
Preserving I/O Prioritization in Virtualized OSes
Kun Suo1, Yong Zhao1, Jia Rao1, Luwei Cheng2, Xiaobo Zhou3 and Francis C. M. Lau4

1University of Texas at Arlington, {kun.suo, yong.zhao, jia.rao}@uta.edu
2Facebook, chengluwei@fb.com

3 University of Colorado, Colorado Springs, xzhou@uccs.edu
4The University of Hong Kong, fcmlau@cs.hku.hk

ABSTRACT
While virtualization helps to enable multi-tenancy in data centers,
it introduces new challenges to the resource management in tradi-
tional OSes.We �nd that one important design in an OS, prioritizing
interactive and I/O-bound workloads, can become ine�ective in a
virtualized OS. Resource multiplexing between multiple tenants
breaks the assumption of continuous CPU availability in physical
systems and causes two types of priority inversions in virtualized
OSes. In this paper, we present xBALLOON , a lightweight approach
to preserving I/O prioritization. It uses a balloon process in the
virtualized OS to avoid priority inversion in both short-term and
long-term scheduling. Experiments in a local Xen environment and
Amazon EC2 show that xBALLOON improves I/O performance in a
recent Linux kernel by as much as 136% on network throughput,
95% on disk throughput, and 125x on network tail latency.

CCS CONCEPTS
• Performance of Systems→Design Studies; •Operating sys-
tems → Performance;

KEYWORDS
Virtualization, Cloud Computing, Multi-tenancy, Semantic Gaps.

1 INTRODUCTION
Due to its support for multi-tenancy, virtualization is becoming
ubiquitous in datacenters. Popek and Goldberg’s virtualization re-
quirements [37] suggest that a program running in virtualized
environments should exhibit a behavior essentially identical to
that in physical environments. This property does not hold for
many programs, especially those equipped with their own resource
management, e.g., operating systems (OSes). The culprit is the
semantic gap between physical and virtual environments. Virtual-
ization presents the illusion of dedicated hardware, but resources
are often multiplexed among users and have in fact discontinuous
availability.

The semantic gap can cause performance problems if resource
management designed for physical systems becomes ine�ective in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5028-0/17/09. . . $15.00
https://doi.org/10.1145/3127479.3127484

virtualized OSes (a.k.a., guest OSes). I/O prioritization is an impor-
tant OS design to improve system responsiveness without compro-
mising throughput. It guarantees timely processing of important
I/O events, such as interrupts, kernel threads, and user-level I/O
processes, while allowing compute-bound programs to run when
no imminent I/O processing needs to be handled. Thus, co-locating
I/O- and compute-bound programs has been a common practice
to improve system utilization. For example, interrupt handling in
an OS kernel, such as packet processing, has a more paramount
priority than user-level activities. Network latency is not a�ected
by user-level computation even in a fully-loaded system. Due to
I/O prioritization, interactive services can be co-located with batch
jobs without su�ering from long latency.

Unfortunately, the co-location of I/O- and compute-bound work-
loads in a virtual machine (VM) can cause severe degradation
of I/O performance. In virtualized environments, CPU multiplex-
ing/sharing and capping are widely adopted to improve resource
utilization and performance isolation. For example, VMware sug-
gests that a physical CPU (pCPU) can be shared by asmany as 8 to 10
VMs [41]; AWS instances with capped CPU capacity, e.g., m1.small,
m1.medium, t1.micro, and m3.medium, account for around 40% of
Amazon EC2 usage at RightScale [3]; the new generation AWS T2
burstable performance instances use CPU cap to provide the base-
line CPU performance [1]. Either CPU capping or sharingmakes the
CPU availability discontinuous to a VM. Existing studies have found
that discontinuous CPU availability can delay I/O scheduling and
a�ect TCP congestion control [19, 22, 42], interrupt handling [17]
and latency-sensitive workloads [44–46] even the CPU allocation
to a VM is well above the I/O demand. However, a key question
remains unanswered – why I/O prioritization in the guest OS is not
doing its job? In this paper, we discover two types of priority in-
versions in the guest OS when a VM runs a mixture of I/O and
compute workloads and executes on discontinuous CPU.

I/O prioritization relies on two mechanisms: (1) the identi�ca-
tion of I/O-bound tasks 1 and (2) the preemption of compute-bound
tasks. Both mechanisms can be ine�ective in a guest OS with dis-
continuous CPU. First, CPU accounting in guest OSes can be in-
accurate under discontinuous time, leading to false identi�cation
I/O-bound task as compute-bound. Second and most importantly,
work-conserving (WC) scheduling, which is designed for continu-
ous CPU availability, fails to guarantee the preemption of compute-
bound tasks in discontinuous CPU. As the resources are highly
consolidated and shared among VMs in virtualized environment,
WC scheduling allows low priority compute-bound tasks to run
when I/O-bound tasks are idle, which consumes the CPU that would

1Only user-level I/O-bound tasks need to be identi�ed while kernel threads and inter-
rupts inherently have a higher priority than any userspace tasks.

https://doi.org/10.1145/3127479.3127484

otherwise be utilized by high priority I/O tasks in the future. We
call these violations of I/O prioritization short-term and long-term
priority inversion, respectively.

