
Towards Fair and Efficient SMP
Virtual Machine Scheduling

Jia Rao and Xiaobo Zhou

University of Colorado, Colorado Springs

http://cs.uccs.edu/~jrao/

http://cs.uccs.edu/~jrao/

Executive Summary

• Problem: unfairness and inefficiency in consolidating SMP VMs

‣ Existing VM schedulers favor VMs w/ more virtual CPUs

‣ Fairness mechanisms hurt parallel performance

• Flex is a scheduling framework that:

‣ Adaptively adjusts vCPU weights for VM-level fairness

‣ Flexibly schedules vCPUs to minimize unnecessary spinning

‣ Results: 5% error to the ideally fair allocation, 30%+ performance
improvement for parallel workloads, ~1% overhead in Xen

SMP VM Consolidation

• Abundant hardware parallelism in DC

• SMP VMs are prevalent in the cloud

‣ 26 out of 29 instance types in Amazon EC2 have more
than two vCPUs

‣ Support parallel applications

‣ Heterogeneous consolidation is common,
e.g., Amazon EC2

Unfair VM CPU Allocation

• CPU allocation

‣ NOT proportional to VM
weights

‣ VMs w/ more vCPUs gain
advantage

‣ Common issue in all
hypervisors

0.0

0.5

1.0

1.5

2.0

Xen KVM VMware

1.361.42
1.59

3-vCPU VM 4-vCPU VM
Normalized CPU consumption

Fair share = two CPU cores

pCPU0 pCPU1 pCPU2 pCPU3

VM1
vCPU0

VM1
vCPU1

VM1
vCPU2

VM1
vCPU3

VM2
vCPU0

VM2
vCPU1

VM2
vCPU2

Causes of Unfairness

• Per-CPU scheduling

‣ Independent scheduler on each CPU

‣ Each allocates CPU based on relative vCPU
weights

‣ Per-vCPU weight dependent on VM weight
and the number of vCPUs

‣ Scalable but hard for VM-level fairness

pCPU0 pCPU1 pCPU2 pCPU3

VM1
vCPU0

VM1
vCPU1

VM1
vCPU2

VM1
vCPU3

VM2
vCPU0

VM2
vCPU1

VM2
vCPU2

VM3
vCPU0

VM3
vCPU1

Equal weight VMs
Box size reflects per-vCPU weight

Allocations on vCPU => VM-level fairness
IFF

Same total weight on each CPU

Existing Solutions

• Capping VM CPU consumption (Cap)

‣ Requires pre-calculation of the fair share

‣ Non-work-conserving

• Load balancing (LB)

‣ Tries to achieve equal weights on CPUs

‣ Balance weight vs. balance run queue length

Introduce significant inefficiencies
to parallel applications

Cap on Busy-waiting-based Workloads

• Busy-waiting synchronization

‣ Tasks stay in a busy loop waiting
for lock release

‣ Avoids contexts switches

• Lock holder preemption (LHP)

‣ Preemption of vCPU holding locks

‣ Long synchronization latency

 0

 20

 40

 60

 80

 100

 120

lu sp ft ua bt cg ep mg

C
PU

 ti
m

e
(%

)

Homo. VM Heter. VM Useful work
Busy waiting

Figure 3. Imbalanced vCPU time allocation due to the co-
location of heterogeneous VMs. Fairness capping introduces
excessive busy-waiting time for NPB applications.

Figure 2(a) shows a typical vCPU mapping policy that bal-
ances the run queue size on each pCPU. For fairness, all
VMs are given equal shares and their per-vCPU weights are
inversely proportional to their vCPU counts.

Since there is an odd number of vCPUs on an even num-
ber of pCPUs, load imbalance inevitably exists. Thus, CPU
allocations on vCPUs are no longer proportional to their
weights. For example, VM3-vCPU1 receives less CPU time
than VM3-vCPU0 because its allocation is diluted by a larger
total weight on pCPU0. More importantly, the allocations on
VM3-vCPU1 , VM1-vCPU1 and VM2-vCPU1 are not propor-
tional to their weights, breaking VM-level fairness. A possi-
ble solution is to balance the run queue weight (as shown in
Figure 2(b)) to minimize vCPU weight dilution. However,
perfect weight balance on different pCPUs is not always
possible and such balancing may introduce the vCPU stack-
ing issue [27], which limits the effective parallelism and in-
creases the synchronization latency in SMP VMs. In produc-
tion systems, VM management software often pre-calculates
the fair share of individual VMs and applies a resource cap
to each VM, preventing it from consuming excessive CPU
time. With a cap, vCPUs are stopped if the total CPU al-
location of a VM exceeds its fair share. However, the use
of resource cap turns the system into non-work-conserving
mode and may lead to wasted resources.

2.3.2 Maximizing Parallel Efficiency
Synchronization overhead has been accused of limiting the
scalability and performance of parallel programs in a virtu-
alized environment [7, 11, 27, 32]. Lock-holder preemption
(LHP) [32] and vCPU stacking [27] are two uniques issues
that arise with SMP VM scheduling. We show that mecha-
nisms for enforcing fairness inadvertently exacerbate these
synchronization issues.

