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Abstract
Load imbalance is considered a major source of overhead
in parallel programs. Hadoop workloads are in partic-
ular susceptible to such imbalance (a.k.a, skew) due to
the uneven distribution of input data among tasks. As
a result, tasks with more data run significantly slower
(known as stragglers) than others, delaying the overall
job completion. Although data skew can be mitigated by
using customized, job-specific data partitioners, this in-
creases the burden on users. Running Hadoop in a virtual
private cloud opens up opportunities for elastic resource
allocations, where stragglers are expedited with more re-
sources. However, virtualized environments introduce
problems that often cancel out the performance gain: (1)
besides data skew, performance interference from co-
running jobs may create new stragglers; (2) there exist
a semantic gap between Hadoop task management and
resource pool-based virtual cluster management prevent-
ing tasks from using resources efficiently.

In this work, we strive to make Hadoop more resilient
to data skew and more efficient in cloud environments.
We present FlexSlot, a user-transparent task slot manage-
ment scheme that automatically identifies map stragglers
and resizes their slots accordingly to accelerate task ex-
ecution. FlexSlot also adaptively changes the number of
slots on each virtual node to balance the resource usage
so that the pool of resources can be efficiently used by
the virtual cluster. Experimental results with representa-
tive benchmarks show that FlexSlot effectively reduces
job completion time by as much as 46% compared with
stock Hadoop and outperforms a recent proposed skew
mitigation approach.

1 Introduction

Hadoop, the open source implementation of the MapRe-
duce programming model [7], has become increasingly
popular in Big Data analytics due to its simplicity of

use and the scalability to large clusters. However, stud-
ies have shown that current use of Hadoop in enter-
prises and research stay in an ad hoc manner, leaving
advanced features underused [19], potential performance
unexploited [16, 25, 26], and resources in Hadoop clus-
ters inefficiently utilized [18]. In particular, load imbal-
ance (a.k.a. skew) among Hadoop tasks poses significant
challenges on achieving good performance and high re-
source utilization [12, 15, 17]. Skew that could come
from uneven data distribution or non-uniform data pro-
cessing cost [16] creates stragglers. Such sluggish tasks
can take more than five times longer to complete than
the fastest task [16], slowing the overall job completion
significantly.

To address hardware failure and misconfiguration,
Hadoop speculatively runs a backup copy of a slow task
on a different machine. Besides fault-tolerance, spec-
ulative execution is able to expedite stragglers due to
skew to a certain extent as the backup copy may run on
a better performing machine. However, the differences
in machines are not significant enough to mitigate skew
and job performance is still bottlenecked by stragglers.
Although skew can be eliminated by using customized
and job-specific data partitioners for balancing workload
among tasks [15], this approach requires domain knowl-
edge on the structure of input data and imposes burdens
on users. To this end, researchers propose to mitigate
skew by dynamically re-partitioning data during job exe-
cution [16]. Nevertheless, re-distributing data at runtime
introduces overhead of moving data between machines.

In this work, we look at the skew problem in Hadoop
applications from a different perspective. Rather than
mitigating skew among tasks, we try to balance the pro-
cessing time of tasks even with the presence of data im-
balance. Specifically, tasks with more data or more ex-
pensive data records are accelerated by having more re-
sources. We purposely create heterogeneous clusters and
match different machine capabilities with the actual pro-
cessing demands of unbalanced tasks. Cloud comput-
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ing, unlocked by virtualization, allows the creation of
dynamic virtual clusters with elastic resource allocations.
Hadoop clusters can be easily scaled out by adding vir-
tual nodes with a latency of several minutes. More im-
portantly, individual nodes can also be scaled up with
more resources. Recent study has found that the ability
to scale-up leads to better Hadoop performance in a vir-
tual cluster compared to a native cluster with the same
settings [4].

However, moving Hadoop into the cloud introduce
additional problems that can outweigh the benefit of
flexible resource management. First, clouds are usu-
ally shared by multiple users in order to increase hard-
ware utilization. Interferences from co-located users may
create new stragglers in Hadoop applications [6, 14].
Second, to reduce the resources required to run a vir-
tual cluster, private clouds often multiplex a pool of
shared resources among virtual nodes [20]. Virtual clus-
ter management such as VMware DRS (Distributed Re-
source Manager) [10] and OpenStack Utilization-based
Scheduling [2] dynamically allocates resources to indi-
vidual nodes according to their estimated demands. This
eliminates the need of proactively allocating resource
for slave nodes. Surprisingly, we find that there exists
a semantic gap between demand-based resource alloca-
tion and the actual needs of Hadoop tasks. The virtual
nodes that receive disproportionately more resources due
to high demands actually run fast tasks, leaving nodes
with stragglers deprived of resources. Our study find
that running unmodified Hadoop in such a cloud does
not mitigate skew instead aggravates the imbalance.

In this paper, we explore the possibility of using elas-
tic resource allocation in the cloud to mitigate skew in
Hadoop applications. We propose, FlexSlot, a simple ex-
tension to the slot-based Hadoop task scheduling frame-
work. FlexSlot automatically identifies stragglers and re-
sizes their slots. Slot resizing not only allows stragglers
to receive more resources but also alleviates the interfer-
ence between co-running jobs. To expose the actual de-
mands of tasks, FlexSlot co-locates stragglers with fast
tasks on a node by dynamically changing the number of
slots on the node. As fast tasks finish quickly and the
node is allocated a large amount of resources, stragglers
in fact receive more resources and their executions are
accelerated.