This paper aims to preserve the priorities enforced by guest OSes
in spite of CPU discontinuity. To this end, we develop xBALLOON,
a lightweight approach to addressing the two priority inversions.
The idea is to use a CPU balloon process in the guest OS to account
for the period during which CPU is unavailable to a VM. When
scheduled to run, the balloon puts a VM into sleep. The balloon
serves two purposes: (1) it makes CPU discontinuity visible to the
guest OS to ensure correct CPU accounting; (2) by scheduling the
balloon, the guest OS can autonomously decide if the VM should
be paused to reserve CPU for future use.

The heart of xBALLOON design is a semi-work-conserving (SWC)
scheduling mode for the guest OS. To preserve I/O prioritization
under constrained CPU allocation, the guest OS stays in non-work-
conserving (NWC) mode by enabling the balloon process to throttle
the execution of compute tasks. This is to ensure that the guest OS
has su�cient resources to serve high priority I/O tasks. If the CPU
allocation has slackness for low priority tasks, guest OS suspends
the balloon and switches back to work-conserving (WC) mode.

We implemented xBALLOON in Linux 3.18.21 andXen 4.5.0. xBALLOON
is a �exible and lightweight approach that can be launched and
killed as a regular Linux process. We show its e�ectiveness on pre-
serving static and dynamic priorities in Linux guests. Experimental
results show that xBALLOON boosts the performance of various I/O
workloads co-located with compute tasks and precisely preserves
their priorities.

2 BACKGROUND AND MOTIVATION
In this section, we �rst review the assumptions in this paper, de-
scribe I/O prioritizations in Linux and discuss the causes of time
discontinuity in virtualized environments. Then, we show that time
discontinuity in�icts priority inversions in virtualized OSes under
popular hypervisors and an OS container, which leads to degraded
and unpredictable I/O performance .

2.1 Assumptions
We make the following assumptions about cloud users and typical
use cases: 1) an average user would expect a virtualized OS to
be fully functional and similar to a traditional OS; 2) to reduce
monetary cost, users consolidate multiple, often heterogeneous
workloads onto the sameVM if a singleworkload cannot fully utilize
VM resources; 3) users are unaware of the underlying resource
virtualization and multiplexing, and expect task administration in
the guest OS, e.g., task priorities, to be e�ective.

2.2 I/O Prioritization in Linux
Linux prioritizes I/O-bound tasks over compute-bound tasks in two
ways. First, in-kernel I/O processing, such as interrupts and kernel
threads, has inherently higher priority than user-level compute
tasks. Users can also explicitly assign an elevated priority, e.g., a
real-time priority, to a user-level I/O task. As such, the guest OS
enforces static priorities between I/O and compute tasks. Second,
Linux implicitly prioritizes I/O-bound tasks by enforcing dynamic
priorities between the two. The completely fair scheduler (CFS)

in Linux uses virtual runtime (vruntime), which tracks how much
time a process has spent running on CPU, to schedule processes.
CFS maintains a red-black (RB) tree-based runqueue, which sorts
processes based on their vruntimes, and always schedules the pro-
cess with the least vruntime. This design not only prioritizes tasks
that have small vruntimes but also enforces fair CPU allocations.
If an I/O task demands more than the fair share, its vruntime will
not be smaller than that of the compute task and CFS assigns equal
priorities to them.

2.3 Time Discontinuity
In general, there are two ways to control the CPU allocation to
a VM: CPU sharing and capping. In CPU sharing, the hypervisor
consolidates multiple virtual CPUs (vCPUs) on the same pCPU. VMs
take turns to run on pCPUs in a weighted round robin manner. CPU
capping [5] sets an upper limit on the CPU time a VM receives,
e.g., T2 Instances [1] on Amazon EC2 [2]. VMs are temporarily
suspended if their CPU usage exceeds the cap. The period during
which a VM is not running, either due to sharing CPU with other
VMs or capping, creates gaps on VM perceived time. These gaps
cannot simply be overlooked by VMs. The guest OS needs to keep
up with the host wall-clock time to avoid time drift. Most OSes
today para-virtualize its clock to synchronize with the hypervisor.
Thus, the guest OS sees discontinuous passage of time when the
VM is de-scheduled and later scheduled.