The LHP issue refers to the preemption of the vCPU
that holds an important lock in the guest OS. Such pre-
emptions seriously increase synchronization latency to mil-
liseconds as opposed to a few microseconds in physical
systems. In the case of spinlock holder preemption, CPU
time is wasted when other sibling vCPUs busy-wait for the
preempted vCPU to release the lock. We find that fairness
mechanisms, such as vCPU capping, can lead to excessive
busy-waiting or wasted CPU time. We ran the NASA paral-

 0

 20

 40

 60

 80

 100

 120

blackscholes

bodytrack

canneal

dedup
facesim

raytrace

streamcluster

swaptions

vips
x264

C
PU

 ti
m

e
(%

)

PIN LB Running
Blocked

Figure 4. Dynamic load balancing (LB) penalizes PARSEC
applications with blocking synchronization.

lel benchmark (NPB) [5] in a 4-vCPU VM co-located with
a heterogeneous 3-vCPU VM on four pCPUs. The back-
ground 3-vCPU VM ran three while(1) loops to burn CPU
time. To enforce fairness, we applied a cap equivalent to the
time of two CPUs to each VM. The OpenMP version of NPB
was used and compiled with option OMP WAIT POLICY set
to active. With this setting, threads stay in spin loops while
waiting for other threads. For comparison, we also ran the
NPB benchmark with a homogeneous 4-vCPU VM in the
background. In this setting, no vCPU capping is needed. We
instrumented NPB source code to calculate the total busy-
waiting time spent by all threads.

Figure 3 shows that the co-location of heterogeneous
VMs caused excessive busy-waiting in NPB applications.
In heterogeneous co-location, the vCPU that had less con-
tention on CPU time spent significant portion of time wait-
ing for other slower vCPUs. When vCPU capping is in place,
such wasted time is counted towards the fair share of the
VM. As such, busy-waiting wastes the time could otherwise
be used by useful work. Note that applications that dynam-
ically adjust work assignment for application threads (e.g.,
ft, bt, sp) and applications without synchronization (e.g.,
ep) are resilient to such imbalance caused by vCPU capping.

As discussed in Section 2.3.1, load-balancing helps en-
force VM-level fairness by averaging the run queue size or
weight on different pCPUs so that actual CPU consump-
tions approximate VM weights. For example, pCPUs with
less load will become idle earlier and steal (pull) runnable
vCPUs from busier pCPUs. However, our findings reveal
that such vCPU migrations cause severe slowdowns to par-
allel applications with blocking synchronization. We ran the
PARSEC [30] benchmark in a 4-vCPU VM along with a 3-
vCPU background VM running while(1) loops. PARSEC
is composed of multithreaded programs that use Pthread
blocking synchronization primitives. If failing to enter the
critical section, a thread blocks itself and goes to sleep.
Figure 4 draws the time that threads spent in running and
blocked states under two scheduling policies. PIN binds vC-
PUs to pCPUs and ensures that no vCPUs belonging to
the same VM reside on one pCPU. It is similar to balance
scheduling [27] and may incur imbalanced CPU allocation.
Load-balancing (LB) allows vCPU migrations for fair-
ness. From the figure, we can see that LB incurs excessive

Since spinning wastes CPU cycles,
capping may mistakenly preempt
vCPUs that are doing useful work.

Capping exacerbates the LHP issue in
virtualized environments

Dynamic task
assignment

LB on Blocking-based Workloads

• Blocking synchronization

‣ Tasks go to sleep if failing to acquire
the lock

‣ Avoids wasted CPU cycles

• vCPU stacking

‣ vCPUs belonging to one VM pile on
the same CPU

‣ No parallelism + Long sync latency

 0

 20

 40

 60

 80

 100

 120

lu sp ft ua bt cg ep mg

C
PU

 ti
m

e
(%

)

Homo. VM Heter. VM Useful work
Busy waiting

Figure 3. Imbalanced vCPU time allocation due to the co-
location of heterogeneous VMs. Fairness capping introduces
excessive busy-waiting time for NPB applications.

Figure 2(a) shows a typical vCPU mapping policy that bal-
ances the run queue size on each pCPU. For fairness, all
VMs are given equal shares and their per-vCPU weights are
inversely proportional to their vCPU counts.

Since there is an odd number of vCPUs on an even num-
ber of pCPUs, load imbalance inevitably exists. Thus, CPU
allocations on vCPUs are no longer proportional to their
weights. For example, VM3-vCPU1 receives less CPU time
than VM3-vCPU0 because its allocation is diluted by a larger
total weight on pCPU0. More importantly, the allocations on
VM3-vCPU1 , VM1-vCPU1 and VM2-vCPU1 are not propor-
tional to their weights, breaking VM-level fairness. A possi-
ble solution is to balance the run queue weight (as shown in
Figure 2(b)) to minimize vCPU weight dilution. However,
perfect weight balance on different pCPUs is not always
possible and such balancing may introduce the vCPU stack-
ing issue [27], which limits the effective parallelism and in-
creases the synchronization latency in SMP VMs. In produc-
tion systems, VM management software often pre-calculates
the fair share of individual VMs and applies a resource cap
to each VM, preventing it from consuming excessive CPU
time. With a cap, vCPUs are stopped if the total CPU al-
location of a VM exceeds its fair share. However, the use
of resource cap turns the system into non-work-conserving
mode and may lead to wasted resources.

2.3.2 Maximizing Parallel Efficiency
Synchronization overhead has been accused of limiting the
scalability and performance of parallel programs in a virtu-
alized environment [7, 11, 27, 32]. Lock-holder preemption
(LHP) [32] and vCPU stacking [27] are two uniques issues
that arise with SMP VM scheduling. We show that mecha-
nisms for enforcing fairness inadvertently exacerbate these
synchronization issues.

The LHP issue refers to the preemption of the vCPU
that holds an important lock in the guest OS. Such pre-
emptions seriously increase synchronization latency to mil-
liseconds as opposed to a few microseconds in physical
systems. In the case of spinlock holder preemption, CPU
time is wasted when other sibling vCPUs busy-wait for the
preempted vCPU to release the lock. We find that fairness
mechanisms, such as vCPU capping, can lead to excessive
busy-waiting or wasted CPU time. We ran the NASA paral-

 0

 20

 40

 60

 80

 100

 120

blackscholes

bodytrack

canneal

dedup
facesim

raytrace

streamcluster

swaptions

vips
x264

C
PU

 ti
m

e
(%

)

PIN LB Running
Blocked

Figure 4. Dynamic load balancing (LB) penalizes PARSEC
applications with blocking synchronization.

lel benchmark (NPB) [5] in a 4-vCPU VM co-located with
a heterogeneous 3-vCPU VM on four pCPUs. The back-
ground 3-vCPU VM ran three while(1) loops to burn CPU
time. To enforce fairness, we applied a cap equivalent to the
time of two CPUs to each VM. The OpenMP version of NPB
was used and compiled with option OMP WAIT POLICY set
to active. With this setting, threads stay in spin loops while
waiting for other threads. For comparison, we also ran the
NPB benchmark with a homogeneous 4-vCPU VM in the
background. In this setting, no vCPU capping is needed. We
instrumented NPB source code to calculate the total busy-
waiting time spent by all threads.

