine-grained scheduling.

To emulate the benefits brought by co-running with in-
termittent interference, we purposely make the schedulers
on multiple CPUs have di↵erent time quantum. Xen uses a
master timer for each pCPU to generate periodic timer in-
terrupt to force a call to the schedule function. The default
timeout (i.e., the time slice) is 30ms. In DS, the interval of
the timer is randomly generated. Each time Xen sets the
timeout for the next timer interrupt, it picks a random in-
terval based on the readings of the Time Stamp Counter
(tsc) register. Given the micro-second resolution (approxi-
mately 2430 cycles on our platform) of hardware timers, the
last two digits of the tsc readings are likely device noises and
are a good source of randomness. We set the time quantum
on individual pCPUs to the range of 10ms to 30ms to enable
fine-grained scheduling.

Figure 10 shows the performance of NPB benchmarks due
to stock Xen and DS. Since DS already adds randomness
into vCPU scheduling, we present the performance of DS
when NPB benchmarks ran with persistent, periodic inter-
ferences (excluding the intermittent interference), and the
real workload sp. The selection of sp is due to its mem-
ory contentiousness to co-running programs. Figure 10 (a)
suggests that with persistent interference, DS was only ef-
fective in optimizing memory-bound programs, such as sp,
lu, and ua. On average, DS outperformed Xen by 32% in
these workloads. For CPU-bound program, e.g., cg, DS nei-
ther significantly degraded or improved performance. For
periodic interference (shown in Figure 10 (b)), DS outper-

formed Xen in all benchmarks except cg. DS does not help
mitigate memory contentions as cg is primarily CPU-bound
and hurts performance because di↵erential time slices slow
down the tightly coupled phases in cg.

Interestingly, DS was able to outperform Xen even for
compute-bound benchmarks, e.g., cg (as shown in Figure 10
(c)) when the background workload was memory-bound sp.
The alleviation of memory pressure from the background sp
helped improve the performance of foreground workloads.
However, the inability of DS to improve foreground sp per-
formance in Figure 10 (c) suggests that DS work best for
workloads with complementary memory access patterns. An-
other advantage of DS is that the randomness in scheduling
significantly reduces runtime variations across runs, with an
average variation of 0.5%.

6. DISCUSSIONS AND FUTURE WORK
Enable per-thread runtime breakdown Currently, vPro-
file can only report runtime breakdown at per-vCPU level
for parallel applications that have a one-to-one mapping
from user-level threads to vCPUs. There exist many paral-
lel workloads with more threads than vCPUs. Examples in-
clude web servers and workloads implementing worker pools,
such as dedup, ferret and vips. Enabling per-thread runtime
breakdown would help further pinpoint the source of slow-
down but require tracing thread switches in the guest OS.
Extend prediction to more sophisticated workloads The
online prediction currently focuses on multithreaded paral-
lel programs on shared memory systems. Predicting parallel
performance on distributed memory systems present signifi-
cant challenges. Much e↵ort is needed to devise a lightweight
and accurate sampling approach on multiple machines. Fur-
ther, our prediction treats the useful work on any threads
equally. For more sophisticated programs, especially those
having strong dependencies between threads, e.g., dedup and
ferret with pipeline parallelism, the prediction should be
based on the useful work of the most critical thread.
Identify symbiotic workloads Experimental results show
that DP and DS are e↵ective for blocking-based workloads
(e.g., PARSEC benchmarks) and workloads with comple-
mentary memory demands, respectively. However, no one
size fits all. DS can hurt the performance of CPU-bound
and tightly bounded workloads, and DP is ine↵ective for
applications with busy-waiting synchronization. Identify-
ing symbiotic workloads that either have complementary re-
source demands or can be managed under similar schemes
would help improve resource utilizations and reduce energy
consumptions in datacenters.

7. RELATED WORK
Performance interference has been well studied in liter-

ature. Most work focused on contentions on shared re-
sources, such as last-level caches [4, 6, 10, 12, 14], memory
controllers [10, 21], and hardware prefetchers [17], between
sequential programs or multi-programmed/threaded work-
loads. There are also recent work measuring the interference
in datacenters [8, 9, 15, 19, 22, 30, 35, 36]. These studies
either assume space sharing between workloads [7, 24, 27,
28], use cycles per instruction (CPI) as a proxy of perfor-
mance [8, 9, 35, 36] or use o✏ine profiling to estimate the
contentiousness of co-runners [19, 22]. These approaches can

not be easily extended to manage performance interference
of parallel applications. First, techniques addressing single-
thread resource contentions do not necessarily optimize the
execution of parallel programs as parallel performance is a
function of single-thread computing and synchronizations.
Second, widely used metrics such as CPI are not reliable
in measuring performance in parallel programs because CPI
can be either inflated or deflated due to synchronizations.
Third, parallel applications are usually long-running jobs.
O✏ine profiling is prohibitively expensive in production sys-
tems. In this work, we measure the amount of useful work
completed to predict slowdown in an online manner.