We implemented FlexSlot on a 32-node Hadoop vir-
tual cluster and evaluated its benefits using the Purdue
MapReduce Benchmark Suite (PUMA) [3] with datasets
collected from real applications. We compared the per-
formance of FlexSlot running different workloads with
that of the stock Hadoop and a recently proposed skew
mitigation approach SkewTune [16]. Experimental re-
sults show that FlexSlot reduces job completion time by
30% and 22% compared with stock Hadoop and Skew-
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Figure 1: The slot-based task scheduling in Hadoop.

Tune, respectively. FlexSlot also achieves better resource
utilization with both the flexible slot size and flexible
number of slots.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the background of Hadoop, discusses
existing issues, and presents a motivating example. Sec-
tion 3 elaborates FlexSlot’s architecture and key designs.
Section 4 gives the testbed setup and experimental re-
sults. Related work is presented in Section 5. We con-
clude this paper in Section 6.

2 Background and Motivation

In this section, we first describe the basics of the Hadoop
MapReduce framework and discuss the causes of skew in
Hadoop tasks. Then, we show that elastic resource allo-
cation in a cloud and an ideal task scheduling in Hadoop
together help balance task execution time and improve
the overall job performance significantly. Finally, we
demonstrate that a trivial migration of Hadoop to the
cloud does not mitigate skew instead aggravates task im-
balance.

2.1 Hadoop MapReduce Framework

The data processing in MapReduce is expressed as two
functions: map and reduce. The map function takes an
input pair and produces a list of intermediate key/value
pairs. The reduce function processes the intermedi-
ate key with the list of its values and generates the fi-
nal results. In the implementation of Hadoop, the map
and reduce functions are implemented in MapTask and
ReduceTask. Each MapReduce job is divided into mul-
tiple map tasks and reduce tasks.

Figure 1 shows the MapReduce execution environ-
ment in Hadoop with one master node and multiple slave
nodes. The master node runs JobTracker and manages
the task scheduling on the cluster. Each slave node runs
TaskTracker and controls the execution of individual
tasks. Hadoop uses a slot-based task scheduling algo-
rithm. Each TaskTracker has a preconfigured number
of map slots and reduce slots. Task trackers report their
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Figure 2: The skewed task execution time of wordcount.

number of free slots to the job tracker through heart-
beat [1]. The job tracker then assigns a task to each free
slot.

Ideally, each task should take approximately the same
time to complete if it is assigned the same amount of
data. However, there is no guarantee that data is evenly
distributed among tasks or the same amount of input data
will take the same time to process. Hadoop tries to divide
the input data set into a collection of input splits, ideally
each matching the block size of HDFS. Map tasks usu-
ally process block of input at a time using the default
FileInputFormat. If the input data contains file with
various sizes (e.g., files smaller or larger than the HDFS
block size), taking one block of data as input inevitably
leads to input skew in map tasks. Although it is possi-
ble to combine small blocks into a map input (e.g., using
a custom input reader), study shows that only a small
portion of Hadoop users customizes input handling and
data skew in map tasks is quite common in production
Hadoop clusters [19]. Similarly, reduce tasks may also
have imbalanced input size as the partitions generated
by map tasks can contain different number of key/value
pairs [8, 15, 16]. Moreover, the same input size can lead
to distinct task execution time as some records are inher-
ently more expensive to process. As a result, unbalanced
task runtime is prevalence in Hadoop applications [19].

Figure 2 shows an example of skewed task execution
in the wordcount benchmark. The job was run on a
homogeneous cluster with 32 nodes. From the figure,
we can see that nearly 20% of tasks run at least 20%
longer than the others. Such an imbalance leads to pro-
longed job completion time and wasted cluster resources
on nodes that were idle waiting for the stragglers. Next,
we show that how a re-organization of cluster resources,
i.e., using a heterogeneous cluster, improves Hadoop per-
formance.

2.2 Mitigating Skew with Heterogeneous
Resource Allocation

In this subsection, we study how does heterogeneous
resource allocation to map tasks help the overall job

Table 1: Task skewness of wordcount on three clusters.
Homo. Heter. Heter. + Skew-Sched

Skewness 2.65 2.25 0.31

performance. The data skew in reduce tasks can be
mitigated by repartitioning and rebalancing intermediate
data [11, 15, 16]. But similar approach cannot be easily
applied to map tasks. We show that purposely allocating
more resources to nodes that run stragglers effectively
mitigates map input skew. If not otherwise stated, tasks
refer to map tasks throughout this paper.

We created three 32-node Hadoop clusters, each with
a total capacity of 153.6 GHz CPU resource and 128 GB
memory in our university cloud. The first cluster (de-
noted as Homo.) emulates a physical cluster with ho-
mogeneous configurations on each node. The resources
were evenly distributed to nodes, resulting in a uniform
node capacity of 4.8 GHz CPU and 4 GB memory. Clus-
ter Heter. contained nodes with heterogeneous re-
source allocations. We profiled the resource demands
of individual Hadoop tasks and created powerful nodes
for stragglers. We first ran a job in a homogeneous
cluster and determined the stragglers. We then scaled
up the nodes running stragglers according to their run-
time statistics. Specifically, we increased the CPU re-
sources and memory sizes of these nodes proportionally
based on their CPU time and I/O wait time in the last
run. We then re-ran the job on the adjusted cluster. Al-
though stragglers had their input data on the powerful
nodes, Hadoop’s task scheduler may still launch them
remotely on less powerful nodes if there are no available
slots on the powerful ones. In the third cluster (denoted
as Heter. + Skew-sched), we forced that stragglers
only run on powerful nodes.

