
Towards Fair and Efficient SMP Virtual Machine Scheduling

Jia Rao Xiaobo Zhou
Department of Computer Science

University of Colorado at Colorado Springs
{jrao, xzhou}@uccs.edu

Abstract
As multicore processors become prevalent in modern com-
puter systems, there is a growing need for increasing hard-
ware utilization and exploiting the parallelism of such plat-
forms. With virtualization technology, hardware utilization
is improved by encapsulating independent workloads into
virtual machines (VMs) and consolidating them onto the
same machine. SMP virtual machines have been widely
adopted to exploit parallelism. For virtualized systems, such
as a public cloud, fairness between tenants and the efficiency
of running their applications are keys to success. However,
we find that existing virtualization platforms fail to enforce
fairness between VMs with different number of virtual CPUs
(vCPU) that run on multiple CPUs. We attribute the unfair-
ness to the use of per-CPU schedulers and the load imbal-
ance on these CPUs that incur inaccurate CPU allocations.
Unfortunately, existing approaches to reduce unfairness,
e.g., dynamic load balancing and CPU capping, introduce
significant inefficiencies to parallel workloads.

In this paper, we present Flex, a vCPU scheduling scheme
that enforces fairness at VM-level and improves the ef-
ficiency of hosted parallel applications. Flex centers on
two key designs: (1) dynamically adjusting vCPU weights
(FlexW) on multiple CPUs to achieve VM-level fairness and
(2) flexibly scheduling vCPUs (FlexS) to minimize wasted
busy-waiting time. We have implemented Flex in Xen and
performed comprehensive evaluations with various parallel
workloads. Results show that Flex is able to achieve CPU al-
locations with on average no more than 5% error compared
to the ideal fair allocation. Further, Flex outperforms Xen’s
credit scheduler and two representative co-scheduling ap-
proaches by as much as 10X for parallel applications using
busy-waiting or blocking synchronization methods.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP ’14, February 15–19, 2014, Orlando, Florida, USA.
Copyright c© 2014 ACM 978-1-4503-2656-8/14/02. . . $15.00.
http://dx.doi.org/10.1145/2555243.2555246

Categories and Subject Descriptors D.4.1 [Operating Sys-
tems]: Process Management—Scheduling, Synchronization;
D.4.8 [Operating Systems]: Performance—Measurements

Keywords Virtual Machine Scheduling; Multicore Sys-
tems; Parallel Program Optimization

1. Introduction
Cloud computing, unlocked by virtualization technologies,
is bringing a transformative change in enterprise architec-
tures. By consolidating multiple independent workloads,
each in a virtual machine (VM), onto a fewer number of
machines, enterprises benefit from improved hardware uti-
lizations and significant energy savings. On the other hand,
virtualization provides important flexibilities to end users.
Virtual servers can be on-the-fly reconfigured to meet the
growth of hosted applications. Public infrastructure-as-a-
service (IaaS) clouds such as Amazon EC2 [1] and Mi-
crosoft Azure [35] allow users to lease virtual servers from
cloud providers with a pay-as-you-go charging model. How-
ever, cloud providers are facing a dilemma – consolidating
more VMs on their hardware infrastructure to generate more
revenue and achieving good performance for hosted appli-
cations to avoid the loss of customers. Since it is a com-
mon practice in today’s cloud providers to multiplex VMs
onto hardware resources, e.g., CPU cores, the question left
to providers is how to provide guaranteed performance to
users.

Performance guarantee has twofold meanings in a pub-
lic cloud service: fairness and efficiency. First, performance
should be predictable and proportional to user payments. At
least, users belonging to the same service category with the
same pay rate should receive a fair amount of shared re-
sources. Second, the overhead introduced by virtualization
should be minimized to approximate the execution efficiency
in dedicated systems. There is existing work addressing the
unfairness issue due to shared CPU caches [12, 17, 22], net-
work I/O interface [3, 19] and shared storage [23]. Other
work attempted to improve the efficiency for virtualized I/O
processing [37, 38]. With the prevalence of parallel program-
ming, symmetric multiprocessing (SMP) VMs with multi-
ple virtual CPUs (vCPUs) are widely adopted in cloud ser-

 0

 0.5

 1

 1.5

 2

Xen KVM VMwareN
or

m
al

iz
ed

 C
P

U
 c

on
su

m
pt

io
n

(a)

3-vCPU VM
4-vCPU VM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

lu streamcluster Hadoop SPECjbb

N
or

m
al

iz
ed

 r
un

tim
e

(b)

Busy-waiting

Blocking

Coarse grained sync

PIN+homo. VM
PIN+heter. VM+cap

LB+homo. VM
LB+heter. VM+cap

Figure 1. (a) VM-level unfairness for two heterogeneous
VMs sharing 4 pCPUs. (b) Effect of fairness mechanisms,
load-balancing (LB) and CPU capping (cap), on parallel
performance.

vices. Literature has identified the synchronization overhead
in SMP VMs as the major performance bottleneck for paral-
lel programs in virtualized environments. Lock-holder pre-
emption (LHP) [32] and vCPU stacking [27] are two unique
issues arise with SMP scheduling. To mitigate these issues,
researchers have proposed relaxed scheduling [29], balance
scheduling [27], demand-based coordinated scheduling [11],
and scheduling approaches based on spinlock-detection [7,
9, 32, 34].

In this work, we discover a hidden issue in consolidat-
ing SMP VMs – the scalable design of having independent
schedulers on individual CPUs makes it difficult to achieve
fair CPU allocation for SMP VMs. Existing mechanisms to
enforce fairness, e.g., dynamic load balancing and CPU cap-
ping, however exacerbate SMP synchronization overhead.
Figure 1(a) shows the actual CPU allocations for two het-
erogeneous VMs sharing four CPUs. SMP VMs can become
heterogeneous in the number of vCPUs if some vCPUs are
idle and go offline. The workloads running in the VMs are
simply infinite loops that fully utilize a VM’s processor re-
sources. VMs were assigned the same weights and vCPUs
were grouped together (e.g., using Linux cgroup in KVM)
sharing the per-VM share. As shown in Figure 1(a), popu-
lar virtualization platforms, such as Xen [36], KVM [6] and
VMware [33], are unable to achieve fair allocation at the
VM level. The VM with a larger number of vCPUs gain ad-
vantages in getting more CPU resources. We attribute the
unfairness to the use of per-CPU schedulers and the load
imbalance on individual CPUs that leads to inaccurate CPU
allocations. Load-balancing (LB) and CPU capping (cap) are
popular approaches to enforce fairness, but introduce signif-
icant synchronization overhead to parallel workloads with
different synchronization methods.

Figure 1(b) shows the performance of parallel work-
loads under different fairness mechanisms in Xen. Paral-
lel workloads ran in the 4-vCPU VM and was co-located
with a homogeneous (homo.) 4-vCPU VM or a heteroge-
neous (heter.) 3-vCPU VM. Details of the workloads are
explained in Section 5. The baseline is when two homo-
geneous (homo.) VMs are co-located and their vCPUs are
pinned (PIN) to CPUs. From the figure, we can see that when
CPU capping is in place, heterogeneity in VM configuration
incurs significant slowdowns (as much as 3X) to workloads

with busy-waiting synchronization (e.g., spinlocks). When
LB is used for fairness, it penalizes workloads with non-
busy-waiting synchronization (e.g., mutexes). In addition,
workloads with coarse-grained synchronization are resilient
to these fairness mechanisms.

In this work, we propose a unified approach, Flex, for
enforcing VM-level fairness and improving the execution
efficiency of parallel programs in virtualized environments.
Flex relies on two independent components: (1) FlexW
achieves VM-level fairness by dynamically adjusting VM
weights to account for the allocation inaccuracies caused by
load imbalance on individual CPUs; (2) FlexS improves par-
allel execution efficiency by eliminating busy-waiting time
and accelerating sequential portions of parallel programs.
FlexS employs a novel vCPU migration algorithm to prior-
itize vCPUs doing useful work without compromising VM-
level fairness. To identify busy-waiting vCPUs, we also de-
vise a simple but effective hardware metric-based approach.
We find that branches per instruction (BPI) and branch miss
prediction rate (BMPR) together accurately pinpoint the spin
loops in different implementations of busy-waiting-based
synchronization.