Figure 3 shows that the co-location of heterogeneous
VMs caused excessive busy-waiting in NPB applications.
In heterogeneous co-location, the vCPU that had less con-
tention on CPU time spent significant portion of time wait-
ing for other slower vCPUs. When vCPU capping is in place,
such wasted time is counted towards the fair share of the
VM. As such, busy-waiting wastes the time could otherwise
be used by useful work. Note that applications that dynam-
ically adjust work assignment for application threads (e.g.,
ft, bt, sp) and applications without synchronization (e.g.,
ep) are resilient to such imbalance caused by vCPU capping.

As discussed in Section 2.3.1, load-balancing helps en-
force VM-level fairness by averaging the run queue size or
weight on different pCPUs so that actual CPU consump-
tions approximate VM weights. For example, pCPUs with
less load will become idle earlier and steal (pull) runnable
vCPUs from busier pCPUs. However, our findings reveal
that such vCPU migrations cause severe slowdowns to par-
allel applications with blocking synchronization. We ran the
PARSEC [30] benchmark in a 4-vCPU VM along with a 3-
vCPU background VM running while(1) loops. PARSEC
is composed of multithreaded programs that use Pthread
blocking synchronization primitives. If failing to enter the
critical section, a thread blocks itself and goes to sleep.
Figure 4 draws the time that threads spent in running and
blocked states under two scheduling policies. PIN binds vC-
PUs to pCPUs and ensures that no vCPUs belonging to
the same VM reside on one pCPU. It is similar to balance
scheduling [27] and may incur imbalanced CPU allocation.
Load-balancing (LB) allows vCPU migrations for fair-
ness. From the figure, we can see that LB incurs excessive

Since blocking vCPUs frequently switch
between READY and RUNNING states, they
are more likely “victims” of work-stealing

based load balancing.
Gradually, stolen vCPUs pile on a few CPUs

LB exacerbates the vCPU stacking issue

Related Work

• Fairness in multicore systems

‣ [Li-PPoPP09] - no VM-level fairness

• Minimizing sync latency in SMP VMs

‣ [Sukwong-Eurosys11] - avoids vCPU stacking

‣ [Kim-ASPLOS13], [Weng-HPDC11] - not effective in user-level synchronization

‣ Pause loop exit (PLE) - needs hardware support

• Spin detection

‣ [Wells-PACT06] - store-based spin detection, not accurate to apps with
different store rates, e.g., LU in NAS parallel benchmark

Flex: non-intrusive, lightweight and applicable
to different implementations

Flex for Fairness and Efficiency

• Flexible vCPU weight (FlexW)

‣ Monitors VM CPU consumption

‣ Calculates fair shares based on VM weights

‣ Adjusts vCPU weights to compensate the difference

• Flexible vCPU scheduling (FlexS)

‣ Stops spinning vCPUs to avoid wasted CPU cycles

‣ Switches the preempted vCPU with one on another CPU that is doing useful
work

‣ Ensures that no vCPUs from the same VM stack on one CPU

FlexW Design

• Determine the fair share

‣ P - number of shared CPUs, wi - VM weight

‣ Ideally fair share according to generalized processor sharing (GPS)

• Adjust VM weights

‣ wir - VM weight

‣ calculate the lag

‣ compensate the lag with real-time weights

vCPU blocking to PARSEC applications. When PARSEC
threads block themselves, the vCPUs that carry these threads
become idle and also get blocked by the hypervisor. Thus,
the corresponding pCPUs become idle and start to steal vC-
PUs from other pCPUs. Since vCPU migrations only steal
runnable (not actually running) vCPUs on the run queue,
it is likely that vCPUs belonging to PARSEC applications
are stolen as vCPUs running the while(1) loop never block
and are likely in the running state during the steal. As a re-
sult, load-balancing causes severe vCPU stacking issues for
application with blocking synchronization.

[Summary] In this section, we have shown that it is dif-
ficult to achieve VM-level fairness in multicore systems and
existing solutions are likely to cause LHP and vCPU stack-
ing issues. These findings motivated us to develop a SMP
VM scheduling scheme that separates fairness enforcement
from the rest of the scheduler and is carefully designed for
improving parallel efficiency. To this end, we design FlexW,
a vCPU accounting scheme that dynamically adjusts VM
weights to realize fair allocation at the VM level, and FlexS,
a flexible vCPU scheduling algorithm that eliminates wasted
busy-waiting time.

3. Flex Scheduling for Fairness and
Efficiency

Based on our findings, we attribute the unfairness in a het-
erogeneous VM co-location scenario to the inaccurate CPU
allocation caused by diluted vCPU weights. We also find
that excessive busy-waiting and vCPU stacking are the cul-
prits of parallel performance slowdowns. Therefore, we try
to answer the following questions when designing Flex. (1)
How to adaptively change vCPU weights to achieve VM-
level fairness? (2) How to schedule vCPUs to eliminate busy-
waitings? (3) How to avoid vCPU stacking?