We calculated the skewness in task runtimes in a job
J as ∑

i∈J

(xi−µ)3

σ3 , where xi is the runtime of individual

tasks, µ and σ represent the average and deviation, re-
spectively. The lower the skewness, the more balanced
task execution. Table 1 lists the task skewness of word-
count on the three clusters. As expected, cluster Homo.
show significant skew in task completion with a skew-
ness of 2.65. We can also see that creating a heteroge-
neous cluster alone only mitigated the skew to a certain
extent (e.g., reducing skewness to 2.25) because Hadoop
task scheduler may not run stragglers on powerful nodes.
In contrast, strictly requiring stragglers be run on pow-
erful nodes significantly improved task balance with a
skewness of 0.30. This confirms previous findings [26]
that allocating more data and work on powerful nodes
optimizes Hadoop performance in a heterogeneous envi-
ronment.
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(a) Static cluster.
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Figure 3: Task runtime of wordcount on two clusters.

Unfortunately, it is difficult to predict which tasks will
be the stragglers and determine their resource demands
before actually running these tasks. There is a need for
dynamic resource allocations in Hadoop clusters in re-
sponse to stragglers.

2.3 Automatically Tuning Hadoop with
Demand-based Resource Allocation

Modern cloud management middleware, such as
VMware DRS, XenServer and OpenStack, supports
demand-based resource allocation, where a virtual clus-
ter shares a resource pool and individual nodes receive
resources according to their estimated demands. Ideally,
if nodes running stragglers show high demands, demand-
based resource allocation is able to automatically tune a
Hadoop cluster into a heterogeneous cluster that accel-
erates stragglers. However, we found that there exists a
semantic gap between demand-based resource allocation
and the actual needs of Hadoop tasks, making incorrect
decisions in resource allocations.

We created a resource pool of 153.6 GHz CPU re-
sources and 128 GB memory, which is shared by a 32-
node Hadoop cluster. VMware DRS was used to auto-
matically allocate resources on these virtual nodes. Fig-
ure 3(a) and (b) show the execution time of individual
map tasks on a static homogeneous cluster and the dy-
namic cluster with demand-based resource allocation, re-
spectively. From the figure, we can see that demand-
based resource allocation unexpectedly aggravated skew-
ness in task execution time. Although the tasks on the left
of Figure 3(a) ran faster than those in the static cluster,
stragglers in the dynamic cluster (tasks on the right tail)
appeared to be significant slower.

Figure 4 shows the number of finished tasks on each
virtual node in the two clusters. We find that in the dy-
namic cluster, some nodes ran 10X more tasks than the
nodes with fewest tasks. An examination of the Hadoop
execution log and the VMware resource allocation log
revealed that these “hot spot” nodes ran mostly fast tasks
and received disproportionate more resources than the
“idle” nodes, which turned out to host straggler tasks. We
attribute the counterintuitive resource allocations to the
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Figure 4: Task distribution of wordcount on two clusters.

semantic gap between the resource demands estimated
by the cloud management and the actual Hadoop task
demands. VMware DRS computes a node’s CPU de-
mand based on its recent actual CPU consumption and
estimates the memory demand according to the ratio of
touched pages in a set of randomly-selected pages.

However, the demand-based allocation do not meet
stragglers’ needs. Study has shown that production
Hadoop clusters are still dominated by I/O intensive
jobs [19] and stragglers with more data are likely to
spend a significant amount of time waiting for disk I/O.
Thus, nodes running stragglers appear to be less busy
than nodes with fast tasks and are allocated few resources
by the demand-based cloud management. For memory,
a straggler is unable to use the additional memory allo-
cated as its memory usage is upper bounded by the JVM
heap size of its slot. The heap size of a slot is statically
set in the cluster configuration file. The selection of the
heap size is usually conservative to prevent a node from
memory thrashing.

[Summary] We have shown that skew in Hadoop map
tasks can be effectively mitigated by accelerating strag-
glers with more resources. However, demand-based dy-
namic resource allocation in a cloud does not meet strag-
glers’ needs and the fixed slot configuration in Hadoop
prevents a flexible use of dynamic resources. These find-
ings motivated us to make Hadoop run more efficiently
in the cloud in the presence of skew and the in place
cloud management. We found that a simple extension
to Hadoop’s map slot management effectively directs re-
source to map stragglers in a cloud environment. Next,
we present FlexSlot, a user-transparent flexible slot man-
agement scheme for Hadoop.

3 FlexSlot Design

We aim to mitigate skew in Hadoop applications by
leveraging the dynamic resource allocation in the cloud.
We focus on a private cloud platform in which dynamic
resource allocation to virtual clusters is automated by es-
timating the demands of individual virtual nodes and ad-
justing their resources accordingly. In this section, we
present FlexSlot, a simple extension to the Hadoop’s slot
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management scheme that automatically identifies map
stragglers at run-time and adjusts both the map slot size
and number on the nodes hosting the stragglers. The dy-
namic adjustment to slot configurations effectively ex-
poses the actual demands of stragglers to the low-level
virtual resource management and guides the demand-
based allocation to efficiently allocate resources to strag-
glers.

3.1 Overview
FlexSlot provides two key functionalities: on-the-fly
straggler identification and automated slot reconfigura-
tion.

Identifying Stragglers. FlexSlot continuously mon-
itors two task-specific metrics during task execution:
progress rate and input processing speed. Based on a
synthesis of these metrics, FlexSlot is able to identify
tasks that are abnormally slower than their peers due to
either uneven data distribution, expensive record or cloud
interference. Once determining stragglers, FlexSlot in-
fers their resource bottlenecks based on resource usages
obtained on the straggler nodes.