2.4 Degraded I/O Performance due to CPU
Discontinuity

In this section, we show that Linux fails to preserve I/O prioritiza-
tionwhen running as a virtualized OS under discontinuous time.We
emulated a scenario in which a VM is loaded with heterogeneous
workloads. Netperf [10] and sockperf [14] benchmarks were used
to test network throughput and latency with multiple hypervisors
and an OS container. The workloads were run in one-vCPU VMs
in KVM [7], Xen [18] and a Docker container [6], respectively. The
VMs and container ran the Linux 3.18.21 kernel and were con�g-
ured to run in two modes: full and partial CPU capacity. Under full
capacity, one physical CPU (pCPU) was dedicated to the VMs or the
container. Thus, CPU was always available and continuous to the
guest OS. Under partial capacity, we limited the VMs or container
to use 50% of the pCPU. As such, the guest OS ran for a certain
period and was suspended for the same amount of time to satisfy
the constraint. With partial capacity, the Linux guest experienced
discontinuous CPU availability.

A while(1)CPUhogwas used to emulate a background compute-
bound task that co-ran with the I/O task in the guest OS (denoted
as I/O+CPU). The reference I/O performance was obtained when
the CPU hog was turned o� (denoted as I/O only). Since I/O-bound
tasks consume less CPU, Linux gives them higher priority than
compute-bound tasks under CFS. Figure 1 (a) and (c) show that
Linux e�ectively preserves I/O prioritization under continuous
CPU. The CPU hog did not degrade network throughput and even
improved tail latency. The co-location of I/O- and compute-bound
tasks prevented guest OS from entering low-power states (i.e., C-
states), reducing the startup cost to service network requests.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

KVM Xen Docker

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Throughput (continuous)

I/O only
I/O + CPU

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

KVM (send) Xen Docker

Th
ro

ug
hp

ut
 (G

bp
s)

(b) Throughput (discontinuous)

I/O only
I/O + CPU

 0

 50

 100

 150

 200

 250

KVM Xen Docker

99
%

 la
te

nc
y

(u
s)

(c) Latency (continuous)

I/O only
I/O + CPU

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

KVM Xen Docker

99
%

 la
te

nc
y

(m
s)

(d) Latency (discontinuous)

I/O only
I/O + CPU

Figure 1: Network I/O su�ers poor and unpredictable performance in virtualized environments. (a) and (c) Virtualization
alone does not necessarily degrade I/O throughput or latency under continuous time. (b) and (d) Discontinuous time leads to
signi�cant performance loss and increasing unpredictability in VMs and containers with mixed I/O and computation.

Process
starts running

Process
stops running

VM is
running

VM is not
running VM is

running

Time charged
to process

Figure 2: Time discontinuity may cause inaccurate CPU ac-
counting to processes in the guest OS.

In contrast, both hypervisors and the container su�ered signi�-
cant throughput loss and latency hike under discontinuous CPU.
While the reference I/O performance dropped due to reduced CPU
capacity, the compute task caused up to 65% further throughput
loss (i.e., Xen) and 100x latency increase with 27% variation (i.e.,
Xen) in 10 runs (as shown in Figure 1(b) and (d)). Network latency
in Figure 1(d) in the I/O only case was in micro-seconds, thereby
not showing up in the �gure. These experiments clearly show that
Linux guest’s property of prioritizing I/O operations over compute
activities is not preserved when the VMs and container experience
discontinuous CPU availability.

3 ANALYZING PRIORITY INVERSIONS
3.1 Short-term Priority Inversion
Linux’s CFS uses vruntime to track task CPU usage and priori-
tizes those with small vruntimes. Short-term priority inversion
happens when the vruntimes of I/O tasks are mistakenly dilated un-
der discontinuous time so that CFS fails to prioritize them. Figure 2
illustrates how vruntime dilation can happen under discontinuous
time. If the VM is suspended right after a process starts running on
a vCPU, the period in which the VM is not running will be charged
to the process because the VM synchronizes its clock with the host
after resuming execution, Thus, vruntime update of the process will
include the time gap. Inaccurate time accounting does not a�ect
tasks with static priority as task scheduling is not based on CPU
usage. In contrast, time dilation can interfere with vruntime-based
scheduling in Linux CFS.

Figure 3 illustrates how time dilation a�ects the scheduling of
an I/O-bound task but not a compute-bound task. We co-located a
sockperf server process with a CPU hog in a one-vCPU VM that
is capped at 50% capacity of a pCPU. Figure 3 plots the vruntimes
of the two tasks whenever they were scheduled or descheduled by

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

vr
un

tim
e

(1
07)

Time (ms)

I/O-bound
CPU-bound

I/O task
vruntime
dilates

CPU task
vruntime
dilates

Time gap

Time gap

I/O task
wakes up,

adjusts
vruntime

Figure 3: Time dilation only a�ects the scheduling of I/O-
bound tasks in Linux CFS.

CFS. The number of dots re�ects how long a task runs on CPU.
After the �rst time gap, the vruntime of the I/O task was dilated and
it became much larger than the vruntime of the compute task. As
a result, the I/O task was not scheduled by CFS until the compute
task’s vruntime caught up with that of the I/O task. In comparison,
after the second time gap, even though the compute-bound task
su�ered time dilation, it was still scheduled by CFS in a fair manner.
This is because CFS clamps a waking I/O task’s vruntime to the
minimum vruntime in the runqueue minus two time slices [31].
Therefore, the I/O task’s adjusted vruntime also included the time
gap. As a consequence, inaccurate time accounting only penalizes
I/O tasks in CFS scheduling.