3.1 Overview
Flex centers on two key designs: flexible vCPU weight ad-
justment (FlexW) and flexible vCPU scheduling (FlexS).
FlexW is a system-wide CPU accounting daemon that peri-
odically monitors the actual CPU consumptions of all VMs.
It calculates the desired fair share of individual VMs based
on their weights. If there is a difference between actual allot-
ted CPU time and the fair share, FlexW adjusts VM weights
to compensate the discrepancy. FlexS is part of the vCPU
scheduling module running on individual pCPUs. It non-
intrusively detects busy-waiting vCPUs according to hard-
ware metrics and preempts such vCPUs to avoid wasted
CPU time. Before scheduling a vCPU from other VMs,
FlexS tries to steal a sibling vCPU that is doing useful work
from other pCPUs’ run queues. In the following subsections,
we present the details of each design.

Algorithm 1 Flexible vCPU Weight Adjustment
1: Variables: Virtual CPU v; Weight of the ith VM wi; Real-time

weight of the ith VM wr
i ; Number of shared CPUs P ;

2:
3: /* System-wide accounting for period (t1, t2) */
4: procedure CPU ACCOUNTING(void)
5: acct count++
6: for each VM do
7: for each vCPU do
8: cpus and(workers, workers, v ! cpu affinity)
9: end for

10: end for
11: P = cpus weight(workers)
12: for each VM do
13: Si,GPS(t1, t2) =

wiP
wj

(t2 � t1) · P

14: lagi(t1, t2) =
Si,GPS(t1,t2)�Si(t1,t2)

Si,GPS(t1,t2)

15: wr
i = wr

i + wi · lagi(t1, t2)
16: if acct count > FAIR WINDOW then
17: acct count = 0
18: wr

i = wi

19: end if
20: end for
21: end procedure

3.2 Flexible vCPU Weight Adjustment
Algorithm 1 shows the flexible vCPU weight adjustment
algorithm. For each accounting period, FlexW first deter-
mines the number of pCPUs shared by all VMs. Note that
VMs may share different sets of pCPUs and form multi-
ple accounting groups, each of which requires fair alloca-
tion within the group. In this work, we assume a single ac-
counting group that shares the same set of pCPUs and leave
enforcing fairness in multiple groups to future work. Then
the total CPU time for shared P CPUs during time period
(t1, t2) becomes (t2 � t1) · P . Next, FlexW calculates the
fair allocation Si,GPS(t1, t2) (line 12) under the idealized
Generalized Processor Sharing (GPS) [21] algorithm using
a VM’s original weight wi. The lag of a vCPU is the normal-
ized difference between the fair allocation Si,GPS(t1, t2)
and its actual consumed CPU time Si(t1, t2) (line 13). A
positive lag indicates that the vCPU has received less time
than under GPS [14] and vice versa. Finally, FlexW deter-
mines the real-time weight wr

i of the VM based on its lag
(in percentage) relative to the fair allocation and uses the ad-
justed weight in the next accounting interval. Note that we
bring the lag to the same scale of weights by multiplying it
with the original weight wi.

There are many practical issues FlexW needs to deal with.
The work-conserving property still needs to be preserved
when enforcing fairness. Before calculating the fair share
for each VM, FlexW checks if the total consumed CPU
time equals to the available time (i.e., (t2 � t1) · P). If
VMs do not consume all CPU time, FlexW simply quits the
weight adjustment process and set the real-time weights to

vCPU blocking to PARSEC applications. When PARSEC
threads block themselves, the vCPUs that carry these threads
become idle and also get blocked by the hypervisor. Thus,
the corresponding pCPUs become idle and start to steal vC-
PUs from other pCPUs. Since vCPU migrations only steal
runnable (not actually running) vCPUs on the run queue,
it is likely that vCPUs belonging to PARSEC applications
are stolen as vCPUs running the while(1) loop never block
and are likely in the running state during the steal. As a re-
sult, load-balancing causes severe vCPU stacking issues for
application with blocking synchronization.

[Summary] In this section, we have shown that it is dif-
ficult to achieve VM-level fairness in multicore systems and
existing solutions are likely to cause LHP and vCPU stack-
ing issues. These findings motivated us to develop a SMP
VM scheduling scheme that separates fairness enforcement
from the rest of the scheduler and is carefully designed for
improving parallel efficiency. To this end, we design FlexW,
a vCPU accounting scheme that dynamically adjusts VM
weights to realize fair allocation at the VM level, and FlexS,
a flexible vCPU scheduling algorithm that eliminates wasted
busy-waiting time.

3. Flex Scheduling for Fairness and
Efficiency

Based on our findings, we attribute the unfairness in a het-
erogeneous VM co-location scenario to the inaccurate CPU
allocation caused by diluted vCPU weights. We also find
that excessive busy-waiting and vCPU stacking are the cul-
prits of parallel performance slowdowns. Therefore, we try
to answer the following questions when designing Flex. (1)
How to adaptively change vCPU weights to achieve VM-
level fairness? (2) How to schedule vCPUs to eliminate busy-
waitings? (3) How to avoid vCPU stacking?

3.1 Overview
Flex centers on two key designs: flexible vCPU weight ad-
justment (FlexW) and flexible vCPU scheduling (FlexS).
FlexW is a system-wide CPU accounting daemon that peri-
odically monitors the actual CPU consumptions of all VMs.
It calculates the desired fair share of individual VMs based
on their weights. If there is a difference between actual allot-
ted CPU time and the fair share, FlexW adjusts VM weights
to compensate the discrepancy. FlexS is part of the vCPU
scheduling module running on individual pCPUs. It non-
intrusively detects busy-waiting vCPUs according to hard-
ware metrics and preempts such vCPUs to avoid wasted
CPU time. Before scheduling a vCPU from other VMs,
FlexS tries to steal a sibling vCPU that is doing useful work
from other pCPUs’ run queues. In the following subsections,
we present the details of each design.