Proactively changing the size of slots . If FlexSlot
determines that a straggler’s performance is bottlenecked
by I/O operations, it proactively terminates the straggler
and restarts it with a larger slot size. Since it is hard
to predict the memory requirement of a task, FlexSlot
uses a trial-and-error approach to change the slot size
at incremental steps. The increment continues until the
overhead of task restarting outweighs the improvement
on task processing speed.

Adaptively adjusting the number of slots. FlexSlot
bridges the semantic gap between Hadoop tasks and the
demand-based resource allocation by adaptively chang-
ing the number of slots on Hadoop nodes. Contrary to
intuition, FlexSlot adds more slots to straggler nodes in
order to expose the actual straggler demand to the re-
source management.

3.2 Identifying Stragglers
There are three causes of straggler tasks in a cloud envi-
ronment: (1) uneven data distribution among tasks; (2)
non-uniform data processing time; and (3) performance
interferences from co-running jobs. We measure two per-
formance metrics during task execution. Hadoop pro-
vides progress score to represent the fraction of work
completed. It is computed as the ratio of finished in-
put size and the original input size. Progress rate [26],
which is defined as the change in progress score in unit
time, is a good online measure of task performance. If all
tasks process input data at the same speed, the tasks with
smaller progress rates are likely to have large input sizes.

Another important metric is the input processing speed
D. It counts how many bytes are processed in unit time.
Ideally, all tasks should have the same input processing
speed given that the data distribution is uniform across
tasks and it takes the same amount time to process the
same amount of data. If some tasks exhibit apparently
slower processing speed, it is likely that their record are
more expensive to process or they are experiencing inter-
ferences.

Neither of the two metrics alone can reliably deter-
mine stragglers. Thus, we create a composite metric
based these two. We normalize both metrics against their
maximum values (both in the range of 0 to 1) among
all tasks and simply use their sum as a heuristic to iden-
tify stragglers. Since progress rate can be expressed D

S ,
where S is the input data size and D is the input process-
ing speed. Therefore, we use P = (1+ 1

S ) ·D to measure
task performance.

We consider straggler tasks as outliers compared to
regular tasks. For every measurement interval, we cal-
culate the value of P for all tasks and perform a k-means
clustering algorithm on the P values. The clustering al-
gorithm divides all tasks into two clusters and the cluster
with smaller P values are considered significant different
from the rest of tasks.

3.2.1 Determining Performance Bottlenecks

Having stragglers identified by the proposed heuristic,
FlexSlot then determines how to accelerate the execution
of stragglers. Depending on the cause of straggler, these
tasks can be bottlenecked either by disk I/O performance
or insufficient CPU resources.

Disk I/O bottleneck due to Data Skew. Previ-
ous studies show that the number of input records can
largely affect the task completion time even with the
same amount of input data [23, 24, 27]. The expensive
record is a major type of data skew in map tasks. A map
task processes a collection of key value pairs, each pair
as one record. Due to data skew, some records may re-
quire more resources to process than others, leading to
more processing time. These expensive records can sim-
ply contain large data that fills the output buffer quickly.
When the output buffer is full, intermediate results need
to be written to disk. Thus, expensive record cause more
frequent disk I/O operations.

The inverted-index benchmark contains non-uniform
records and incurs skewed task processing time. Fig-
ure 5 shows the breakdown of task execution time for
all tasks. Since expensive records incur excessive I/O
operations, we are interested in how much does I/O time
(e.g., I/O wait) contribute to the total task completion
time. Tasks are sorted in the ascending order of their
completion time, with tasks on the right tail considered
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as stragglers. We find that I/O wait contributed most
to the prolonged completion time in stragglers. We ob-
served as much as 8X more I/O wait time than that of
regular tasks. Thus, a large portion of time spending in
waiting for I/O is a good indicator of stragglers with I/O
bottleneck. A larger slot memory size, e.g., a larger out-
put buffer, can effectively reduce I/O operations.

CPU Starvation due to Inaccurate Demand Esti-
mation. As discussed in Figure 4, demand-based re-
source allocation incurs severe imbalance on task distri-
bution, with some nodes heavily loaded and some host-
ing only a few stragglers. The culprit is that nodes run-
ning faster tasks received more resources from cloud re-
source management. It enters a loop that nodes with
more resources ran tasks even faster. Stragglers usually
incur more I/O operations and appear to be less busy
in terms of CPU usage. Thus, such tasks may become
victims of CPU starvation in demand-based resource al-
location. Figure 6 shows the breakdown of task run-
time of benchmark wordcount. It plots each task’s ac-
tual cputime, I/O wait and steal time, which is the
time that a task’s node is ready to run but fails to get
scheduled by the hypervisor. In the figure, we can see
that steal time contributed most to the straggler run-
time. If given sufficient CPU, these stragglers can be ef-
fectively accelerated. Thus, a large portion of time being
ready but not running is a good indicator of insufficient
CPU resources. Next, we show that purposely coupling
stragglers with faster tasks exposes the demands of strag-
glers to the cluster-level resource manager.