We have implemented Flex in Xen and performed com-
prehensive evaluations with various parallel workloads. Ex-
perimental results show that Flex achieves fairness between
heterogeneous VMs with on average no more than 5% de-
viation from the ideal fair allocation. Further, Flex is able
to realize a reasonably good level of differentiation and pro-
portional allocation between VMs with different weights.
Finally, Flex effectively reduces spinning time for busy-
waiting-based workloads and avoids vCPU stacking for
blocking-based workloads. Compared to default Xen, Flex
achieves similar performance for VMs with advantages in
CPU allocation and significantly boosts the performance
of VMs with disadvantages. Flex performs closely to two
representative co-scheduling and demand-based scheduling
approaches in optimizing a single workload. When simul-
taneously optimizing a mix of two parallel workloads, Flex
significantly outperforms both approaches by 30.4% and
35%, respectively. Moreover, Flex only incurs less than 1%
of overhead to the critical execution path of Xen.

The rest of the paper is organized as follows. Section 2
introduces the basics of SMP VM scheduling and parallel
synchronization, discusses challenges in attaining VM-level
fairness and parallel efficiency. Section 3 and Section 4 de-
scribe the design and implementation of Flex, respectively.
Section 5 presents the experiment results. Section 6 dis-
cusses related work and Section 7 concludes this paper.

2. Background and Motivation
In this section, we first describe the basics of SMP virtual
machine scheduling and discuss parallel workloads with dif-
ferent synchronization mechanisms. Then, we demonstrate
the difficulty of attaining fairness between SMP VMs in a

multicore scenario. Finally, we show that existing schedul-
ing strategies for fairness are inaccurate and introduce sig-
nificant inefficiencies to parallel workloads.

2.1 SMP Virtual Machine Scheduling
Symmetric MultiProcessing (SMP) VMs, each configured
with two or more virtual CPUs (vCPUs), allow users to si-
multaneously access multiple processors. Therefore, SMP
VMs are widely used for hosting parallel workloads. In a
virtualized environment, there exists a double scheduling
scenario [25], where a guest operating system (OS) sched-
ules processes on vCPUs and the hypervisor schedules vC-
PUs on physical CPUs (pCPUs). In systems with co-located
VMs, multiple vCPUs could run on the same pCPU and the
hypervisor allocates CPU cycles according to the share of
each vCPU. To enforce fairness between VMs, the hypervi-
sor assigns equal shares to individual VMs and the shares
are further evenly distributed to vCPUs. Thus, VMs with a
smaller number of vCPUs will receive a larger per-vCPU
share. When a vCPU finishes running, its share is updated
based on how long it ran on the pCPU.

Besides CPU shares, most systems also use an upper
bound (e.g., a cap) to limit the maximum amount of CPU
a VM is able to consume, even if the systems have idle
CPU cycles. Such a resource limit effectively prevents rogue
VMs from monopolizing all the resources and realizes per-
formance isolation between VMs. In multicore systems, for
scalability considerations, CPUs run independent copies of
the scheduler. Load imbalance on different CPUs compro-
mises the overall throughput and responsiveness. Thus, the
schedulers perform load-balancing to evenly distribute vC-
PUs onto pCPUs. In general, there are two approaches to
load balancing: push migration and pull migration. In push
migration, the load-balancer periodically checks load bal-
ance in the memory hierarchy and pushes vCPUs from a
busy node (e.g., a scheduling domain in Linux CFS sched-
uler) to a less-busy one if an imbalance is found. Pull migra-
tions occur when a pCPU becomes idle and steals (or pulls)
a waiting vCPU from a busy pCPU.

2.2 Parallel Program
Parallel programs break large problems into smaller tasks
and solve them concurrently. The performance of parallel
programs depends critically on the efficiency of task syn-
chronization. We introduce different synchronization meth-
ods and discuss their issues in virtualized environments.

2.2.1 Task Synchronization
Task synchronization is needed to ensure correctness if mul-
tiple tasks share data with each other. There are many syn-
chronization primitives designed for different purposes, such
as mutex/semaphore, spinlock and barrier, typically

pCPU0 pCPU1 pCPU2 pCPU3

VM1
vCPU0

VM1
vCPU1

VM1
vCPU2

VM1
vCPU3

VM2
vCPU0

VM2
vCPU1

VM2
vCPU2

VM3
vCPU0

VM3
vCPU1

(a) Balance run queue length

pCPU0 pCPU1 pCPU2 pCPU3

VM2
vCPU0

VM1
vCPU0

VM1
vCPU2

VM1
vCPU3

VM2
vCPU1 VM1

vCPU1

VM3
vCPU0

VM3
vCPU1

VM3
vCPU2

(b) Balance run queue weight

Figure 2. vCPU-to-pCPU mappings for three heteroge-
neous VMs under different load-balancing policies. All VMs
have the same share and the size of each vCPU represents the
per-vCPU share.

there are two ways 1 to deal with a task that waits to access
the critical section.
Busy-waiting (spinning). The task simply stays in a busy
loop and repeatedly checks if the lock is available. Spin-
ning is efficient if synchronization is expected to be very
short and the task remains active to avoid expensive context
switches. However, long spinning will lead to wasted CPU
cycles that would be otherwise used by other tasks. Programs
using busy-waiting synchronization are more susceptible to
lock-holder preemptions (LHP) in virtualized environments.
Non-busy-waiting (blocking). The task voluntarily goes to
sleep when fails to acquire the lock and is later awoken
by the scheduler once the lock is released. Blocking effec-
tively avoids wasted CPU cycles but requires frequent con-
text switches. As shown in [11], spinlocks are also used to
protect the queue that holds sleeping tasks when the lock is
released and the scheduler dequeues (awakes) one task from
the queue. Thus, blocking synchronizations are not immune
to the inefficiencies in virtualized environments.

2.3 Challenges
Next, we discuss the challenges in attaining fairness and
efficiency when scheduling SMP VMs in multicore systems.

2.3.1 Enforcing VM-level Fairness
Fair SMP VM scheduling requires that the aggregate CPU
allocation to all vCPUs of a VM be proportional to its weight
(share) in competition with other VMs sharing the same set
of pCPUs. If all VMs have the same weight, each VM should
receive the same amount of CPU time no matter how many
vCPUs a VM has. As shown in Figure 1(a), existing VM
schedulers fail to enforce VM-level fairness between hetero-
geneous VMs with different numbers of vCPUs. Although
vCPU weights determine the relative CPU allocations on a
pCPU, the absolute allocation depends on the total weight
on the pCPU. In Figure 2, we demonstrate how the diver-
gence on pCPU total weights leads to unfair allocation at
VM level. We place three heterogeneous VMs, each with
4vCPU, 3vCPU and 2vCPU, respectively, on four pCPUs.

1 Although a hybrid approach is possible, e.g., spin-then-block, we treat
it as an application of the two fundamental approaches.

 0

 20

 40

 60

 80

 100

 120

lu sp ft ua bt cg ep mg

C
P

U
 ti

m
e

(%
)

Homo. VM Heter. VM Useful work
Busy waiting

Figure 3. Imbalanced vCPU time allocation due to the co-
location of heterogeneous VMs. Fairness capping introduces
excessive busy-waiting time for NPB applications.

Figure 2(a) shows a typical vCPU mapping policy that bal-
ances the run queue size on each pCPU. For fairness, all
VMs are given equal shares and their per-vCPU weights are
inversely proportional to their vCPU counts.

Since there is an odd number of vCPUs on an even num-
ber of pCPUs, load imbalance inevitably exists. Thus, CPU
allocations on vCPUs are no longer proportional to their
weights. For example, VM3-vCPU1 receives less CPU time
than VM3-vCPU0 because its allocation is diluted by a larger
total weight on pCPU0. More importantly, the allocations on
VM3-vCPU1 , VM1-vCPU1 and VM2-vCPU1 are not propor-
tional to their weights, breaking VM-level fairness. A possi-
ble solution is to balance the run queue weight (as shown in
Figure 2(b)) to minimize vCPU weight dilution. However,
perfect weight balance on different pCPUs is not always
possible and such balancing may introduce the vCPU stack-
ing issue [27], which limits the effective parallelism and in-
creases the synchronization latency in SMP VMs. In produc-
tion systems, VM management software often pre-calculates
the fair share of individual VMs and applies a resource cap
to each VM, preventing it from consuming excessive CPU
time. With a cap, vCPUs are stopped if the total CPU al-
location of a VM exceeds its fair share. However, the use
of resource cap turns the system into non-work-conserving
mode and may lead to wasted resources.