3.2 Long-term Priority Inversion
Compared to short-term priority inversion, which can be addressed
by accurate CPU accounting, long-term priority inversion raises
a fundamental question: should the resource management designed
for physical environments be adapted in a virtualized environment
to e�ciently utilize discontinuous resources? We show that under
discontinuous time work-conserving scheduling in a guest OS can
lead to long-term priority inversions for I/O-bound tasks under
both static and dynamic priority.

Figure 4(a)-(e) show how long-term priority inversions develop
between a high priority task (e.g., I/O-bound task, white bar) and
a low priority task (e.g., compute-bound task, grey bar) under dis-
continuous time due to a 50% CPU cap. The higher priority of the
I/O task can be either statically assigned by the administrator or
dynamically determined by CPU usage. Figure 4(a) shows the CPU

Jia Rao

Jia Rao

Jia Rao

30% 70%

30% 20%

(a) Continuous time

(c) Enforcing static
 priority

50% cap

15% 35% 50% cap
(b) Discontinuous time

 Work-conserving

(e) Development of
 priority inversion

25% 25%
(d) Preserving dynamic
 priority

50% cap

Figure 4: Work-conserving scheduling in guest OS does not
preserve priorities between a high priority (white bar) and a
low priority task (grey bar) under discontinuous time.

allocations between the two tasks under continuous time. The I/O-
bound task consumes less CPU than the compute task thus can
always preempt the latter when waking up. Note that Figure 4(a)
demonstrates the overall CPU utilizations of the two tasks during a
period of time, in which many individual I/O requests are serviced
(as shown in Figure 4(e)). Due to a lower priority, the compute task
only runs when the I/O task is idle.

Work-conserving schedulingmakes sense under continuous time
but can violate I/O prioritization under discontinuous time. As
shown in Figure 4(b), neither static nor dynamic priority can be
preserved with the 50% CPU cap. For example, if static priority
had been enforced, the CPU allocation to the high priority I/O task
would not be a�ected (as shown in Figure 4(c)) and only the low
priority CPU-bound task should receive reduced allocation. With
dynamic priorities, both the demands of the I/O (i.e., 30% demand)
and the compute tasks (i.e., 70% demand) exceed the fair share (i.e.,
25%) under the new CPU capacity (i.e., 50%). Thus, CFS should
assign equal priorities and allocate a fair share of CPU to each task
to achieve max-min fairness, as shown in Figure 4(d).

Running Linux in a VM or container with constrained CPU al-
location violates both types of priorities. Figure 4(b) shows the
CPU allocation between the two tasks due to WC scheduling. The
CPU allocation to the high priority I/O task is signi�cantly lower
than those in Figure 4(c) and (d). The problem is that the guest OS
assumes dedicated and continuous CPU resources but actually runs
on shared, discontinuous CPU allocations. Thus, WC scheduling
allows the compute task to consume the CPU that could otherwise
be used by the I/O task in the future. Unlike in dedicated systems,
where I/O tasks can always timely preempt compute tasks, I/O
tasks in a VM with discontinuous CPU are unable to acquire CPU if
the VM are not scheduled. As illustrated in Figure 4(e), the period,
during which the VM is suspended (dotted bar) due to the cap, pre-
vents half of the I/O requests from being processed. The delay can
signi�cantly degrade I/O performance, especially the tail latency
shown in Figure 1(d).

4 XBALLOON DESIGN
To enforce static priority, xBALLOON guarantees that compute tasks
only run when there is slackness in VM CPU allocation. To preserve

dynamic priority, xBALLOON ensures that the relative priorities of the
two tasks faithfully re�ect their demands under the constrained
CPU allocation. To achieve these goals, xBALLOON relies on the use
of di�erential clocks, a CPU balloon process, and a semi-work-
conserving scheduling mode. Next, we elaborate on the design of
these components in the context of Xen and Linux VMs.

4.1 Di�erential Clocks
KVM implements two clocks in Linux guests to address inaccurate
CPU accounting due to discontinuous time [8]. While rq_clock
synchronizes with the host clock, rq_clock_task only ticks when
a VM is running. CFS schedules tasks based on rq_clock_task so
that vruntimes truly re�ect task runtimes. Thus, the short-term
priority inversion problem has been addressed by KVM. We port
the relative clock in KVM to Xen VMs as rq_clock_virt and make
it available to other Linux schedulers. Besides preventing short-
term priority inversion, the two di�erential clocks also help enforce
static priority between tasks. Note that as shown in Figure 4(c), the
low priority task should be the victim of reduced CPU allocation
if static priorities are enforced. As will be discussed in § 4.4, the
absolute clock rq_clock is assigned to the low priority task so that
the deprived CPU is accounted to its consumption.