Algorithm 1 Flexible vCPU Weight Adjustment
1: Variables: Virtual CPU v; Weight of the ith VM wi; Real-time

weight of the ith VM wr
i ; Number of shared CPUs P ;

2:
3: /* System-wide accounting for period (t1, t2) */
4: procedure CPU ACCOUNTING(void)
5: acct count++
6: for each VM do
7: for each vCPU do
8: cpus and(workers, workers, v ! cpu affinity)
9: end for

10: end for
11: P = cpus weight(workers)
12: for each VM do
13: Si,GPS(t1, t2) =

wiP
wj

(t2 � t1) · P

14: lagi(t1, t2) =
Si,GPS(t1,t2)�Si(t1,t2)

Si,GPS(t1,t2)

15: wr
i = wr

i + wi · lagi(t1, t2)
16: if acct count > FAIR WINDOW then
17: acct count = 0
18: wr

i = wi

19: end if
20: end for
21: end procedure

3.2 Flexible vCPU Weight Adjustment
Algorithm 1 shows the flexible vCPU weight adjustment
algorithm. For each accounting period, FlexW first deter-
mines the number of pCPUs shared by all VMs. Note that
VMs may share different sets of pCPUs and form multi-
ple accounting groups, each of which requires fair alloca-
tion within the group. In this work, we assume a single ac-
counting group that shares the same set of pCPUs and leave
enforcing fairness in multiple groups to future work. Then
the total CPU time for shared P CPUs during time period
(t1, t2) becomes (t2 � t1) · P . Next, FlexW calculates the
fair allocation Si,GPS(t1, t2) (line 12) under the idealized
Generalized Processor Sharing (GPS) [21] algorithm using
a VM’s original weight wi. The lag of a vCPU is the normal-
ized difference between the fair allocation Si,GPS(t1, t2)
and its actual consumed CPU time Si(t1, t2) (line 13). A
positive lag indicates that the vCPU has received less time
than under GPS [14] and vice versa. Finally, FlexW deter-
mines the real-time weight wr

i of the VM based on its lag
(in percentage) relative to the fair allocation and uses the ad-
justed weight in the next accounting interval. Note that we
bring the lag to the same scale of weights by multiplying it
with the original weight wi.

There are many practical issues FlexW needs to deal with.
The work-conserving property still needs to be preserved
when enforcing fairness. Before calculating the fair share
for each VM, FlexW checks if the total consumed CPU
time equals to the available time (i.e., (t2 � t1) · P). If
VMs do not consume all CPU time, FlexW simply quits the
weight adjustment process and set the real-time weights to

vCPU blocking to PARSEC applications. When PARSEC
threads block themselves, the vCPUs that carry these threads
become idle and also get blocked by the hypervisor. Thus,
the corresponding pCPUs become idle and start to steal vC-
PUs from other pCPUs. Since vCPU migrations only steal
runnable (not actually running) vCPUs on the run queue,
it is likely that vCPUs belonging to PARSEC applications
are stolen as vCPUs running the while(1) loop never block
and are likely in the running state during the steal. As a re-
sult, load-balancing causes severe vCPU stacking issues for
application with blocking synchronization.

[Summary] In this section, we have shown that it is dif-
ficult to achieve VM-level fairness in multicore systems and
existing solutions are likely to cause LHP and vCPU stack-
ing issues. These findings motivated us to develop a SMP
VM scheduling scheme that separates fairness enforcement
from the rest of the scheduler and is carefully designed for
improving parallel efficiency. To this end, we design FlexW,
a vCPU accounting scheme that dynamically adjusts VM
weights to realize fair allocation at the VM level, and FlexS,
a flexible vCPU scheduling algorithm that eliminates wasted
busy-waiting time.

3. Flex Scheduling for Fairness and
Efficiency

Based on our findings, we attribute the unfairness in a het-
erogeneous VM co-location scenario to the inaccurate CPU
allocation caused by diluted vCPU weights. We also find
that excessive busy-waiting and vCPU stacking are the cul-
prits of parallel performance slowdowns. Therefore, we try
to answer the following questions when designing Flex. (1)
How to adaptively change vCPU weights to achieve VM-
level fairness? (2) How to schedule vCPUs to eliminate busy-
waitings? (3) How to avoid vCPU stacking?

3.1 Overview
Flex centers on two key designs: flexible vCPU weight ad-
justment (FlexW) and flexible vCPU scheduling (FlexS).
FlexW is a system-wide CPU accounting daemon that peri-
odically monitors the actual CPU consumptions of all VMs.
It calculates the desired fair share of individual VMs based
on their weights. If there is a difference between actual allot-
ted CPU time and the fair share, FlexW adjusts VM weights
to compensate the discrepancy. FlexS is part of the vCPU
scheduling module running on individual pCPUs. It non-
intrusively detects busy-waiting vCPUs according to hard-
ware metrics and preempts such vCPUs to avoid wasted
CPU time. Before scheduling a vCPU from other VMs,
FlexS tries to steal a sibling vCPU that is doing useful work
from other pCPUs’ run queues. In the following subsections,
we present the details of each design.

Algorithm 1 Flexible vCPU Weight Adjustment
1: Variables: Virtual CPU v; Weight of the ith VM wi; Real-time

weight of the ith VM wr
i ; Number of shared CPUs P ;

2:
3: /* System-wide accounting for period (t1, t2) */
4: procedure CPU ACCOUNTING(void)
5: acct count++
6: for each VM do
7: for each vCPU do
8: cpus and(workers, workers, v ! cpu affinity)
9: end for

10: end for
11: P = cpus weight(workers)
12: for each VM do
13: Si,GPS(t1, t2) =

wiP
wj

(t2 � t1) · P

14: lagi(t1, t2) =
Si,GPS(t1,t2)�Si(t1,t2)

Si,GPS(t1,t2)