2.3.2 Maximizing Parallel Efficiency
Synchronization overhead has been accused of limiting the
scalability and performance of parallel programs in a virtu-
alized environment [7, 11, 27, 32]. Lock-holder preemption
(LHP) [32] and vCPU stacking [27] are two uniques issues
that arise with SMP VM scheduling. We show that mecha-
nisms for enforcing fairness inadvertently exacerbate these
synchronization issues.

The LHP issue refers to the preemption of the vCPU
that holds an important lock in the guest OS. Such pre-
emptions seriously increase synchronization latency to mil-
liseconds as opposed to a few microseconds in physical
systems. In the case of spinlock holder preemption, CPU
time is wasted when other sibling vCPUs busy-wait for the
preempted vCPU to release the lock. We find that fairness
mechanisms, such as vCPU capping, can lead to excessive
busy-waiting or wasted CPU time. We ran the NASA paral-

 0

 20

 40

 60

 80

 100

 120

blackscholes

bodytrack

canneal

dedup

facesim

raytrace

stream
cluster

swaptions

vips
x264

C
P

U
 ti

m
e

(%
)

PIN LB Running
Blocked

Figure 4. Dynamic load balancing (LB) penalizes PARSEC
applications with blocking synchronization.

lel benchmark (NPB) [5] in a 4-vCPU VM co-located with
a heterogeneous 3-vCPU VM on four pCPUs. The back-
ground 3-vCPU VM ran three while(1) loops to burn CPU
time. To enforce fairness, we applied a cap equivalent to the
time of two CPUs to each VM. The OpenMP version of NPB
was used and compiled with option OMP WAIT POLICY set
to active. With this setting, threads stay in spin loops while
waiting for other threads. For comparison, we also ran the
NPB benchmark with a homogeneous 4-vCPU VM in the
background. In this setting, no vCPU capping is needed. We
instrumented NPB source code to calculate the total busy-
waiting time spent by all threads.

Figure 3 shows that the co-location of heterogeneous
VMs caused excessive busy-waiting in NPB applications.
In heterogeneous co-location, the vCPU that had less con-
tention on CPU time spent significant portion of time wait-
ing for other slower vCPUs. When vCPU capping is in place,
such wasted time is counted towards the fair share of the
VM. As such, busy-waiting wastes the time could otherwise
be used by useful work. Note that applications that dynam-
ically adjust work assignment for application threads (e.g.,
ft, bt, sp) and applications without synchronization (e.g.,
ep) are resilient to such imbalance caused by vCPU capping.

As discussed in Section 2.3.1, load-balancing helps en-
force VM-level fairness by averaging the run queue size or
weight on different pCPUs so that actual CPU consump-
tions approximate VM weights. For example, pCPUs with
less load will become idle earlier and steal (pull) runnable
vCPUs from busier pCPUs. However, our findings reveal
that such vCPU migrations cause severe slowdowns to par-
allel applications with blocking synchronization. We ran the
PARSEC [30] benchmark in a 4-vCPU VM along with a 3-
vCPU background VM running while(1) loops. PARSEC
is composed of multithreaded programs that use Pthread

blocking synchronization primitives. If failing to enter the
critical section, a thread blocks itself and goes to sleep.
Figure 4 draws the time that threads spent in running and
blocked states under two scheduling policies. PIN binds vC-
PUs to pCPUs and ensures that no vCPUs belonging to
the same VM reside on one pCPU. It is similar to balance
scheduling [27] and may incur imbalanced CPU allocation.
Load-balancing (LB) allows vCPU migrations for fair-
ness. From the figure, we can see that LB incurs excessive

vCPU blocking to PARSEC applications. When PARSEC
threads block themselves, the vCPUs that carry these threads
become idle and also get blocked by the hypervisor. Thus,
the corresponding pCPUs become idle and start to steal vC-
PUs from other pCPUs. Since vCPU migrations only steal
runnable (not actually running) vCPUs on the run queue,
it is likely that vCPUs belonging to PARSEC applications
are stolen as vCPUs running the while(1) loop never block
and are likely in the running state during the steal. As a re-
sult, load-balancing causes severe vCPU stacking issues for
application with blocking synchronization.

[Summary] In this section, we have shown that it is dif-
ficult to achieve VM-level fairness in multicore systems and
existing solutions are likely to cause LHP and vCPU stack-
ing issues. These findings motivated us to develop a SMP
VM scheduling scheme that separates fairness enforcement
from the rest of the scheduler and is carefully designed for
improving parallel efficiency. To this end, we design FlexW,
a vCPU accounting scheme that dynamically adjusts VM
weights to realize fair allocation at the VM level, and FlexS,
a flexible vCPU scheduling algorithm that eliminates wasted
busy-waiting time.

3. Flex Scheduling for Fairness and
Efficiency

Based on our findings, we attribute the unfairness in a het-
erogeneous VM co-location scenario to the inaccurate CPU
allocation caused by diluted vCPU weights. We also find
that excessive busy-waiting and vCPU stacking are the cul-
prits of parallel performance slowdowns. Therefore, we try
to answer the following questions when designing Flex. (1)
How to adaptively change vCPU weights to achieve VM-
level fairness? (2) How to schedule vCPUs to eliminate busy-
waitings? (3) How to avoid vCPU stacking?

3.1 Overview
Flex centers on two key designs: flexible vCPU weight ad-
justment (FlexW) and flexible vCPU scheduling (FlexS).
FlexW is a system-wide CPU accounting daemon that peri-
odically monitors the actual CPU consumptions of all VMs.
It calculates the desired fair share of individual VMs based
on their weights. If there is a difference between actual allot-
ted CPU time and the fair share, FlexW adjusts VM weights
to compensate the discrepancy. FlexS is part of the vCPU
scheduling module running on individual pCPUs. It non-
intrusively detects busy-waiting vCPUs according to hard-
ware metrics and preempts such vCPUs to avoid wasted
CPU time. Before scheduling a vCPU from other VMs,
FlexS tries to steal a sibling vCPU that is doing useful work
from other pCPUs’ run queues. In the following subsections,
we present the details of each design.

Algorithm 1 Flexible vCPU Weight Adjustment
1: Variables: Virtual CPU v; Weight of the ith VM wi; Real-time

weight of the ith VM wr
i ; Number of shared CPUs P ;

2:
3: /* System-wide accounting for period (t1, t2) */
4: procedure CPU ACCOUNTING(void)
5: acct count++
6: for each VM do
7: for each vCPU do
8: cpus and(workers, workers, v→ cpu affinity)
9: end for

10: end for
11: P = cpus weight(workers)
12: for each VM do
13: Si,GPS(t1, t2) =

wi∑
wj

(t2 − t1) · P

14: lagi(t1, t2) =
Si,GPS(t1,t2)−Si(t1,t2)

Si,GPS(t1,t2)

15: wr
i = wr

i + wi · lagi(t1, t2)
16: if acct count > FAIR WINDOW then
17: acct count = 0
18: wr

i = wi

19: end if
20: end for
21: end procedure

3.2 Flexible vCPU Weight Adjustment
Algorithm 1 shows the flexible vCPU weight adjustment
algorithm. For each accounting period, FlexW first deter-
mines the number of pCPUs shared by all VMs. Note that
VMs may share different sets of pCPUs and form multi-
ple accounting groups, each of which requires fair alloca-
tion within the group. In this work, we assume a single ac-
counting group that shares the same set of pCPUs and leave
enforcing fairness in multiple groups to future work. Then
the total CPU time for shared P CPUs during time period
(t1, t2) becomes (t2 − t1) · P . Next, FlexW calculates the
fair allocation Si,GPS(t1, t2) (line 12) under the idealized
Generalized Processor Sharing (GPS) [21] algorithm using
a VM’s original weight wi. The lag of a vCPU is the normal-
ized difference between the fair allocation Si,GPS(t1, t2)
and its actual consumed CPU time Si(t1, t2) (line 13). A
positive lag indicates that the vCPU has received less time
than under GPS [14] and vice versa. Finally, FlexW deter-
mines the real-time weight wr

i of the VM based on its lag
(in percentage) relative to the fair allocation and uses the ad-
justed weight in the next accounting interval. Note that we
bring the lag to the same scale of weights by multiplying it
with the original weight wi.