There are also existing studies addressing the overhead of
running parallel program in virtualized environments. Our
optimizations are closely related to these works. Common is-
sues include lock-holder preemption (LHP) [32], CPU stack-
ing [29], and expensive traps to the hypervisor [11, 26].
Co-scheduling [23, 29] aims to schedule cooperative threads
synchronously to avoid the LHP issue. However, our find-
ings in this work show that di↵erential scheduling may be
more desirable for memory-bound programs. Delayed pre-
emption shares the similar idea with demand-based coordi-
nated scheduling [16] to temporarily delay the preemption
of important threads. The scheduler in [16] delays the pre-
emption of vCPUs that initiate wakeup IPIs to avoid LHP.
Our purpose is to interleave the computations between par-
allel programs and interference to avoid future harmful pre-
emptions. Ding et. al., found that consolidating multiple
threads onto one vCPU to avoid blocking leads to significant
performance boost in KVM [11]. Contrary to their findings,
our experiments show that programs with fine-grained syn-
chronization are more resilient to persistent interference in
a Xen environment. The contradiction can be attributed
to the di↵erent designs of Linux CFS scheduler and Xen’s
credit scheduler.

8. CONCLUSIONS
This paper presents a systematic study of parallel perfor-

mance under interference. We find that the speed of individ-
ual threads under interference is determined by their varying
resilience to interferences and the computation required to
complete the parallel program can change vastly under in-
terference due to alleviated intra-program contentions. Fur-
ther, the overall performance is the result of the complex in-
terplays between these factors. Avoiding harmful vCPU pre-
emptions or maintaining asynchrony between vCPUs helps
reduce slowdown under interference for di↵erent kinds of
workloads. Inspired by these findings, we develop an accu-
rate online approach for predicting slowdowns under inter-
ference without requiring completing the parallel program,
and devise two scheduling optimizations at the hypervisor
to improve performance.

9. ACKNOWLEDGEMENTS
We are grateful to the anonymous reviewers for their con-
structive comments. This research was supported in part
by the U.S. National Science Foundation under grants CNS-
1320122, CCF-1261584 and CCF-1261811.

10. REFERENCES
[1] J. Ahn, C. H. Park, and J. Huh. Micro-sliced virtual

processors to hide the e↵ect of discontinuous cpu
availability for consolidated systems. In Proc of
MICRO, 2014.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, L. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The nas parallel benchmarks summary
and preliminary results. In Proc. of SC, 1991.

[3] K. based virtual machine. http://www.linux-kvm.org/.
[4] S. Blagodurov, S. Zhuravlev, and A. Fedorova.

Contention-aware scheduling on multicore systems.
ACM Trans. Comput. Syst., 28(4), 2010.

[5] K. Chakraborty, P. M. Wells, and G. S. Sohi.
Supporting overcommitted virtual machines through
hardware spin detection. IEEE Trans. Parallel Distrib.
Syst., 23(2), 2012.

[6] D. Chandra, F. Guo, S. Kim, and Y. Solihin.
Predicting inter-thread cache contention on a chip
multi-processor architecture. In Proc. of HPCA, 2005.

[7] T. Creech, A. Kotha, and R. Barua. E�cient
multiprogramming for multicores with scaf. In Proc. of
MICRO-46, 2013.

[8] C. Delimitrou and C. Kozyrakis. Paragon: Qos-aware
scheduling for heterogeneous datacenters. In Proc. of
ASPLOS, 2013.

[9] C. Delimitrou and C. Kozyrakis. Quasar:
Resource-e�cient and qos-aware cluster management.
In Proc. of ASPLOS, 2014.

[10] T. Dey, W. Wang, J. W. Davidson, and M. L. So↵a.
Characterizing multi-threaded applications based on
shared-resource contention. In Proc. of ISPASS, 2011.