15: wr
i = wr

i + wi · lagi(t1, t2)
16: if acct count > FAIR WINDOW then
17: acct count = 0
18: wr

i = wi

19: end if
20: end for
21: end procedure

3.2 Flexible vCPU Weight Adjustment
Algorithm 1 shows the flexible vCPU weight adjustment
algorithm. For each accounting period, FlexW first deter-
mines the number of pCPUs shared by all VMs. Note that
VMs may share different sets of pCPUs and form multi-
ple accounting groups, each of which requires fair alloca-
tion within the group. In this work, we assume a single ac-
counting group that shares the same set of pCPUs and leave
enforcing fairness in multiple groups to future work. Then
the total CPU time for shared P CPUs during time period
(t1, t2) becomes (t2 � t1) · P . Next, FlexW calculates the
fair allocation Si,GPS(t1, t2) (line 12) under the idealized
Generalized Processor Sharing (GPS) [21] algorithm using
a VM’s original weight wi. The lag of a vCPU is the normal-
ized difference between the fair allocation Si,GPS(t1, t2)
and its actual consumed CPU time Si(t1, t2) (line 13). A
positive lag indicates that the vCPU has received less time
than under GPS [14] and vice versa. Finally, FlexW deter-
mines the real-time weight wr

i of the VM based on its lag
(in percentage) relative to the fair allocation and uses the ad-
justed weight in the next accounting interval. Note that we
bring the lag to the same scale of weights by multiplying it
with the original weight wi.

There are many practical issues FlexW needs to deal with.
The work-conserving property still needs to be preserved
when enforcing fairness. Before calculating the fair share
for each VM, FlexW checks if the total consumed CPU
time equals to the available time (i.e., (t2 � t1) · P). If
VMs do not consume all CPU time, FlexW simply quits the
weight adjustment process and set the real-time weights to

FlexS Design

• Identifying busy-waiting vCPU

‣ Non-intrusive identification without
application knowledge

‣ Common pattern in different spin
implementations

- Spin loops contain a few instructions

- Spin loops are executed many times

‣ Spin loops show high branch per
instruction (BPI) and low branch miss
prediction rate (BMPR)

BPI

0
1
3
4
5

lu sp cg povray

Solo
Spinning vCPU
non-spinning vCPU

BPMR

0.0
0.5
1.0
1.5
2.0

lu sp cg povray

Solo
Spinning vCPU
non-spinning vCPU

FlexS Design (cont’)

• Eliminating busy-waiting time

‣ Periodically update a vCPU’s BPI and BMPR

‣ Busy-waiting vCPU voluntarily yields CPU

‣ Find a sibling vCPU to complete the unfinished time
slice

‣ Switch the two vCPU to avoid vCPU stacking and run
queue weight changes

Practical Considerations

• Starvation

‣ VMs demanding less than its share will have ever increasing real-time weight

‣ Solution: reset real-time weight every 10s

• Infeasible weight -> peak CPU demand less than the fair share

‣ Solution: peak demand as the fair share

• False positive in identifying spinning vCPU

‣ Solution: reset BPI and BMPR every 10s

• Inter-CPU locking overhead due to vCPU migrations

‣ Solution: only try twice when looking for siblings to switch- the power of two choices

Implementation

• Implement Flex in Xen’s credit scheduler

‣ weight -> credit

‣ FlexW in the system-wide csched_acct() routine, adjusts
VM credit refill based on real-time weights, invoked every
30ms

‣ FlexS in the per-CPU schedule() function, adds
load_balance_switch() to exchange work with sibling vCPUs

‣ Identify spinning vCPU in vcpu_acct() when Xen charges
credit to the current running vCPU

Evaluation Methodology

• Questions: VM-level fairness? and parallel performance?

• Workload

‣ NAS Parallel benchmark (OpenMP, busy-waiting sync)

‣ PARSEC (Pthreads, blocking sync)

‣ Background interfering loops — isolate from cache contention

• Scheduling strategies for comparison

‣ Xen default credit scheduler

‣ Balance+cap+CO - [Sukwong-Eurosys11]

‣ Demand+cap - [Kim-ASPLOS13]

VM-level Fairness

0
10
20
30
40
50
60
70

2 3 4 5 6 7 8

Xen Flex

Number of VMs
R

el
at

iv
e

la
g

(%
)

 0.1

 1

 10

 100

 1000

2 3 4 5 6 7 8

R
el

at
iv

e
la

g
(%

)

Number of VMs

Xen (average)
Flex (average)

Xen (max)
Flex (max)

Figure 6. The average and maximum lag of Xen and Flex
for different number of VMs.

ers) are used for thread synchronization and the native
input size was used.

• Hadoop is a popular implementation of the MapReduce
framework for running data-parallel jobs. We selected a
Bayesian classification job in the Hadoop Mahout ma-
chine learning library [28]. The job classifies 20,000
newsgroup documents into 20 categories. It consists of
three phases of execution, each of which contains mul-
tiple map tasks and one reduce task. During each phase,
the map tasks are independent of each other with no com-
munications. The next phase starts only when the reduce
task finishes in the previous phase.

• SPECjbb2005 [26] evaluates the performance of server
side Java by emulating a three-tier client/server system.
It spawns multiple threads to emulate active users post-
ing transaction requests in multiple warehouses within
a wholesale company. Synchronization is needed when
customer requests and company internal management op-
erations both work on the same database table. Synchro-
nized methods in Java are used to block waiting threads.

If not otherwise stated, we matched the number of threads/maps
in these workloads with the number of vCPUs in the VMs.

For comparison, we evaluated three scheduling strategies:

• Xen: The default credit scheduler without mechanisms
for VM-level fairness.

• Balance+cap+CO: For busy-waiting workloads, we used
balance scheduling [27] with fairness capping. We also
set the VM running parallel workloads to a higher priority
to co-schedule its vCPUs.

• Demand+cap: For non-busy-waiting workloads, we im-
plemented demand-based coordinated scheduling [11]
with fairness capping. We monitored Xen event chan-
nel to prevent the preemption of sender vCPUs of inter-
processor interrupts (IPI). Recipients of IPIs are by de-
fault prioritized by Xen as wakeup vCPUs are temporally
elevated to the boost priority [19].