There are many practical issues FlexW needs to deal with.
The work-conserving property still needs to be preserved
when enforcing fairness. Before calculating the fair share
for each VM, FlexW checks if the total consumed CPU
time equals to the available time (i.e., (t2 − t1) · P). If
VMs do not consume all CPU time, FlexW simply quits the
weight adjustment process and set the real-time weights to

the original weights. As such, the CPU time a VM could use
is only limited when the system is overcommitted. Another
issue is infeasible weight [21], where a VM’s peak CPU
consumption is smaller than its fair share. For example, a
2-vCPU VM’s weight becomes infeasible if the fair share
for this VM is equivalent to the time of 3 CPU. To this end,
FlexW only calculates the fair share of VMs with feasible
weight and uses the peak consumption as the fair share of
VMs with infeasible weight.

Although FlexW resets VMs’ real-time weights once the
total CPU demand is below the available CPU time, it is pos-
sible that some VMs demand less than their fair share and
others consume more than their share. In this case, FlexW
still considers the system under work-conserving mode and
keeps updating VMs’ real-weights. As a result, the VMs that
voluntarily demand less CPU will have ever-increasing real
weights and will monopolize the CPU once their demands
increase. Our solution is to keep a limited history of alloca-
tions and enforce fairness within a FAIR WINDOW. All real-
time weights are reset to original weights when switching to
the next fair window (line 16). This design effectively pre-
vents VMs from occupying the CPU for too long, but still
gives frequent idling VMs higher shares within a fair win-
dow when they wake up.

3.3 Flexible vCPU Scheduling
While FlexW enforces fairness between VMs, it does not
guarantee efficient SMP VM scheduling. It even introduces
load imbalance as some vCPUs receive less CPU time than
their siblings. As discussed in Section 2.3.2, load imbalance
leads to excessive spin time for busy-waiting-based work-
loads and vCPU stacking for blocking-based workloads.
Co-scheduling [20] has been considered most effective in
minimizing synchronization latency, but suffers CPU frag-
mentation and priority inversion issues. Scheduling and de-
scheduling vCPUs together is even harder under fairness
constraints. When designing FlexS, we do not attempt to
explicitly co-schedule vCPUs. Instead, we believe that syn-
chronization efficiency is maximized if CPU time is only
used for useful work during an accounting period. Thus, the
objectives of FlexS are to de-schedule busy-waiting vCPUs
and schedule vCPUs doing useful work as much as possible.

3.3.1 Identifying Busy-waiting vCPUs
Since busy-waiting avoids expensive context switches, it is
widely used in application libraries and OS kernels. There
is existing work detecting excessive busy-waiting by instru-
menting Linux kernel to report spinning statistics [34] or by
non-intrusively monitoring user-kernel mode switches [32]
or by counting store instructions [7]. Besides kernel instru-
mentation being not always possible, existing non-intrusive
approaches are not applicable to user-level busy-waiting
implementations [32] or not accurate for different work-
loads [7]. For example, it is difficult to set a threshold for
store-based spin detection and some applications (e.g., lu)

 0

 1

 2

 3

 4

 5

lu sp cg povray

stream
cluster

Hadoop

SPECjbb

R
el

at
iv

e
to

 s
ol

o
ru

n

(a) Branches per instruction

Solo
Waiter vCPU (corun)
Holder vCPU (corun)

Waiter vCPU (HT)
Holder vCPU (HT)

 0

 0.5

 1

 1.5

 2

 2.5

lu sp cg povray

stream
cluster

Hadoop

SPECjbb

R
el

at
iv

e
to

 s
ol

o
ru

n

(b) Branch miss prediction rate

Solo
Waiter vCPU (corun)
Holder vCPU (corun)

Waiter vCPU (HT)
Holder vCPU (HT)

Figure 5. Branches per instruction (BPI) and Branch miss
prediction rate (BMPR) together accurately identify busy-
waiting vCPUs.

have inherent differences in the frequency of issuing stores
on different threads (e.g., the master thread issues 20X times
more stores than others). To this end, we design a simple but
effective mechanism for busy-waiting detection.

Similar to hardware-assisted spin detection [9], which
identifies busy-waiting vCPUs as ones execute excessive
PAUSE instructions, our approach also finds a common pat-
tern that spans across different spin implementations. We
find that spin loops are usually designed to be highly effi-
cient and contain only a few instructions. Such short loops
are executed many times until the lock is acquired. Com-
pared to other loops at both user and kernel levels, spin loops
show a high branch per instruction (BPI) rate. Further, as the
loops are repeatedly executed, the hardware branch predictor
has a low branch miss prediction rate (BMPR). More impor-
tantly, spin loops always accompany with a lock-holder who
is running the normal code. Thus, high BPI rates and low
BMPR values along with distinctive behaviors from other
vCPUs are good indicators of busy-waiting vCPUs. To val-
idate our spin detection design, we created scenarios that
one vCPU is slower than others. When executing parallel
workloads, the slower vCPU is likely the lock/mutex holder
and the faster ones are likely the waiters. We made a vCPU
slower by running a while(1) loop on the same pCPU (i.e.,
corun) or running the loop on the pCPU’s hyperthread (i.e.,
HT). Solo (without contention) was used as the baseline. We
ran different 4-thread workloads to study the correlation be-
tween branch related hardware metrics and high-level syn-
chronization. Details of parallel workloads are explained in
Section 5. Besides parallel workloads, we also included a
multiprogrammed workload with 4 copies of povray from
the SPEC CPU2006 benchmark [31].

Figure 5(a) and (b) show that BPI climbs and BMPR
plummets on spinning vCPUs (e.g., waiters in lu, sp and
cg). Interestingly, BPI and BMPR not only qualitatively
identify busy-waiting vCPUs but also quantitatively re-

Algorithm 2 Flexible vCPU Scheduling
1: Variables: Virtual CPU v; Maximum BPI (max bpi) in v’s

VM; Minimum BMPR (min bmpr) in v’s VM.
2:
3: /* Periodic local vCPU accounting*/
4: procedure VCPU ACCOUNTING(v)
5: BURN CREDITS(v)
6: Update v’s BPI and BMPR values
7: /* If vCPU is busy waiting, call SSCHEDULE() and yield to

others */
8: if (IS BUSY WAITING(v)) then
9: v → yield = TURE

10: raise softirq(SCHEDULE SOFTIRQ)
11: else
12: v → yield = FALSE
13: end if
14: end procedure
15:
16: procedure IS BUSY WAITING(v)
17: /*BPI close to max and BMPR close to min indicate spin-

ning*/
18: if (max bpi−v→bpi)∗10

max bpi
== 0 and (v→bmpr−min bmpr)∗10

min bmpr
== 0

then
19: return TRUE
20: else
21: return FALSE
22: end if
23: end procedure
24:
25: procedure SCHEDULE(void)
26: /* If just yielded, switch this vCPU with a sibling on an-

other CPU. Otherwise, follow the regular path. */
27: if curr → yield == TRUE then
28: next = LOAD BALANCE(curr, SWITCH)

29: else
30: if load is balanced then
31: next = next vCPU in local run queue
32: else
33: next = LOAD BALANCE(curr, STEAL)

34: end if
35: end if
36: Context switch to next
37: end procedure

flect the level of contention. For example, BPI is lower
and BMPR is higher in HT than in Corun as the loop in
HT does not contend CPU cycles but only shared resources
like the reservation station and caches. Because synchro-
nization contributes most to the dynamic portion of program
execution, the number of branches executed per instruction
stays relatively stable for programs with no or little syn-
chronization no matter there is contention or not. As shown
in Figure 5(a), independent copies of povray have similar
BPI values in all scenarios. Similar conclusions can also
be made for workloads with blocking synchronization (e.g.,
streamcluster and SPECjbb) as spinlocks are only used
when operating on the queue of waiting threads [11]. Since

Hadoop workload embraces the embarrassing parallel model
and its map tasks are largely independent of each other,
its BPI also does not change with contentions. Figure 5(b)
shows that BMPR changes more significantly than BPI for
blocking workloads. One possible explanation is that the
frequent switches between vCPUs due to voluntary vCPU
blocking pollute the history of branch predictors leading to
higher BMPRs. Nevertheless, due to the lack of short spin
loops, BMPR never drops dramatically for these workloads.