4.2 CPU Balloon
The idea of CPU balloon is inspired by memory ballooning [43], in
which the guest OS installs a balloon driver for dynamic memory
allocation. The size of the memory balloon represents the amount
of memory that has been taken away from the guest. Thus, dynamic
memory allocation is realized by in�ating and de�ating the balloon.
Similarly, we use a CPU balloon to represent CPU time the VM
voluntarily gives up and reserves for future use.

The CPU balloon acts as a Linux process running in user space.
It loops in�nitely and at each iteration calls a new system call
sched_balloon we add to Linux guest to pause the VM. Upon the
arrival of an I/O request, the VM is unpaused and resumes normal
execution. The balloon process then yields for I/O task execution.
As I/O requests wake up the VM, the runtime of the balloon refers
to the interval between individual I/O requests. The above actions
repeat whenever the balloon process is scheduled.

The purpose of the balloon process is to prevent low priority
compute tasks from running when the high priority I/O task is idle,
which e�ectively converts the original work-conserving scheduling
to non-work-conserving. However, the balloon should only run
under constrained CPU allocation and be disabled if there is CPU
resource slack to allow the compute task to run freely. Next, we
present the resulting semi-work-conserving scheduling (§ 4.3) and
show how to precisely preserve static (§ 4.4) and dynamic (§ 4.5)
priorities.

4.3 Semi-Work-Conserving Scheduling
The goal of semi-work-conserving (SWC) scheduling is to di�er-
entiate task scheduling based on the availability of CPU. Under
constrained CPU allocation, the VM would be forcibly suspended
or de-scheduled if its CPU consumption exceeds the CPU cap or
the fair share. To preserve priorities, the guest OS should be in total
control of its CPU usage and avoids involuntary suspension and

Jia Rao

Jia Rao

Jia Rao

Jia Rao

I/O Compute Balloon Unavailable

(a) Continuous time

(b) Discontinuous time

(c) Enforcing static
 priority

=+ +

(d) Preserving dynamic
 priority

Figure 5: Semi-work-conserving scheduling satis�es re-
source constraints to avoid involuntary suspension.

NWC WC

Balloon
starts

More than enough
credits, balloon sleeps

New accounting starts
and balloon waits up

1 2 3

Figure 6: xBALLOON switches between non-work-conserving
(NWC) andwork-conserving (WC)modes based on available
credits until next credit re�ll. The aggregate CPU consump-
tion of I/O (white) and compute (grey) tasks equals the CPU
cap or fair share of the VM. Black bar denotes the balloon.

descheduling by the hypervisor, while still meeting the resource
constraint. As illustrated in Figure 5, to avoid suspension during the
black-out period (dotted bar in Figure 5(b)), the VM autonomously
schedules the balloon process to reserve CPU for I/O processing.
To enforce static priority, as shown in Figure 5(c), the compute task
only runs when all I/O requests are serviced. To preserve dynamic
priority, as shown in Figure 5(d), the execution of the compute task
is interleaved with that of the I/O task. Ideally, the execution time of
the balloon, i.e., the reservation of CPU, equals the length of period
in which CPU is unavailable to the VM. If so, the VM proactively
satis�es the resource constraint and avoids involuntary suspension.

Figure 6 shows how the SWC scheduling realizes such autonomy.
During the NWC mode, the balloon is active and throttles the
execution of the compute task. The guest OS scheduling switches
back to WC mode when the balloon is suspended. The challenge is
how to switch between the two modes so that the demand of the
I/O task is fully satis�ed and the compute task is free to run if there
exists CPU slack 2. Recall that WC scheduling does not violate I/O
prioritization under continuous time because the I/O task is always
able to preempt the compute task. If we can preserve this property,
I/O performance would not be a�ected by the compute task even
under discontinuous time.
Basics of Xen scheduling. In Xen’s credit scheduler, CPU alloca-
tion is measured by credits. As the VM consumes CPU, credits are
debited and the balance determines the VM’s priority. VMs with
non-negative credit balance are assigned with the normal UNDER

2We assume a static and strictly higher priority for the I/O task for ease of discussion.
With dynamic priorities, the compute task is able to run during the NWC mode even
when the balloon is active.