3.3 Resizing Slot Memory
Increasing the memory size of a slot can reduce the num-
ber of I/O operations and effectively expedites stragglers
caused by data skew. However, the memory that can be
used by a slot is limited by the heap size of its JVM and
the output buffer size of the task running on it. Although
the JVM heap size can be dynamically changed through
JVM memory ballooning, the output buffer size of a task
cannot be altered without restarting the task. Thus, it
is difficult to increase a slot’s memory size during task

Algorithm 1 Flexible slot size.
1: Variables: Heartbeat interval T ; Data spilt size S;
2:
3: The killcount of task k is initialized to 0.
4: /* Only apply to stragglers */
5: function RESIZESLOTMEM(k)
6: get current input processing speed D
7: if k.killcount == 0 or S

D−k.Dprev
> T then

8: kill k, free slot s
9: s.size = s.size∗ (1+α)

10: launch k on slot s
11: k.killcount = k.killcount +1
12: end if
13: k.Dprev = D
14: end function

execution. We rely on the straggler identification to de-
termine stragglers in a timely manner. As such, we can
afford to kill stragglers and restart them with a larger slot
size.

Another question that needs to be answered is how to
determine the slot size for straggler tasks. We propose an
algorithm that is automatically invoked on all straggler
tasks at every heartbeat. It determines the slot memory
size for a straggler task. The pseudo-code for this algo-
rithm is shown in Algorithm 1. The goal of this algorithm
is to increase the slot memory size for straggler tasks so
that the performance of these tasks becomes close to that
of regular tasks. For some straggler tasks, it may require
multiple iterations to reach the desired slot memory size.

Once a straggler is identified, the function
ResizeSlotMem is called to determine the appro-
priate memory size of the task. If the task has not gone
through a memory resizing (i.e., first time killing and
killcount = 0), we kill it immediately and increase the
memory size of the slot at a step of α (empirically set to
0.2). Otherwise, we test if an additional round of killing
and memory resizing is needed. Suppose a task k’s input
data size is S. For each round (at heartbeat intervals),
we keep increasing the memory size of the slot until
the resulting decrease in the input processing time (i.e.,

S
D−k.Dprev

) no longer outweighs the wasted processing
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time due to task killing (i.e., the last heartbeat interval
T ). Then, the slot resizing process is stopped.

3.4 Adjusting Slot Number

The key rationale behind adjusting slot number on
Hadoop nodes is to couple stragglers with fast tasks and
expose stragglers’ demand to cloud management. Once
stragglers are identified and their bottlenecks are deter-
mined as insufficient CPU resource, FlexSlot tries to
move slots from nodes running faster tasks to straggler
nodes. We design a greedy algorithm for automating
the slot adjustment. The pseudo-code is shown in Al-
gorithm 2. The objective is to minimize the steal time
(defined in Section 3.2.1) on the Hadoop cluster. To re-
duce the steal time on straggler nodes, which are either
caused by CPU starvation or interference, we increase
the slot number on these nodes in hopes that the addi-
tional slots will bring faster tasks and finally increase the
nodes’ CPU allocation. We follow a simple heuristic of
moving slots from the node with the smallest steal time
to the nodes with the largest. We ensure that the number
of total task slots in the cluster remain the same. The al-
gorithm keeps calculating the average node steal time µ

and its standard deviation σ . When σ is greater than the
threshold λ , the algorithm decides that the imbalance of
CPU resource needs to be adjusted. Changing the λ al-
lows us to trade-off between the resource imbalance and
the converging speed of the algorithm.

Changing the slot number on nodes not only affects
cloud resource allocation but also influences Hadoop task
scheduling, leading to a better coordination between the
two. Without slot adjustment, each Hadoop node is con-
figured with the same number of slots but is allocated
imbalanced resources. Dynamically changing slot num-
ber on each node direct both task and resources to the
same node. For example, adding slots to a node brings
more resources and tasks. The performance interference
from co-running jobs is also mitigated as the objective of
the algorithm is to minimize steal time.

One concern of this algorithm is that newly added slots
can be assigned with a straggler task, aggravating the
skew and worsening the starvation on straggler nodes.
However, as majority of the tasks are regular tasks, the
new slot is likely to be assigned to a regular task. Cur-
rently, all nodes are monitored for the automated slot
memory resizing. If we find that the newly scheduled
task is a straggler task, we kill it and try to reassign it to
another node that has no stragglers.

Algorithm 2 Flexible slot number.
1: Variables: list of node L; list of steal time ST on these

nodes
2:
3: while true do
4: calculate the average steal time µ

5: calculate the standard deviation of steal times σ

6: if σ ≤ λ then
7: break
8: end if
9: for sti in ST do

10: ∆sti = sti−µ

11: end for
12: sort list ∆ST in ascending order
13: find node lmax that has the maximum ∆st
14: find node lmin that has the minimum ∆st
15: lmin.removeMaxMapSlots(1)
16: lmax.addMaxMapSlots(1)
17: end while

4 Evaluation

4.1 Testbed Setup

We performed evaluations of FlexSlot on our university
cloud. It consists of 8 HP BL460c G6 blade servers.
Each server is equipped with 2-way Intel quad-core Xeon
E5530 CPUs and 64GB memory. The servers are con-
nected with 10 Gbps Ethernet. VMware vSphere 5.1 is
used to provide the server virtualization.

We used a 32-node virtual Hadoop cluster to evalu-
ate FlexSlot. Each node was initially configured with 4
VCPU and 4 GB memory. Depending on different ex-
periments, the resource allocation to individual Hadoop
nodes can be fixed or managed by the demand-based re-
source allocation in VMware DRS. We deployed Hadoop
stable release version 1.1.1 and each VM ran Ubuntu
Linux with kernel 2.6.24. Two nodes were configured
as the JobTracker and NameNode, respectively. The
rest 30 nodes ran as slave nodes for HDFS storage and
MapReduce task execution. We set the HDFS block size
to its default value 64 MB. Each slave node was initially
configured with 4 map slots and 2 reduce slots and pa-
rameters io.sort.mb and mapred.child.jvm.opts

were set to 100 MB and 200 MB, respectively. These
Hadoop task settings were dynamically adjusted by
FlexSlot during task execution.