Based on our observations, we use a simple heuristic
to identify busy-waiting vCPUs – If some vCPUs have the
highest BPIs and the lowest BMPRs among their siblings,
they are spinning. FlexS maintains the maximum BPI and
minimum BMPR among all vCPUs in a VM. When de-
ciding a vCPU’s busy-waiting status, FlexS calculates the
distances of its BPI and BMPR to the VM-wide maximum
and minimum. If being close enough (within 10%, line 18
in Algorithm 2), FlexS considers the vCPU a busy-waiter
and performs flexible scheduling to eliminate busy-waiting
time. It is possible that there may exist false-positive detec-
tions as FlexS infers busy-waiting vCPUs based on cross-
vCPU comparisons. During program initialization or execu-
tion phase changes, some vCPUs can show considerably dif-
ferent behaviors than others and be mistakenly identified as
spinning. To this end, FlexS clears BPI and BMPR values
when a fair window expires so that program phases could be
detected and false positives would not affect next detection
windows.

3.3.2 Eliminating Busy-waiting Time
The key to eliminating busy-waiting is to stop spinning vC-
PUs and run vCPUs with useful work. Algorithm 2 shows
the design of flexible vCPU scheduling. During periodic
local vCPU accounting, FlexS updates a vCPU’s BPI and
BMPR values with new performance monitoring unit (PMU)
readings. If FlexS identifies the vCPU as busy-waiting (func-
tion Is busy waiting), it raises a soft IRQ interrupt (line
10) on this pCPU and forces a call to the main Schedule

function, where the current vCPU will be de-scheduled and
the next-to-run vCPU is selected. Since the de-scheduled
vCPU voluntarily yields to others, its unfinished time slice
should be used to by its sibling vCPUs with useful work.
Thus, the Schedule function has two paths when schedul-
ing vCPUs. If a vCPU just yielded (line 27), FlexS pulls a
runnable but not busy-waiting sibling (with a false yield flag)
of this vCPU from another pCPU. Otherwise, follow the reg-
ular path.

To avoid vCPU stacking, Flex integrates balance schedul-
ing into its design. When performing load balancing, we
ensure that no vCPUs from the same VM will be stacked
on one pCPU. For the yielded vCPU path, FlexS switches
two vCPUs on two pCPUs so that no stacking could happen.
For the regular path, if load is imbalanced (line 33), only
vCPUs that have no siblings on the current pCPU could be
stolen. However, frequent vCPU migrations will likely vio-

late the fairness enforced by FlexW. This is because switch-
ing vCPUs (usually with different weights) changes the total
weights of pCPUs. As discussed in Section 2.3.1, such a di-
vergence in pCPU weights causes unfairness. We find that
VMs that migrate vCPUs frequently tend to gain advantage
in CPU allocation. To preserve fairness, we ensure that
vCPU migrations do not affect the total weight on individual
pCPUs. Specifically, FlexS exchanges the weights of two
vCPUs when switching them. Besides the weight, a vCPU’s
relative position in its run queue also affects its CPU allo-
cation. To this end, FlexS does not insert the switched out
vCPU onto another pCPU’s run queue, which will always
put the vCPU on the tail of the run queue. Instead, the run
queue pointers of the switching vCPUs are exchanged. As
such, no run queue operations are needed on both pCPUs
and the run queue positions are preserved.

4. Implementation
We implemented Flex in Xen (version 4.0.2) and patched
Xen with Perfctr-Xen [18] to access low-level hardware per-
formance counters. Perfctr-Xen maintains a per-vCPU data
structure to store the values of hardware counters. We up-
dated counter values every time (every 10 ms) Xen performs
vCPU accounting. Xen uses credit to represent weight. For
every 10 ms, a per-pCPU accounting routine burns the cur-
rent running vCPU’s credit. A system-wide master routine
fires up every 30 ms to replenish credits for VMs based
on their weights. The higher the weight, the more cred-
its a VM receives per master accounting period. To calcu-
late BPI and BMPR, we calculated the ratio of hardware
events BR INST EXEC and INST RETIRED, BR MISP EXEC

and BR INST EXEC, respectively.
FlexW is implemented in the system-wide master ac-

counting routine csched acct(), where it iterates over
all VMs and vCPUs. The iteration determines the total
credit for the pCPUs shared by vCPUs, the max bpi and
min bmpr of each VM, and the total consumed credits for
each VM. FlexW computes the credits to be assigned to in-
dividual VMs in the next interval based on their real time
weights. We added a global flag in Xen to record VM cre-
ation/termination and vCPU affinity changes. If nothing has
changed since last accounting, we avoid the iteration that
calculates the total available credit (Algorithm 1, line 6-9).
We empirically set FAIR WINDOW to 10 seconds, after which
we reset VMs’ real-time weights. To catch program phase
changes, we also clear a VM’s max bpi and min bmpr when
a fair window expires.

The key to the effectiveness of FlexS in minimizing busy-
waiting time is to find vCPUs with useful work on remote
pCPUs. A per-pCPU run queue lock needs to be acquired
from a remote pCPU before any vCPU can be stolen. Both a
stealing pCPU and the main schedule function on a remote
pCPU can contend for the lock. Note that the per-pCPU ac-
counting timers have the same 10 ms interval and the per-

pCPU schedule timers have intervals of 30 ms (exactly
three times of the accounting timers). Thus, a stealing pCPU
is likely to collide with another stealing pCPU or the lo-
cal schedule function. We make the per-pCPU accounting
timer dynamic to avoid the lock contention. FlexS keeps a
counter for each vCPU to record how many times it failed to
steal a remote vCPU. FlexS sets the next vCPU accounting
timer by subtracting its counter value from the default 10 ms.
The counter is cleared when a vCPU succeeds in the steal-
ing. Therefore, vCPUs wait for different amount of time be-
fore they try to steal again. vCPUs with higher failure counts
will perform the stealing earlier than the ones recently suc-
ceeded in stealing. This effectively increases the success rate
of stealing and leads to less wasted busy-waiting time. Iter-
ating over all pCPUs for the stealing is not scalable as the
number of shared pCPUs increases. To bound the steal time,
we borrow the idea of the power of two choices [16]. That is,
a vCPU iterates over two pCPUs for stealing before it quits.

5. Evaluation
In this section, we present an evaluation of Flex using vari-
ous parallel workloads. We study the effectiveness of Flex in
enforcing fairness and realizing differentiation in a multicore
scenario (Section 5.1). Then we compare the performance of
Flex with Xen’s default credit scheduler and two represen-
tative co-scheduling approaches (Section 5.2). Finally, we
study the overhead of Flex (Section 5.3).

We implemented Flex in Xen 4.0.2 and deployed our pro-
totype on Dell PowerEdge T420, equipped with two quad-
core Intel Xeon E5620 2.4GHz processors and 16GB mem-
ory. To evaluate the fairness and performance of Flex, we
created two heterogeneous Xen VMs with 4 vCPUs and 3
vCPUs, respectively. Both VMs were configured with 6GB
memory and set to the default weight (256 in Xen). We ran
Linux kernel 2.6.32 with para-virtualized spinlocks as the
guest OS. Both VMs were set to share four cores in one of
the two processors. This setting ensures that all vCPUs share
the same last-level cache and NUMA node so that the perfor-
mance of parallel workloads only depends on the allocation
of CPU time. For overhead study, we created up to 8 VMs,
each with 4 vCPUs.

We selected the following parallel workloads and mea-
sured their performance with different approaches.

• NASA parallel benchmarks (NPB) [5] include 9 par-
allel programs derived from computational fluid dynam-
ics applications. We used the OpenMP implementation of
the benchmarks and set the problem size to class C. Envi-
ronment variable OMP WAIT POLICY was set to active to
use busy-waiting synchronization.
• PARSEC [30] is a multithreaded shared memory bench-

mark. Its contains 13 emerging programs that model after
divergent application domains. Pthread non-busy-waiting
primitives (e.g., mutexes, condition variables and barri-

 0.1

 1

 10

 100

 1000

2 3 4 5 6 7 8

R
el

at
iv

e
la

g
(%

)

Number of VMs

Xen (average)
Flex (average)

Xen (max)
Flex (max)

Figure 6. The average and maximum lag of Xen and Flex
for different number of VMs.

ers) are used for thread synchronization and the native
input size was used.
• Hadoop is a popular implementation of the MapReduce

framework for running data-parallel jobs. We selected a
Bayesian classification job in the Hadoop Mahout ma-
chine learning library [28]. The job classifies 20,000
newsgroup documents into 20 categories. It consists of
three phases of execution, each of which contains mul-
tiple map tasks and one reduce task. During each phase,
the map tasks are independent of each other with no com-
munications. The next phase starts only when the reduce
task finishes in the previous phase.
• SPECjbb2005 [26] evaluates the performance of server

side Java by emulating a three-tier client/server system.
It spawns multiple threads to emulate active users post-
ing transaction requests in multiple warehouses within
a wholesale company. Synchronization is needed when
customer requests and company internal management op-
erations both work on the same database table. Synchro-
nized methods in Java are used to block waiting threads.