[11] X. Ding, P. B. Gibbons, M. A. Kozuch, and J. Shan.
Gleaner: Mitigating the blocked-waiter wakeup
problem for virtualized multicore applications. In
Proc. of USENIX ATC, 2014.

[12] F. Guo and Y. Solihin. A framework for providing
quality of service in chip multi-processors. In Proc. of
MICRO, 2007.

[13] T. Harris, M. Mass, and V. J. Marathe. Callisto:
Co-scheduling parallel runtime systems. In Proc. of
EuroSys, 2014.

[14] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni,
D. Newell, Y. Solihin, L. Hsu, and S. Reinhardt. Qos
policy and architecture for cache/memory in cmp
platforms. In Proc. of SIGMETRICS, 2007.

[15] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim.
Measuring interference between live datacenter
applications. In Proc. of SC, 2012.

[16] H. Kim, S. Kim, J. Jeong, J. Lee, and S. Maeng.
Demand-based coordinated scheduling for smp vms. In
Proc. of ASPLOS, 2013.

[17] F. Liu and Y. Solihin. Studying the impact of
hardware prefetching and bandwidth partitioning in
chip-multiprocessors. In Proc. of SIGMETRICS, 2011.

[18] X. Liu and B. Wu. Scaanalyzer: A tool to identify
memory scalability bottlenecks in parallel programs.
In Proc. of SC, 2015.

[19] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L.
So↵a. Bubble-up: Increasing utilization in modern

warehouse scale computers via sensible co-locations. In
Proc. of MICRO, 2011.

[20] P. E. McKenney. Di↵erential profiling. Software -
Practice and Experience, 29(3), 1999.

[21] O. Mutlu and T. Moscibroda. Stall-time fair memory
access scheduling for chip multiprocessors. In Proc. of
MICRO, 2007.

[22] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and
R. Bianchini. Deepdive: Transparently identifying and
managing performance interference in virtualized
environments. In Proc. of USENIX ATC, 2013.

[23] J. Ousterhout. Scheduling techniques for concurrent
systems.

[24] A. Raman, A. Zaks, J. W. Lee, and D. I. August.
Parcae: A system for flexible parallel execution. In
Proc. of PLDI, 2012.

[25] J. Rao and X. Zhou. Towards fair and e�cient smp
virtual machine scheduling. In Proc. of PPoPP, 2014.

[26] X. Song, H. Chen, and B. Zang. Characterizing the
performance and scalability of many-core applications
on virtualized platforms. Technical Report
FDUPPITR-2010-002, Parallel Processing Institute,
Fudan University, 2010.

[27] S. Sridharan, G. Gupta, and G. S. Sohi. Holistic
run-time parallelism management for time and energy
e�ciency. In Proc. of ICS, 2013.

[28] S. Sridharan, G. Gupta, and G. S. Sohi. Adaptive,
e�cient, parallel execution of parallel programs. In
Proc. of PLDI, 2014.

[29] O. Sukwong and H. S. Kim. Is co-scheduling too
expensive for smp vms? In Proc. of EuroSys, 2011.

[30] L. Tang, J. Mars, W. Wang, T. Dey, and M. L. So↵a.
Reqos: Reactive static/dynamic compilation for qos in
warehouse scale computers. In Proc. of ASPLOS,
2013.

[31] The PARSEC benchmarks.
http://parsec.cs.princeton.edu/.

[32] V. Uhlig, J. LeVasseur, E. Skoglund, and
U. Dannowski. Towards scalable multiprocessor
virtual machines. In Proc. of VM, 2004.

[33] C. Weng, Q. Liu, L. Yu, and M. Li. Dynamic adaptive
scheduling for virtual machines. In Proc. of HPDC,
2011.

[34] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R.
Kompella, and D. Xu. vslicer: Latency-aware virtual
machine scheduling via di↵erentiated-frequency cpu
slicing. In Proc. of HPDC, 2012.

[35] H. Yang, A. Breslow, J. Mars, and L. Tang.
Bubble-flux: Precise online qos management for
increased utilization in warehouse scale computers. In
Proc. of ISCA, 2013.

[36] X. Zhang, E. Tune, R. Hagmann, R. Jnagal,
V. Gokhale, and J. Wilkes. Cpi2: Cpu performance
isolation for shared compute clusters. In Proc. of
EuroSys, 2013.

[37] F. Zhou, M. Goel, P. Desnoyers, and R. Sundaram.
Scheduler vulnerabilities and coordinated attacks in
cloud computing. J. Comput. Secur., 2013.