For comparison, we also implemented a recently pro-
posed skew mitigation approach SkewTune [16]. Skew-
Tune parallelizes a straggler task by repartitioning and
redistributing its input data. It mitigates the data skew
and improves the job completion time. It assumes that
all the slave nodes have the same processing capacity.
SkewTune evenly distributes the unprocessed data across
all available nodes to mitigate the data skew. However,
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Table 2: Benchmark details.
Benchmark Input Size (GB) Input Data
tera-sort 150 TeraGen
inverted-index 150 Wikipedia
term-vector 150 Wikipedia
wordcount 150 Wikipedia
grep 150 Wikipedia
k-means 30 Netflix data, k = 6
histogram-movies 100 Netflix data
histogram-ratings 100 Netflix data

in virtualized environment, the resource allocation of dif-
ferent slave nodes can be different, especially in demand-
based resource allocation. Evenly distributing the un-
processed data may not the best option. The existing of
hotspot nodes also incurs unnecessary data movements.

4.2 Workloads

We used the PUMA benchmark suite for evaluation. It
contains various MapReduce benchmarks and real-world
test inputs. Table 2 shows the benchmarks and their con-
figurations used in our experiments.

These benchmarks are divided into three categories
based on the content of their input data. The tera-sort
benchmark uses a data set that is generated by Tera-
Gen. The data has a relatively uniform distribution due
to the randomized generation process. The inverted-
index, term-vector, wordcount and grep benchmarks use
the data extracted from Wikipedia. The data contains
records with different sizes. Some of them are signifi-
cantly larger than the average. This provides a good ex-
ample of data skew. The k-means, histogram-movies and
histogram-ratings benchmarks use the data from Netflix.
They are good examples of expensive records. The con-
tent of the records can significantly affect input process-
ing time even with the same record size.

4.3 Mitigating Data Skew

In this subsection, we study the effectiveness of FlexSlot
in mitigating data skew. If tasks take about the same time
to finish even in the presence of skew, we consider that
the skew has been mitigated. We measured the distribu-
tion of the task completion time of different benchmarks.
We used the stock Hadoop with demand-based resource
allocation in the cloud as the baseline. The total number
of task slots in FlexSlot is set to be the same as that in
stock Hadoop and SkewTune for a fair comparison.

Figure 7 shows the distribution of the task completion
time of the inverted-index benchmark due to three dif-
ferent approaches. The skewness of the task execution
time due to the stock Hadoop, SkewTune, and FlexSlot
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Figure 8: Breakdown of task runtime of inverted-index.

are 4.98, 1.68 and 0.96, respectively. The result shows
that FlexSlot is the most effective in mitigating data skew
in all three approaches. FlexSlot significantly reduced
the task completion time of straggler tasks than Skew-
Tune. FlexSlot and SkewTune have similar performance
on these regular tasks, but FlexSlot brings more improve-
ment to the performance of straggler tasks than Skew-
Tune.

FlexSlot outperformed SkewTune for two reasons.
First, FlexSlot continuously detects straggler tasks and
reduces the execution time of straggler tasks with auto-
mated slot memory resizing. On the other hand, Skew-
Tune only mitigates a straggler task when there are free
slots to parallel the straggler task. Second, SkewTune
does not have the coordination between the Hadoop task
scheduler and the cloud infrastructure. It does not elim-
inate the hotspot nodes. SkewTune tends to use the
hotspot nodes to parallelize the execution of a straggler
task because these nodes hold more resources. This in-
troduces additional data movement for the straggler tasks
that can be finished quickly with simply more resource.
FlexSlot does not have these problems mainly because it
moves slots, instead of tasks, across slave nodes. It pre-
serves the data locality and minimizes the data movement
for mitigating data skew.

The results in Figure 7 also show that FlexSlot has
longer completion time for fast tasks than stock Hadoop.
It is because running stock Hadoop with demand-based
resource allocation created “hot spot” nodes that boost
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Figure 9: The normalized job com-
pletion time.
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Figure 10: The normalized job com-
pletion time with co-running jobs.
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Figure 11: Job completion time with
an unlimited number of slots.

these fast tasks. FlexSlot avoided “hot spot” nodes
from receiving disproportional more resources. Note that
making fast tasks run even faster does not help improve
overall job completion time, which is bottlenecked pri-
marily by stragglers.

To further study how skew is mitigated, we show de-
tailed breakdown of task completion time. For com-
parison, we also ran benchmarks in Hadoop and Skew-
Tune on static homogeneous virtual clusters (denoted as
Homo.). Figure 8 shows the breakdown of average task
execution time of inverted-index on different clusters.
FlexSlot reduced the portion of steal time by 60.5% and
49.1% when compared to stock Hadoop and SkewTune
in demand-based resource allocation. The huge steal
time of stock Hadoop and SkewTune with demand-based
resource allocation is the sign of imbalanced CPU re-
source allocation between fast tasks and straggler tasks.
The reduction of steal time suggests that FlexSlot was ef-
fective in preventing CPU starvation on straggler. More-
over, FlexSlot reduced the I/O wait time compared to
stock Hadoop and SkewTune in homogeneous clusters.
FlexSlot achieved 39.7% and 26.7% lower I/O wait time
than stock Hadoop and SkewTune, respectively. It sug-
gests that FlexSlot reduce the I/O operations for straggler
tasks with larger slot memory size.