5.1 Fairness and Differentiation
In this subsection, we show the effectiveness of Flex in VM-
level fairness and differentiation. We used the absolute rel-
ative lag, |Si,GPS(t1,t2)�Si(t1,t2)

Si,GPS(t1,t2)
|, to measure fairness. We

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

3:2:1 3:1:2 2:1:3 2:3:1 1:2:3 1:3:2

Pr
op

or
tio

na
l C

PU
 s

ha
re

4-vCPU VM
3-vCPU VM
2-vCPU VM

Figure 7. Flex realizes proportional share of CPU between
VMs with different numbers of vCPU.

created four types of VMs with 4 vCPUs, 3 vCPUs, 2vCPUs
and 1 vCPU, respectively. We changed the number of VMs
sharing four cores and ensured that the mix contained hetero-
geneous VMs as many as possible. Figure 6 shows the maxi-
mum and average lag of individual VMs under Xen and Flex.
From the figure, we can see that the default credit scheduler
fails to enforce fairness at VM-level and the unfairness in
terms of both maximum and average lag goes unboundedly
to as much as 235% and 67%, respectively. In contrast, Flex
achieves one order of magnitude (log scale in the y axis) less
lag than Xen. The maximum lag of Flex is bounded by 15%
and on average Flex incurs no more than 5% unfairness.

We are also interested in whether Flex can realize ser-
vice differentiation, where VMs receive CPU time propor-
tional to their weights. We consolidated three VMs, each
with 4, 3, 2 vCPUs, respectively, onto four cores. Figure 7
shows the CPU allocation of the three VMs with different
combinations of weight. Flex realized almost perfect propor-
tional allocations for weight combination 3:2:1. However,
allocations were not accurate when VMs with fewer vCPUs
have large weights and VMs with more vCPUs have small
weights, e.g., combinations 1:2:3 and 1:3:2. The reason is
that Flex enforces proportional allocations for individual fair
windows. Once VM real-time weights are reset, VMs with
more vCPUs are likely to consume more CPU time, violat-
ing the proportionality. It is a trade-off between keeping a
limited history of CPU allocation and perfect proportional-
ity. Although not being always accurate, we conclude that
Flex realizes a reasonably good level of differentiation.

5.2 Parallel Execution Efficiency
As discussed in Section 2.3.2, imbalanced CPU allocation
in SMP VMs incurs excessive busy-waiting or severe vCPU
stacking. In this subsection, we show that Flex is able to
mitigate such issues and achieve good parallel efficiency.
We first study the performance of one SMP VM in two
imbalanced scenarios and then evaluate the performance of
two SMP VMs with a mix of parallel workloads.

5.2.1 Imbalanced Allocation
We created two imbalanced scenarios, where two hetero-
geneous VMs, one with 4 vCPUs and one with 3 vCPUs,
were co-located on four cores. As shown in Figure 1(a),
the VM with more vCPUs gains advantage in getting moreRelative lag =

Lower is better

Heterogeneous VMs:
1vCPU, 2vCPU, 3vCPU, 4vCPU

Each running while(1) loop

Flex: significant improvement over Xen
with no more than 5% unfairness

VM Differentiation

 0.1

 1

 10

 100

 1000

2 3 4 5 6 7 8

R
el

at
iv

e
la

g
(%

)

Number of VMs

Xen (average)
Flex (average)

Xen (max)
Flex (max)

Figure 6. The average and maximum lag of Xen and Flex
for different number of VMs.

ers) are used for thread synchronization and the native
input size was used.

• Hadoop is a popular implementation of the MapReduce
framework for running data-parallel jobs. We selected a
Bayesian classification job in the Hadoop Mahout ma-
chine learning library [28]. The job classifies 20,000
newsgroup documents into 20 categories. It consists of
three phases of execution, each of which contains mul-
tiple map tasks and one reduce task. During each phase,
the map tasks are independent of each other with no com-
munications. The next phase starts only when the reduce
task finishes in the previous phase.

• SPECjbb2005 [26] evaluates the performance of server
side Java by emulating a three-tier client/server system.
It spawns multiple threads to emulate active users post-
ing transaction requests in multiple warehouses within
a wholesale company. Synchronization is needed when
customer requests and company internal management op-
erations both work on the same database table. Synchro-
nized methods in Java are used to block waiting threads.

If not otherwise stated, we matched the number of threads/maps
in these workloads with the number of vCPUs in the VMs.

For comparison, we evaluated three scheduling strategies:

• Xen: The default credit scheduler without mechanisms
for VM-level fairness.

• Balance+cap+CO: For busy-waiting workloads, we used
balance scheduling [27] with fairness capping. We also
set the VM running parallel workloads to a higher priority
to co-schedule its vCPUs.

• Demand+cap: For non-busy-waiting workloads, we im-
plemented demand-based coordinated scheduling [11]
with fairness capping. We monitored Xen event chan-
nel to prevent the preemption of sender vCPUs of inter-
processor interrupts (IPI). Recipients of IPIs are by de-
fault prioritized by Xen as wakeup vCPUs are temporally
elevated to the boost priority [19].