priority while those with negative balance are given a lower OVER
priority. VMs with the UNDER priority take precedence over those
in OVER in scheduling. In addition, to prioritize I/O-bound VMs,
Xen elevates a VM that wakes up from sleep and has non-negative
credit balance to the BOOST priority, the highest among the three
priorities. If a VM’s credit usage exceeds the credit cap, it is sus-
pended until it collects su�cient credits. Similarly, using up all of
a VM’s credit leads to the OVER state and the VM will not be able
to become BOOST or preempt other VMs. Xen re�lls VMs’ credits
at the beginning of each accounting period (every 30ms), checks
if some VMs exceeds their CPU caps, and re-assigns VM priority
based on their credit balances.
CPU capping. If a VM’s CPU usage exceeds its cap, it will be
forcibly suspended when periodic accounting is performed. As
such, the I/O task will be suspended for a long time (usually a
whole 30ms accounting period). The compute task is only allowed
to runwhen there are su�cient credits left until the next accounting
period to avoid a forcible suspension. Ideally, SWC allows the guest
OS to limit its CPU usage to proactively satisfy the CPU cap.
CPU sharing.While VM suspension due to capping occurs at each
accounting, VM preemption can happen any time depending on
the co-running VM. To this end, SWC does not intend to prevent a
VM from being preempted but guarantees that the compute task
does not impede the I/O task preempting other VMs. Speci�cally,
the compute task is allowed to run only if it will not cause the VM
to enter the OVER state, in which credit balance is negative and a
waking VM cannot be boosted.
SWC work�ow. As shown in Figure 6, at the beginning of each
accounting period, the guest OS is in NWC mode and the balloon
process is active (step 1�). Each time the balloon is scheduled to run,
it calls down to the Linux kernel and checks the current mode from a
per-CPU variable xballoon_mode shared with the hypervisor. The
mode switches to WC once the hypervisor �nds that the maximum
amount of credits can be debited from the VM until the next credit
re�ll will not cause either a VM suspension due to capping or an
entry to the OVER state. If so, the balloon suspends itself and waits
on a task sleep queue balloon_queue (step 2�). When the next
accounting period starts, the hypervisor noti�es the guest OS to
wake up the balloon and switch to NWC (step 3�).
Robustness of SWC scheduling. We show that SWC does not
a�ect system utilization or application performance: (1) when there
is no CPU capping or sharing and the VM has full CPU capacity,
VM’s credits are always more than enough and the balloon is e�ec-
tively disabled; (2) If no I/O task is present and CPU allocation is
constrained, SWC delays the execution of the compute task during
NWCmode and allows it to run at full speed when switching toWC
mode. The performance of the compute task is not a�ected because
it receives exactly the capped allocation or the fair share; (3) the
balloon is for throttling compute tasks and has a lower priority than
the I/O task, thereby not a�ecting I/O performance if no compute
task exists; (4) when multiple VMs, each equipped with SWC, share
CPU, it is unlikely that all VMs have negative credits and yield
CPU simultaneously. Thus, there will always be one VM running,
ensuring that the host machine is work conserving.

Jia Rao

Jia Rao

10% 40% 50% cap

30% 70%
(a) I/O demands more
 than the fair share 25% 25% 50% cap

10% 90%

40%

(b) I/O demands less
 than the fair share

Figure 7: xBALLOON helps preserve dynamic priority in CFS
under discontinuous time. Black bar denotes the balloon.

4.4 Enforcing Static Priority
If static priority, e.g., real-time vs. best-e�ort, or kernel-level vs.
user-level, is to be enforced, the balloon should strictly prevent the
low priority compute task from running unless the I/O demand is
fully satis�ed.

To this end, xBALLOON assigns the absolute clock, i.e., rq_clock, to
the compute task and the relative clock, i.e., rq_clock_virt to the
I/O task and the balloon. Since the I/O task has the strictly higher
priority, e.g., SCHED_RR in Linux, it is always scheduled before the
balloon and the compute task. The remaining issue is to ensure the
balloon runs before the compute task. xBALLOON assigns the normal
priority, e.g., SCHED_OTHER, to both the balloon and the compute
task and uses task runtimes to di�erentiate scheduling. As the
compute task uses the host clock, its runtime is guaranteed to be
larger than that of the balloon because the former contains all VM
non-running time including the time the VM is paused due to the
balloon. As such, the compute task is penalized in scheduling as its
“runtime” e.g., vruntime, appears to be quite larger than the balloon.
xBALLOON can also be extended to support hierarchical priorities
with more than two types of tasks. To this end, multiple balloon
processes, each with a priority hierarchy, should exist in the guest.

4.5 Preserving Dynamic Priority
The dynamic priority between the I/O and compute tasks can
change depending on the demands of individual tasks and the fair
share under the constrained CPU allocation. For example, as shown
in Figure 7(a), the I/O task, which has a high priority due to smaller
runtimes under continuous time, should receive an equal priority
as the compute task and a fair share of CPU under the constrained
allocation. In contrast, if the I/O task still demands less than the fair
share (shown in Figure 7(b)), its demand should be fully satis�ed
and it is assigned a higher priority.

In Linux CFS, dynamic priorities are determined by vruntimes.
As illustrated in Figure 5(a) and (b), I/O requests (white bars) arrive
at discrete time and the real I/O demand, i.e., the aggregate of all
white bars under continuous time, can not be fully presented to
CFS for scheduling under discontinuous time, thereby violating the
dynamic priority. To address this issue, we integrate the balloon
process into CFS scheduling and extend the CFS fair sharing to
include CPU reservations for future use (i.e., the balloon). As shown
in Figure 5(c), if the balloon (the black bar) is properly scheduled,
the I/O demand can be fully exposed to CFS. Next, we discuss how
the balloon helps preserve dynamic priority for the two cases shown
in Figure 7 using extended fair sharing.