4.4 Reducing Job Completion Time
We have shown that FlexSlot is effective in mitigating
skew. In this subsection, we study how does the mitiga-
tion help improve overall job completion time. Similarly,
we use the job completion time in the stock Hadoop as
the baseline and compare the normalized job completion
time of FlexSlot and SkewTune. Figure 9 shows the nor-
malized job completion time of all benchmarks due to
these three approaches. The results show that for bench-
marks with expensive records, e.g., inverted-index, term-
vector, wordcount and grep, FlexSlot outperforms stock
Hadoop by 35.1%, 29.3%, 26.7% and 27.4%, respec-
tively. FlexSlot also outperformed SkewTune by 19.8%,
17.1%, 16.9% and 17.1% in these benchmarks.

Benchmarks such as k-means, histogram-movies and

histogram-ratings use data from Netflix. The input data
is relatively uniform in record size. In the experiments
with these benchmarks, FlexSlot outperformed the stock
Hadoop by 25%, 13% and 12%, respectively. How-
ever, FlexSlot has less performance improvement on
histogram-movies and histogram-ratings than k-means,
because those benchmarks have small memory demand
due to the small volume of their intermediate results. The
default configuration of slot memory size already pro-
vides sufficient output buffer.

The k-means benchmark has a large volume of inter-
mediate data. It requires large output buffer and more
memory to reduce I/O operations. It contains computa-
tion intensive tasks that requires a lot of CPU resource.
FlexSlot achieved much shorter job completion time than
stock Hadoop because FlexSlot was able to improve both
the slot memory size and CPU resource allocation for k-
means.

FlexSlot achieved 17.5%, 1.2% and 3.3% shorter job
completion time than SkewTune in k-means, histogram-
movies and histogram-ratings benchmarks, respectively.
FlexSlot only had marginal performance improvement
over SkewTune in histogram-movies and histogram-
ratings benchmarks because their data skew is not severe
and the CPU requirement is also low. But for the job with
significant data skew and high CPU consumption, FlexS-
lot clearly showed a significant advantage compared to
SkewTune.

4.5 Mitigating Performance Interference
Note that adjusting slot size and number can possibly re-
solve the interference between co-running jobs. To cre-
ate interferences, we consolidated two clusters with the
same configuration (see Section 4.1 for details) to the
shared physical infrastructure. We submitted the same
jobs to these two clusters and calculated their average
job completion times. We used the job completion time
in stock Hadoop as the baseline, and normalized FlexSlot
and SkewTune’s performance against it.

Figure 10 shows the normalized job completion time
of all benchmarks due to three approaches with per-
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Figure 12: Resource consumption of FlexSlot.
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Figure 13: Average number of task
kills per straggler.

formance interference from co-running jobs. The re-
sults show that FlexSlot outperformed stock Hadoop and
SkewTune by as much as 43.8% and 33.2%, respec-
tively. FlexSlot achieved 34.2−43.8% shorter job com-
pletion time than stock Hadoop in the inverted-index,
term-vector, wordcount and grep benchmarks. FlexSlot
also outperformed SkewTune by 24.3− 33.2% in these
benchmarks. Due to the performance interference from
co-running jobs, the difference of job completion time
between FlexSlot, SkewTune, and stock Hadoop is larger
than the results in Figure 9.

For benchmarks with less data skew, histogram-
movies and histogram-ratings, FlexSlot outperformed
SkewTune and stock Hadoop by 22%, 23% and 17.1%,
18%, respectively. The difference of job completion time
between SkewTune and stock Hadoop is around 5%, be-
cause there is no much data skew to mitigate. The results
clearly show that FlexSlot can further improved the job
completion time by mitigating the performance interfer-
ence from co-running jobs.

4.6 Improving Resource Utilization
By default, FlexSlot keeps the total number of task slots
unchanged in a Hadoop cluster. Thus, any addition of
task slots on one node should be coupled with the re-
moval of slots on another node. As discussed in previous
experiments, the flexible slot movement effectively mit-
igates skew and improves job performance. In this sub-
section, we extend FlexSlot to handle unlimited number
of slots. That is, FlexSlot adds or removes slot to/from a
node only based on the performance of tasks running on
the node, without the constraint of maintaining the total
of slots in the cluster. Although it is a common practice
to match the map slot number with the number of CPUs
on a node, it is not considered the optimal configuration.
With this experiment, we study if a even more flexible
slot management could further improve cluster resource
utilization and job performance.

We compare two FlexSlot variations (i.e., with
limited slots and unlimited slots) and stock
Hadoop. Figure 11 shows the normalized job comple-

tion time of all benchmarks due to the three approaches.
FlexSlot with an unlimited number of slots achieved
up to 46% shorter job completion time than the stock
Hadoop. It also outperformed the FlexSlot with a lim-
ited number of slots by 35%. The improvement varies
depending on the job characteristics. For most jobs,
using an unlimited number of slots can bring approxi-
mately 17% shorter job completion time than with a lim-
ited number of slots. But for CPU intensive jobs like k-
means, removing the limitation on slots makes no major
differences because the job performance is bottlenecked
by the number of physical CPUs. Adding more slots does
not allow more tasks to run concurrently. In contrast, job
such as histogram-movies and histogram-ratings have a
significant portion of I/O time. With a limited number of
slots, the resources of the virtual cluster , especially the
CPU resource, are not fully utilized. Figure 11 shows
that FlexSlot with unlimited slots achieved on average
35% short job completion time compared to the one with
limited slots.