If not otherwise stated, we matched the number of threads/maps
in these workloads with the number of vCPUs in the VMs.

For comparison, we evaluated three scheduling strategies:

• Xen: The default credit scheduler without mechanisms
for VM-level fairness.
• Balance+cap+CO: For busy-waiting workloads, we used

balance scheduling [27] with fairness capping. We also
set the VM running parallel workloads to a higher priority
to co-schedule its vCPUs.
• Demand+cap: For non-busy-waiting workloads, we im-

plemented demand-based coordinated scheduling [11]
with fairness capping. We monitored Xen event chan-
nel to prevent the preemption of sender vCPUs of inter-
processor interrupts (IPI). Recipients of IPIs are by de-
fault prioritized by Xen as wakeup vCPUs are temporally
elevated to the boost priority [19].

5.1 Fairness and Differentiation
In this subsection, we show the effectiveness of Flex in VM-
level fairness and differentiation. We used the absolute rel-
ative lag, |Si,GPS(t1,t2)−Si(t1,t2)

Si,GPS(t1,t2)
|, to measure fairness. We

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

3:2:1 3:1:2 2:1:3 2:3:1 1:2:3 1:3:2

P
ro

po
rt

io
na

l C
P

U
 s

ha
re

4-vCPU VM
3-vCPU VM
2-vCPU VM

Figure 7. Flex realizes proportional share of CPU between
VMs with different numbers of vCPU.

created four types of VMs with 4 vCPUs, 3 vCPUs, 2vCPUs
and 1 vCPU, respectively. We changed the number of VMs
sharing four cores and ensured that the mix contained hetero-
geneous VMs as many as possible. Figure 6 shows the maxi-
mum and average lag of individual VMs under Xen and Flex.
From the figure, we can see that the default credit scheduler
fails to enforce fairness at VM-level and the unfairness in
terms of both maximum and average lag goes unboundedly
to as much as 235% and 67%, respectively. In contrast, Flex
achieves one order of magnitude (log scale in the y axis) less
lag than Xen. The maximum lag of Flex is bounded by 15%
and on average Flex incurs no more than 5% unfairness.

We are also interested in whether Flex can realize ser-
vice differentiation, where VMs receive CPU time propor-
tional to their weights. We consolidated three VMs, each
with 4, 3, 2 vCPUs, respectively, onto four cores. Figure 7
shows the CPU allocation of the three VMs with different
combinations of weight. Flex realized almost perfect propor-
tional allocations for weight combination 3:2:1. However,
allocations were not accurate when VMs with fewer vCPUs
have large weights and VMs with more vCPUs have small
weights, e.g., combinations 1:2:3 and 1:3:2. The reason is
that Flex enforces proportional allocations for individual fair
windows. Once VM real-time weights are reset, VMs with
more vCPUs are likely to consume more CPU time, violat-
ing the proportionality. It is a trade-off between keeping a
limited history of CPU allocation and perfect proportional-
ity. Although not being always accurate, we conclude that
Flex realizes a reasonably good level of differentiation.

5.2 Parallel Execution Efficiency
As discussed in Section 2.3.2, imbalanced CPU allocation
in SMP VMs incurs excessive busy-waiting or severe vCPU
stacking. In this subsection, we show that Flex is able to
mitigate such issues and achieve good parallel efficiency.
We first study the performance of one SMP VM in two
imbalanced scenarios and then evaluate the performance of
two SMP VMs with a mix of parallel workloads.

5.2.1 Imbalanced Allocation
We created two imbalanced scenarios, where two hetero-
geneous VMs, one with 4 vCPUs and one with 3 vCPUs,
were co-located on four cores. As shown in Figure 1(a),
the VM with more vCPUs gains advantage in getting more

 0

 0.5

 1

 1.5

 2

 2.5

lu sp ft ua bt cg ep mg

N
or

m
al

iz
ed

 r
un

tim
e

(a) Busy-waiting sync (4-vCPU VM)

Xen
Balance+Cap+CO

FlexW
FlexW+FlexS

 0

 0.5

 1

 1.5

 2

blackscholes

bodytrack

canneal

dedup

facesim

raytrace

stream
cluster

swaptions

vips
x264

N
or

m
al

iz
ed

 r
un

tim
e

(b) Non-busy-waiting sync (4-vCPU VM)

Xen
Demand+Cap

FlexW
FlexW+FlexS

 0

 0.5

 1

 1.5

 2

Hadoop SPECjbb

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

(c) Coarse-grained sync (4-vCPU VM)

Xen
Demand+Cap

FlexW
FlexW+FlexS

 0

 0.5

 1

 1.5

 2

lu sp ft ua bt cg ep mg

N
or

m
al

iz
ed

 r
un

tim
e

(d) Busy-waiting sync (3-vCPU VM)

Xen
Balance+Cap+CO

FlexW
FlexW+FlexS

 0

 0.5

 1

 1.5

 2

blackscholes

bodytrack

canneal

dedup

facesim

raytrace

stream
cluster

swaptions

vips
x264

N
or

m
al

iz
ed

 r
un

tim
e

(e) Non-busy-waiting sync (3-vCPU VM)

Xen
Demand+Cap

FlexW
FlexW+FlexS

 0

 0.5

 1

 1.5

 2

 2.5

 3

Hadoop SPECjbb

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

(f) Coarse-grained sync (3-vCPU VM)

Xen
Demand+Cap

FlexW
FlexW+FlexS

Figure 8. The performance of parallel workloads running with background while(1) loops under different policies. Runtime
is normalized to baseline Xen and the lower the better. SPECjbb is measured using business operations per second (bops), the
higher the better.

CPU time. We ran our parallel workloads in the two VMs
in turn and measured their performance under different ap-
proaches. We studied two Flex variations: Flex without flex-
ible scheduling (FlexW) and Flex with complete functional-
ities (FlexW+FlexS). To isolate performance from other fac-
tors, e.g., shared cache contention, we ran while(1) loops
in the other VM.

Figures 8 (a) and (d) show the performance of NPB pro-
grams when running in the 4-vCPU and 3-vCPU VMs, re-
spectively. The performance of different approaches is nor-
malized to Xen. It is expected that default Xen delivered
good performance in the 4-vCPU VM scenario because the
VM attained more than its fair share. With balance schedul-
ing and co-scheduling, balance+cap+CO achieved better
performance (e.g., lu, ua and mg) than Xen using less
CPU time (i.e., fair share). However, balance+cap+CO re-
alizes co-scheduling by elevating the priority of the parallel
workload, which inevitably hurts the performance of co-
running workloads. We will show that this strategy performs
badly when optimizing a mix of parallel workloads. Fig-
ure 8(a) also shows that FlexW+FlexS performed closely
to balance+cap+CO except for lu. An examination of
lu source code revealed that lu statically assigns work to
threads and is sensitive to load imbalance. Unfortunately,
FlexW alone was unable to deliver good performance with
as much as 50% slowdown compared to balance+cap+CO.
It indicates that only guaranteeing fair CPU share is not suf-
ficient to achieve good performance. The key is to make
efficient use of the fair share.

Figure 8(d) shows that both FlexW and FlexW+FlexS

outperformed Xen and balance+cap+CO when NPB ran
in the 3-vCPU VM. Similar to Xen, balance+cap+CO al-

located CPU time less than the fair share to the VM. Al-
though capping effectively limited the co-running VM with
while(1) loops to its fair share, the VM with parallel work-
loads was unable to consume its fair share as the imbalance
diluted its weight and affected the actual CPU allocation.
In contrast, both FlexW and FlexW+FlexS guaranteed fair
share by using flexible weights. FlexW+FlexS performed
consistently better than FlexW except for ep, which is an
embarrassing parallel benchmark with no synchronizations.
Thus, we conclude that FlexS effectively improved perfor-
mance by reducing busy-waiting time.