Fully satisfying I/O demand. In extended fair sharing, the bal-
loon, the I/O and compute tasks are scheduled by CFS as regular
processes, i.e., with the SCHED_OTHER policy and all use the rela-
tive clock rq_clock_virt. Note that the balloon’s runtime also
includes the time the VM is paused by the balloon. As discussed
in § 4.2 the demand of the balloon (rbal) is the inverse of the I/O
demand 3(rio = 1 � rbal). Assume there are n processes, including
the I/O task, sharing the CPU and the VM CPU allocation is c . The
fair share of the CPU allocation among n tasks is c

n . For compute-
bound tasks, their demand/runtime (rcomp) will be bounded by the
fair share (cn). If the I/O tasks demands less than the fair share, as
shown in Figure 7(b), rio < c

n and given that c  1, we have the
following strict order between task runtimes if they are scheduled
by CFS: rbal > rcomp > rio . Thus, the I/O task is guaranteed to
have the smallest vruntime and its demand will be fully satis�ed.
Enforcing fair sharing. When the I/O demand is larger than the
fair share (as shown in Figure 7(a)), a tweak is needed to guarantee
that CFS fairly allocates CPU to the I/O task. CFS clamps a waking
I/O task’s vruntime to the minimum vruntime in the runqueue
minus an o�set to prevent I/O tasks from monopolizing CPU. This
design works e�ectively and correctly under continuous time as
I/O tasks that demand more than the fair share are guaranteed not
to have too small vruntimes compared to the runqueue minimum.
However, this property does not hold under discontinuous time,
where the demand of the I/O task exceeds the fair share because the
fair share itself drops. Since CFS is not aware of time discontinuity,
it frequently resets the vruntime of the I/O task but not that of the
compute task, making it impossible for the I/O task to achieve the
fair share. To this end, we make a minimal change to CFS: when
the balloon is running and CFS experiences discontinuous time, the
I/O task is allowed to preserve its vruntime when waking up.

5 IMPLEMENTATION
We implemented xBALLOON in Linux 3.18.21 and Xen 4.5.0. To support
two di�erential clocks in guests, we ported the rq_clock_task in
KVM guest to Xen VM. To support VM pause, we added a new
system call (sched_balloon) in Linux kernel and a new hyper-
call (SCHEDOP_sleep) in Xen. xBALLOON used the existing VM pause
interface in Xen, but unlike the existing vcpu_pause holding a
per-vCPU lock, we implemented a fast path vcpu_fast_pause for
handling frequent VM sleeps. Since VM pause is to reserve CPU for
future I/O, it should be canceled if an I/O request is already pending
to avoid delayed I/O processing. We added this optimization in both
Xen and Linux to avoid problems such as transmission delay of
TCP ACKs to senders [45].

To support semi-working-conserving, we de�nedwork-conserving
and non-work-conserving mode as a per CPU variable in shared
memory. We added a new virtual interrupt (VIRQ) to guest OS to
notify the change of xBALLOON mode. The corresponding interrupt
handler in the guest then queries xBALLOON mode using another
hypercall query_xballoon_mode. Last, we allowed the VM to be
woken up from xBALLOON sleep by timer interrupts to improve the
VM’s responsiveness in case of no I/O coming for a long period

3We assume the total CPU capacity to be 1 and the demands and allocation are in
percentage.

 0
 200
 400
 600
 800

 1000
 1200

20 40 60 80 100

Th
ro

ug
hp

ut
(M

bi
ts

/s
)

(a) Netperf TCP

I/O only

 0
 200
 400
 600
 800

 1000
 1200

20 40 60 80 100

Th
ro

ug
hp

ut
(M

bi
ts

/s
)

(b) Netperf UDP

I/O+CPU

 0

 50

 100

 150

 200

20 40 60 80 100

Th
ro

ug
hp

ut
(M

B/
s)

(c) Disk I/O

I/O+CPU+
rq_clock_task

1e+00
1e+01
1e+02
1e+03
1e+04
1e+05
1e+06

20 40 60 80 100

La
te

nc
y(
µ

s)

(d) Sockperf

I/O+CPU+rq_clock
_task+xBalloon

Figure 8: xBALLOON improves I/O performance by enforcing static priority. The x-axis shows CPU caps.

 0
 200
 400
 600
 800

 1000
 1200

20 40 60 80 100

Th
ro

ug
hp

ut
(M

bi
ts

/s
)

(a) Netperf TCP

I/O only

 0
 200
 400
 600
 800

 1000
 1200

20 40 60 80 100

Th
ro

ug
hp

ut
(M

bi
ts

/s
)

(b) Netperf UDP

I/O+CPU

 0

 50

 100

 150

 200

20 40 60 80 100

Th
ro

ug
hp

ut
(M

B/
s)

(c) Disk I/O

I/O+CPU+
rq_clock_task

1e+00
1e+01
1e+02
1e+03
1e+04
1e+05
1e+06

20 40 60 80 100

La
te

nc
y(
µ

s)

(d) Sockperf

I/O+CPU+rq_clock
_task+xBalloon

Figure 9: xBALLOON improves I/O performance by preserving dynamic priority in CFS. The x-axis shows CPU caps.

of time. We set the frequency of timer interrupts in the guest to
1000HZ.