Next, we compare the resource utilizations in differ-
ent FlexSlot variations. Figure 12(a) and 12(b) show the
CPU and memory usage of FlexSlot with and without
a limit on the number of total slots. The results show
that FlexSlot without slot limit resulted in 10% and 11%
higher in CPU and memory utilization, respectively. As
discussed above, these resources were used to accelerate
job execution. Note that due to the different job charac-
teristics of k-means, histogram-movies, and histogram-
ratings benchmarks, the changes in resource utilizations
of these jobs were different. For the k-means benchmark,
the resource utilization was high even with a limited
number of total slots. For the histogram-movies and the
histogram-ratings benchmarks FlexSlot with slot limit
left roughly 15% and 26% CPU and memory resources
unused, respectively. Removing the limit improved the
resource utilization significantly.

These results suggest that FlexSlot with unlimited
slots can be a viable approach for Hadoop in the cloud.
It improves the performance by maximizing the resource
utilization. It does not affect the performance of jobs that
have high resource demand because the slots will only be
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Figure 14: Average number of task kills per straggler due
to different α .

added when there is available resource.

4.7 Slot Resizing Overhead

FlexSlot uses task-killing-based approach in the slot
memory resizing and allows tasks to be killed multi-
ple times. The killing inevitably incurs overhead as the
killed stragglers lose already performed work. We mea-
sure the overhead using the number of kills per straggler
tasks. The fewer the kills the smaller the overhead. Fig-
ure 13 shows the average number of kills of per straggler
for different benchmarks. The results show that most
straggler only required 1 kill to run normally as fast as
other tasks.

The slot memory resizing algorithm increases a slot’s
memory size by α for each task kill. The average num-
ber of task kills is affected by the value of α . Figure 14
shows the average task kills due to different α values.
For inverted-index and k-means benchmarks, increasing
α resulted in a significant reduction in the average num-
ber of task kills. These benchmarks are every sensitive
to the memory size because they have large intermediate
data. Using a large α increases the amount of memory
resource that will be allocated to them in each task kill.
The histogram-movies benchmark, which does not have
large intermediate data, is less sensitive to the memory
size. Allocating more memory to it during task killing
does not have a great impact on its task execution time.
A large α value will lead to wasted memory resources.
According to Figure 14, we empirically set α to 0.2 in
FlexSlot because benchmarks with different types bene-
fit from it while not incurring significant memory waste.

5 Related Work

MapReduce is a programming model for large-scale data
processing [7]. Hadoop, the open-source implementa-
tion of MapReduce, provides a software framework to
support the distributed processing of large datasets [1].
YARN [22] is the second generation of Hadoop. It uses

containers to replace task slots and provides a finer gran-
ularity of resource management. But it only allows dif-
ferent jobs to have different containers. The tasks in one
job still have the containers of one fixed size. Therefore,
YARN cannot mitigate data skew with flexible size of
containers.

There are a few studies on data skew mitigations.
SkewReduce [15] alleviate the computational skew prob-
lem by applying a user-defined cost function on the in-
put records. Partitioning across nodes relies on this
cost function to optimize the data distribution. Skew-
Tune [16] is a framework for data skew mitigation. It
repartitioned long tasks to take the advantage of idle slots
freed by short tasks. However, moving repartitioned data
to idle nodes requires extra I/O operations, which could
aggravate the performance interference. More impor-
tantly, these approaches do not have the coordination be-
tween Hadoop and the cloud infrastructure.

There are recent studies that focus on improving per-
formance of applications in the cloud by dynamic re-
source allocation [13, 20, 21]. Bazaar is a cloud frame-
work that predicts the resource demand of applications
based on the high-level performance goals [13]. Bazaar
translates the performance goal of an application into
multiple combinations of resources and select the com-
bination that most suitable for cloud provider. It deter-
mines the resource allocation of each application using a
online resource demand prediction approach. One recent
work focus on demand-based resource allocation [20].

A Hadoop cluster in the cloud can be seen as het-
erogeneous Hadoop clusters because the dynamic re-
source allocation. A number of studies proposed dif-
ferent task scheduling algorithms to improve Hadoop
performance for heterogeneous environments [26, 5, 9].
PIKACHU focuses on achieving optimal workload bal-
ance for Hadoop [9]. It presents guidelines for the trade-
offs between the accuracy of workload balancing and the
delay of workload adjustment. But, these studies focus
on hardware heterogeneity of in physical machine based
clusters. They are not designed for VM-based clusters
where the computing capability of a slave node can be
changed due to dynamic resource allocation.

6 Conclusions

Hadoop provides a open-source implementation of the
MapReduce framework. But its design poses challenges
to attain the best performance in the cloud environment
due to the data skew. Moving Hadoop into the cloud of-
fers the possibility of mitigating data skew with dynamic
resource allocation. But Hadoop lacks of the coordina-
tion between its task scheduler and the cloud manage-
ment, which brings new challenges due to the perfor-
mance interference and demand-based resource alloca-
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tion. In this paper, we propose FlexSlot, a simple ex-
tension to the Hadoop’s slot management that provides
the flexibility to change the slot memory size and the
number of slots in a slave node online. We implement
FlexSlot in Hadoop and evaluate its effectiveness on a
32-node virtual Hadoop cluster with various workloads.
Experimental results show that FlexSlot is able to reduce
job completion time by as much as 46% compared to
stock Hadoop and a recently proposed skew mitigation
approach. An extension to FlexSlot with unlimited slots
further improves the resource utilization of the virtual
cluster.
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