Figures 8(b) and (e) show the performance of PARSEC
benchmarks. As discussed in Section 2.3.2, default Xen in-
curs severe vCPU stacking issues to non-busy-waiting work-
loads when these workloads co-run with while(1) loops.
Except for Xen, all the other three approaches avoids vCPU
stacking. Therefore, their performance improvement over
Xen was quite significant (as much as 10X for bodytrack).
Because blackscholes and swaptions had little commu-
nication between threads, the vCPUs running these threads
were less frequently blocked. The load-balancer in Xen ef-
fectively spread the vCPUs and avoided vCPU stacking.
Thus, Xen outperformed other approaches in these two
benchmarks (in Figure 8(b)) as the VM consumed more
than its fair share under Xen. Similarly, the fairness cap-
ping in demand+cap stopped the while(1) VM from mo-
nopolizing CPU time and helped the load-balancer spread
vCPUs. Among the best-performing approaches, Flex-based
approaches outperformed demand+cap in the 3-vCPU VM
scenario because demand+cap also had similar issues (as
discussed above) attaining the fair share for the 3-vCPU VM.
For the 4-vCPU VM scenario, demand+cap outperformed

 0

 0.5

 1

 1.5

 2

 2.5

lu sp ft ua bt cg ep mg

N
or

m
al

iz
ed

 r
un

tim
e

(a) Foreground NPB workload (4-vCPU VM)

Xen
Balance+Cap

Flex

 0

 0.5

 1

 1.5

 2

blackscholes

bodytrack

canneal

dedup

facesim

raytrace

stream
cluster

swaptions

vips
x264

N
or

m
al

iz
ed

 r
un

tim
e

(b) Foreground PARSEC workload (4-vCPU VM)

Xen
Demand+Cap

Flex

 0

 0.5

 1

 1.5

 2

 2.5

Corun with NPB Corun with PARSEC

N
or

m
al

iz
ed

 r
un

tim
e

(c) Background LU workload (3-vCPU VM)

Xen
Balance+Cap
Demand+Cap

Flex

Figure 9. The performance of two parallel workloads running together. NPB and PARSEC run in the foreground and a copy
of lu benchmark from NPB runs repeatedly in the background.

Flex-based approaches in facesim and streamcluster.
These workloads are communication-intensive and IPI sig-
nals used by demand+cap provide more useful informa-
tion about IPI senders and recipients than the hardware-
level metrics. Another important observation is that FlexW
achieved better performance than FlexW+FlexS in most
workloads. The overhead of frequent vCPU migrations in
FlexS outweighed its benefit of reducing busy-waiting as
spinning only contributes to a small portion of thread syn-
chronization in non-busy-waiting workloads.

Figures 8(c) and (f) show the performance of Hadoop and
SPECjbb. These workloads have coarse-grained synchro-
nization and do not benefit a lot from communication-aware
scheduling schemes. The performance improvement of Flex-
based approaches and demand+cap over Xen was due to the
avoidance of vCPU stacking. Interestingly, FlexW outper-
formed demand+cap by 15% for Hadoop in the 3-vCPU VM
scenario. The reason is that Flex kept increasing the VM’s
weight during the reduce phase as the CPU demand is below
the fair share. This effectively accelerated the reduce task.
In contrast, although the vCPU running the reduce task re-
ceived all the share of the VM (other vCPUs were idle) in
demand+cap, the actual CPU allocation was less than that
in Flex. Therefore, Flex is able to accelerate the sequential
portion of the Hadoop workload.

5.2.2 Mix of Parallel Workloads
In this experiment, we study a more practical scenario,
where both co-located VMs ran parallel workloads. In this
scenario, a scheduling scheme needs to optimize the perfor-
mance of both workloads. As discussed above, lu employs
static work assignment and is sensitive to the scheduling
scheme. We used lu as the background workload and ran
it repeatedly in the 3-vCPU VM. The foreground VM ran
the NPB and PARSEC benchmarks in turn. We measured
the performance of a scheme by averaging the performance
relative to Xen for both foreground and background bench-
marks. Since it is not possible to manually prioritize both
workloads, we used balance+cap in this experiment. We
use Flex to represent Flex with complete functionalities.

Figures 9(a), (b) and (c) show the performance of the
foreground and background workloads. As expected, Xen

 0

 1

 2

 3

 4

 5

 6

 7

2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(m

ic
ro

se
co

nd
)

Number of VMs

(a) System-wide accounting func. csched_acct()

Xen
Flex

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(m

ic
ro

se
co

nd
)

Number of VMs

(b) Per-CPU scheduling func. schedule()

Xen
Flex

Figure 10. Overhead of Flex.

performed best for the foreground NPB workload as it
allocated more than the fair share to it. However, this
scarified the performance of lu in the background. Com-
pared to Flex, Xen incurred 40% performance degrada-
tion to lu in Figure 9(c). Figures 9(a) and (c) also show
that Flex achieved consistently better performance than
Balance+cap in both foreground and background work-
loads. This confirms the observations in [11] that balance
scheduling is not sufficient to optimize parallel perfor-
mance in virtualized environments. In Figure 9(b), Flex
performed closely to demand+cap in most workloads. How-
ever, demand+cap performed badly for the background lu

as it is not designed for workload with busy-waiting loops.
Overall, Flex outperformed Balance+cap and demand+cap
by 30.4% and 35%, respectively.

5.3 Overhead
The overhead of Flex comes from two main sources: (1) the
time required to adjust VM weights in the system-wide ac-
counting function csched acct; (2) the time required to
perform vCPU stealing in the per-pCPU schedule func-
tion. Figures 10(a) and (b) show the execution time (in mi-
crosecond) of these two functions under Xen and Flex as the
number of VMs increases. Since calculating VM weights re-
quires the iteration over all vCPUs, the execution time of
csched acct in Flex increases faster than in Xen. How-
ever, the increase does not incur overhead to parallel pro-
grams as the global accounting is performed by the hypervi-
sor’s idle VM. The overhead in the main schedule function
on individual pCPUs can be more significant to parallel per-
formance. A prolonged schedule function will take up the
time that can be used to run vCPUs. Figure 10 (b) shows that

the distance between the execution time of schedule in Flex
and in Xen does not increase with the number of VMs. Re-
call that Flex only tries to steal a vCPU from remote pCPUs
for two times, its overhead compared to Xen in schedule

is constant. Considering a scheduling interval of 30ms, Flex
only adds less than 1% overhead to Xen.

6. Related Work
An important aspect of resource management is enforcing
fairness across different entities. Fairness becomes even
more critical for resource allocations in public cloud services
because as a metered service, users expect the outcome of a
cloud proportionate to their payment. It is believed that fair-
ness in allocating computing resources like CPU cycles is
well understood [3]. Thus, most work focused on addressing
the unfairness in shared CPU caches [17], network I/O inter-
face [3, 19] and shared storage [23]. Li et al. [14] were the
first to find that scheduling algorithms based on per-CPU run
queues are weak in fairness in a multicore scenario. For such
algorithms, the allocation error relative to the ideal Gen-
eralized Processor Sharing [21] grows unboundedly with
the number of threads and CPUs in the system. Li et al.
proposed distributed weighted round robin (DRWW) which
uses inter-CPU thread migrations to approximate GPS with
a constant error. DRWW does not consider fairness for a
group of threads thus is not applicable to scheduling SMP
VMs. Linux cgroup [15] is designed for the fairness of a
group of processes. However, as shown in Figure 1(a), it is
weak in fairness when load is imbalanced on multiple CPUs.
In contrast, Flex continuously monitors the actual CPU al-
location for each VM and calculates the corresponding lag
to the ideal allocation. Based on the lags, Flex adjusts VM
weights accordingly. Although Flex does not explicitly ad-
dress weight dilution due to load imbalance, it uses feed-
backs of actual allocations to reduce unfairness.

There is a large body of work dedicated to addressing the
synchronization overhead in parallel programs. Coschedul-
ing of threads [20] refers to the scheme that schedules and
de-schedules theads belonging to the same parallel applica-
tion synchronously. Although it maximizes synchronization
efficiency, it suffers from CPU fragmentation and priority in-
version issues [13]. Demand-based scheduling, a less strict
form of coscheduling, only involves the scheduling of com-
municating threads [4, 8, 24]. In a virtualized environment,
there is a semantic gap between the hypervisor and guest
OSes. Weng et al. [34] proposed to instrument the guest
OS to report the statistics of spinlock holders and dynam-
ically schedule them in the hypervisor. Because intrusive
approaches are not always possible, work has been done
to infer lock holders from user-kernel mode switches [32]
or from low-level hardware statistics about store instruc-
tions [7]. However, these approaches are not applicable to all
scenarios. For example, libraries with synchronization en-
tirely in user mode (e.g., OpenMP) do not incur any user-

kernel mode switches or involve blocking. The frequency of
store instructions may not be a good indicator of spinning
for workloads with inherently different store issue rates in
different threads. We found that the spin loops, no matter
implemented at what levels, are shorter iterations compared
to loops in regular code. Thus, our approach using BPI and
BMPR to identify busy-waiting vCPUs is generic and appli-
cable to a wide variety of workloads.