5.1 Fairness and Differentiation
In this subsection, we show the effectiveness of Flex in VM-
level fairness and differentiation. We used the absolute rel-
ative lag, |Si,GPS(t1,t2)�Si(t1,t2)

Si,GPS(t1,t2)
|, to measure fairness. We

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

3:2:1 3:1:2 2:1:3 2:3:1 1:2:3 1:3:2

Pr
op

or
tio

na
l C

PU
 s

ha
re

4-vCPU VM
3-vCPU VM
2-vCPU VM

Figure 7. Flex realizes proportional share of CPU between
VMs with different numbers of vCPU.

created four types of VMs with 4 vCPUs, 3 vCPUs, 2vCPUs
and 1 vCPU, respectively. We changed the number of VMs
sharing four cores and ensured that the mix contained hetero-
geneous VMs as many as possible. Figure 6 shows the maxi-
mum and average lag of individual VMs under Xen and Flex.
From the figure, we can see that the default credit scheduler
fails to enforce fairness at VM-level and the unfairness in
terms of both maximum and average lag goes unboundedly
to as much as 235% and 67%, respectively. In contrast, Flex
achieves one order of magnitude (log scale in the y axis) less
lag than Xen. The maximum lag of Flex is bounded by 15%
and on average Flex incurs no more than 5% unfairness.

We are also interested in whether Flex can realize ser-
vice differentiation, where VMs receive CPU time propor-
tional to their weights. We consolidated three VMs, each
with 4, 3, 2 vCPUs, respectively, onto four cores. Figure 7
shows the CPU allocation of the three VMs with different
combinations of weight. Flex realized almost perfect propor-
tional allocations for weight combination 3:2:1. However,
allocations were not accurate when VMs with fewer vCPUs
have large weights and VMs with more vCPUs have small
weights, e.g., combinations 1:2:3 and 1:3:2. The reason is
that Flex enforces proportional allocations for individual fair
windows. Once VM real-time weights are reset, VMs with
more vCPUs are likely to consume more CPU time, violat-
ing the proportionality. It is a trade-off between keeping a
limited history of CPU allocation and perfect proportional-
ity. Although not being always accurate, we conclude that
Flex realizes a reasonably good level of differentiation.

5.2 Parallel Execution Efficiency
As discussed in Section 2.3.2, imbalanced CPU allocation
in SMP VMs incurs excessive busy-waiting or severe vCPU
stacking. In this subsection, we show that Flex is able to
mitigate such issues and achieve good parallel efficiency.
We first study the performance of one SMP VM in two
imbalanced scenarios and then evaluate the performance of
two SMP VMs with a mix of parallel workloads.

5.2.1 Imbalanced Allocation
We created two imbalanced scenarios, where two hetero-
geneous VMs, one with 4 vCPUs and one with 3 vCPUs,
were co-located on four cores. As shown in Figure 1(a),
the VM with more vCPUs gains advantage in getting more

VM weights

Flex realizes proportional
share among VMs

Parallel Performance

0

0.5

1

1.5

lu sp ft ua bt cg ep mg

Xen Balance+cap+CO
FlexW FlexW+FlexS

Normalized runtime
pCPU0 pCPU1 pCPU2 pCPU3

VM1
NAS

VM1
NAS

VM1
NAS

VM1
NAS

VM2
Loop

VM2
Loop

VM2
Loop

Observation: FlexW alone does
NOT guarantee good perf.

Reason: Imbalance wastes
CPU time

Results: FlexW+FlexS
performs closely to Xen
and balance+cap+CO

Challenge: Flex allocates less CPU
time to the 4vCPU VM than Xen

Lower is better

Parallel Performance

0

0.5

1

1.5

lu sp ft ua bt cg ep mg

Xen Balance+cap+CO
FlexW FlexW+FlexS

Normalized runtime

pCPU0 pCPU1 pCPU2 pCPU3

VM1
Loop

VM1
Loop

VM1
Loop

VM1
Loop

VM2
NAS

VM2
NAS

VM2
NAS

Expected: Flex performs
better than Xen

Reason: Flex allocates more CPU
time to the 3vCPU VM than Xen

Lower is better

Mix of Parallel Workloads

0

0.5

1

1.5

lu sp ft ua bt cg ep mg

Xen Balance+cap Flex

Normalized runtime

pCPU0 pCPU1 pCPU2 pCPU3

VM1
NAS

VM1
NAS

VM1
NAS

VM1
NAS

VM2
LU

VM2
LU

VM2
LU

0

0.5

1

1.5

Foreground NAS
Background luDynamic task

assignment

Results: Flex outperforms
balance+cap by

30.4%

Lower is better

Overhead

0
1
2
3
4
5
6

2 3 4 5 6 7 8

Xen Flex

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

2 3 4 5 6 7 8

Xen Flex

System-wide csched_acct()

FlexW overhead: VM weight adjustment FlexS overhead: vCPU stealing

Per-CPU func. schedule()

Ex
ec

ut
io

n
tim

e
(m

ic
ro

-s
ec

on
d)

Overhead increases with # of VMs
performed by the idle VM

not affecting parallel
performance

constant overhead, not increases
with # of VMs

frequency of schedule() - 30ms
less than1% overhead

Conclusions & Future Work

• Fairness-efficiency tradeoff

‣ Straightforward solutions to unfairness lead to poor efficiency

• Flex: a holistic solution

‣ Adaptively adjusts weight for fairness

‣ Flexibly schedule vCPUs to minimize wasted work

‣ Problem: NOT quite effective for apps with dynamic task assignment

• Future work

‣ Cross-layer application-cloud coordination

Thank you !
Questions?

http://cs.uccs.edu/~jrao/

http://cs.uccs.edu/~jrao/

Backup Slides Begin Here …

Parallel Performance (blocking)

0

0.5

1

1.5

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
ne

al

de
du

p

fa
ce

si
m

ra
yt

ra
ce

st
re

am
cl

us
te

r

sw
ap

tio
ns

vi
ps

x2
64

Xen Demand+cap
FlexW FlexW+FlexS

Observation: Both Flex and
demand+cap improve perf.

Reason: Avoiding vCPU
stacking helps a lot

Conclusion: Flex does not
incur much penalty to

blocking sync.-based apps

pCPU0 pCPU1 pCPU2 pCPU3

VM1
PARSEC

VM1
PARSEC

VM1
PARSEC

VM1
PARSEC

VM2
Loop

VM2
Loop

VM2
Loop