Modern CPUs provide hardware-assisted schemes (e.g.,
Intel’s Pause Loop Exit (PLE) [10] and AMD’s Pause Fil-
ter [2]) to detect excessive spinning by monitoring the PAUSE
instruction in a busy-wait loop. Excessive spinning on a
vCPU causes a transition from the guest OS to the hyper-
visor (e.g., via VMEXIT) and relinquishes the CPU to other
VMs. However, hardware-based spin detection is only ap-
plicable to fully virtualized VMs and incurs frequent expen-
sive VMEXITs to the hypervisor. In contrast, Flex uses a
generic and lightweight spin detection mechanism based on
hardware performance counters. It is applicable to both fully
and para-virtualized VMs and does not require hardware vir-
tualization support or traps into the hypervisor. Further, all
the scheduling strategies in our experiments were configured
with para-virtualized spinlocks, a software-based spin-then-
block mechanism similar to PLE. Our results showed that
Flex significantly outperformed the these approaches due to
flexible vCPU scheduling.

Flex is closely related to demand-based coordinated
scheduling [11], which infers synchronizing threads by ob-
serving IPI signals. This approach also addressed the load
imbalance issue with load concious balance scheduling.
However, it is only applicable to IPI-based synchronization
and can not detect spin-based synchronization. Although
Flex is designed for eliminating excessive spinning time,
its enforcement of short term fairness during the fair win-
dow is likely to prioritize the active vCPUs in blocking-
based workloads. Moreover, unlike load conscious schedul-
ing [11], which only avoids overloaded CPUs, Flex takes
one step forward to coordinate multiple CPUs in switching
useful work.

7. Conclusion
Fairness-efficiency trade-offs have always been important
issues in resource allocations. In this work, we find the de-
ficiencies of existing hypervisors in enforcing fairness be-
tween SMP VMs. Straightforward solutions lead to low effi-
ciency for parallel workloads. This paper proposes a holistic
solution, Flex, to the fairness and efficiency issues. Flex
separates its design into two independent parts. FlexW peri-
odically monitors per-VM actual CPU allocation and adjusts
VM weights to approximate the ideal fair allocation. FlexS
eliminates excessive busy-waiting in guest OSes by detect-
ing spinning vCPUs from hardware-level branch instruction
metrics. FlexS stops busy-waiting vCPUs and opportunis-
tically looks for vCPUs with useful work on other CPUs.

Experiments with Xen and various parallel workloads show
that Flex is able to achieve allocations close to the ideal fair
allocation and realizes a certain level of differentiation. Flex
also shows good performance with parallel workloads using
different synchronization methods.

Acknowledgements
We are grateful to the anonymous reviewers for their con-
structive comments. This research was supported in part by
the U.S. National Science Foundation under grants CNS-
1320122, CNS-1217979 and CNS-0844983.

References
[1] Amazon Elastic Compute Cloud.

http://aws.amazon.com/ec2/.

[2] AMD Corporation. AMD64 architecture programmers man-
ual volume 2: System programming. 2010.

[3] M. B. Anwer, A. Nayak, N. Feamster, and L. Liu. Network
i/o fairness in virtual machines. In Proc. of VISA, 2010.

[4] A. C. Arpaci-Dusseau. Implicit coscheduling: coordinated
scheduling with implicit information in distributed systems.
ACM Trans. Comput. Syst., 19(3), 2001.

[5] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga. The nas parallel benchmarkssummary
and preliminary results. In Proc. of SC, 1991.

[6] K. based virtual machine. http://www.linux-kvm.org/.

[7] K. Chakraborty, P. M. Wells, and G. S. Sohi. Supporting over-
committed virtual machines through hardware spin detection.
IEEE Trans. Parallel Distrib. Syst., 23(2), Feb. 2012.

[8] A. C. Dusseau, R. H. Arpaci, and D. E. Culler. Effective
distributed scheduling of parallel workloads. In Proc. of
SIGMETRICS, 1996.

[9] Intel Corporation. Intel R© 64 and IA-32 Architectures Software
Developer’s Manual. December 2009.

[10] Intel Corporation. Intel R© 64 and IA-32 Architectures Software
Developer’s Manual. December 2009.

[11] H. Kim, S. Kim, J. Jeong, J. Lee, and S. Maeng. Demand-
based coordinated scheduling for smp vms. In Proc. of ASP-
LOS, 2013.

[12] P. Lama and X. Zhou. NINEPIN: Non-invasive and energy
efficient performance isolation in virtualized servers. In Proc.
of DSN, 2012.

[13] W. Lee, M. Frank, V. Lee, K. Mackenzie, and L. Rudolph.
Implications of i/o for gang scheduled workloads. In Proc. of
IPPS, 1997.

[14] T. Li, D. Baumberger, and S. Hahn. Efficient and scal-
able multiprocessor fair scheduling using distributed weighted
round-robin. In Proc. of PPoPP, 2009.

[15] P. B. Menage. Adding generic process containers to the linux
kernel. In Proc. of OLS, 2010.

[16] M. Mitzenmacher. The power of two choices in randomized
load balancing. IEEE Trans. Parallel Distrib. Syst., 12(10),
2001.

[17] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: man-
aging performance interference effects for qos-aware clouds.
In Proc. of EuroSys, 2010.

[18] R. Nikolaev and G. Back. Perfctr-xen: a framework for per-
formance counter virtualization. In Proc. of VEE, 2011.

[19] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling i/o in virtual
machine monitors. In Proc. of VEE, 2008.

[20] J. Ousterhout. Scheduling techniques for concurrent systems.
In Proc. of ICDCS, 1982.

[21] A. K. Parekh and R. G. Gallager. A generalized processor
sharing approach to flow control in integrated services net-
works: the single-node case. IEEE/ACM Trans. Netw., 1(3),
1993.

[22] J. Rao, K. Wang, X. Zhou, and C.-Z. Xu. Optimizing virtual
machine scheduling in numa multicore systems. In Proc. of
HPCA, 2013.

[23] D. Shue, M. J. Freedman, and A. Shaikh. Performance iso-
lation and fairness for multi-tenant cloud storage. In Proc. of
OSDI, 2012.

[24] P. Sobalvarro, S. Pakin, W. E. Weihl, and A. A. Chien. Dy-
namic coscheduling on workstation clusters. In Proc. of
JSSPP, 1998.

[25] X. Song, J. Shi, H. Chen, and B. Zang. Schedule processes,
not vcpus. In Proc. of APSys, 2013.

[26] SPEC Java Server Benchmark. http://www.spec.org/jbb2005/.

[27] O. Sukwong and H. S. Kim. Is co-scheduling too expensive
for smp vms? In Proc. of EuroSys, 2011.

[28] The Apache Mahout machine learning library.
http://mahout.apache.org/.

[29] The CPU Scheduler in VMware vSphere 5.1.
http://www.vmware.com/files/pdf/techpaper/VMware-
vSphere-CPU-Sched-Perf.pdf.

[30] The Princeton Application Repository for Shared-Memory
Computers (PARSEC) . http://parsec.cs.princeton.edu/.

[31] The SPEC CPU2006 Benchmarks.
http://www.spec.org/cpu2006/.

[32] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski. To-
wards scalable multiprocessor virtual machines. In Proc. of
VM, 2004.

[33] VMware. http://www.vmware.com.

[34] C. Weng, Q. Liu, L. Yu, and M. Li. Dynamic adaptive schedul-
ing for virtual machines. In Proc. of HPDC, 2011.

[35] Windows Azure Open Cloud Platform.
http://www.windowsazure.com.

[36] Xen. http://www.xen.org/.

[37] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R. Kompella,
and D. Xu. vslicer: latency-aware virtual machine scheduling
via differentiated-frequency cpu slicing. In Proc. of HPDC,
2012.

[38] C. Xu, S. Gamage, H. Lu, R. R. Kompella, and D. Xu. vturbo:
Accelerating virtual machine i/o processing using designated
turbo-sliced core. In Proc. of USENIX ATC, 2013.