6 EVALUATION
In this section, we evaluate xBALLOON using both micro-benchmarks
and real-world applications. We �rst created a controlled environ-
ment, where a one-vCPU VM was used and CPU discontinuity was
due to CPU capping, to study the e�ectiveness of xBALLOON in im-
proving I/O performance and preserving priorities (§ 6.1). We then
show results on the CPU sharing case (§ 6.2) and evaluate xBALLOON
with two 4-vCPU VMs running realistic workloads (§ 6.3). Finally,
we discuss xBALLOON’s overhead and its applicability to di�erent
workloads (§ 6.4), and present a preliminary study on Amazon EC2
(§ 6.5).
Experiments setup. Our experiments were performed on two
DELL PowerEdge T420 servers, connected by Gigabit Ethernet.
Each server was equipped with two six-core Intel Xeon E5-2410
1.9GHz processors, 32GB memory, one Gigabit Network card and a
1TB 7200RPM SATA hard disk. We ran Linux 3.18.21 as the guest
and dom0 OS, and Xen 4.5.0 as the hypervisor. The VMs were
con�gured with one vCPU and 4GB memory.

6.1 CPU Capping
Capping provides a convenient means to control resource allocation
and evaluate the e�ectiveness of xBALLOON at various levels of CPU
allocation.

6.1.1 Improving I/O Performance. We begin with micro bench-
marks netperf, sockperf and a synthetic disk benchmark that
sequentially accesses a 2GB �le to measure TCP/UDP throughput,
network tail latency and disk read throughput, respectively. The
compute task was a while(1) CPU hog, which had almost zero

memory footprint. Figure 8 and Figure 9 show the performance of
di�erent I/O workloads under distinct CPU caps due to static and
dynamic priorities. The results shown were the average of ten runs.
A cap of 100 refers to a full pCPU capacity. In general, for the I/O
only case, I/O performance initially stayed una�ected as the cap
dropped until the cap fell below I/O’s CPU demand. For example,
I/O performance dropped at cap 60 for the netperf TCP test.
I/O Performance due to static priority. Figure 8 shows I/O per-
formance while the I/O task was set to real-time priority. It suggests
that I/O su�ered signi�cant performance loss when co-located with
the CPU-bound task even with a strictly higher priority (denoted
as I/O+CPU). I/O had as much as 27.4%, 57.2%, and 77% through-
put loss, and 417x latency hike for netperf TCP, UDP, disk I/O,
and sockperf, respectively. As scheduling was not based on the
vruntimes of the two tasks under di�erent priorities, no short-term
priority inversion happened and the performance loss was due to
long term priority inversions. Therefore, rq_clock_task did not
help in I/O performance. In contrast, xBALLOON achieved near-native
performance for all four I/O workloads compared to case I/O only.
As CPU cap approached to the I/O demand or fell below it, e.g.,
TCP throughput under cap 60 in Figure 8(a) or disk throughput
under cap 20 in Figure 8(c), xBALLOON incurred performance drop
compared to the reference performance. This is due to the balloon’s
CPU consumption, which together with I/O’s CPU demand, goes
beyond the CPU cap. Further, our results also show that xBALLOON
signi�cantly reduces the variation of sockperf latency compared to
I/O+CPU.
I/O Performance due to dynamic priority. Figure 9 shows the
results on fair sharing enforced by CFS dynamic priorities. All tasks
including the balloon were assigned the same policy SCHED_OTHER
and scheduled by Linux CFS. Compared to Figure 8, I/O perfor-
mance with xBALLOON was worse than the reference I/O performance

 0

 50

 100

 150

 200

 250

 300

static dynamic

Tr
an

sa
ct

io
n

R
at

e(
pe

r s
ec

)
(a) Siege Transaction Rate

 0

 200

 400

 600

 800

 1000

 1200

static dynamic

99
.9

9%
 T

ai
l L

at
en

cy
(m

s)

(b) Siege 99.99% Tail Latency

 0
 5

 10
 15
 20
 25
 30
 35
 40

static dynamic

Tr
an

sa
ct

io
n(

pe
r s

ec
)

(c) Sysbench OLTP Transaction

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

static dynamic

R
eq

ue
st

s
pe

r s
ec

on
d

(d) Redis Throughput

I/O
I/O+CPU

I/O+CPU+xBalloon

Figure 10: xBALLOON improves the performance of Web server and database applications under constrained CPU allocation.

due to fair sharing CPU resources among tasks, e.g. UDP throughput
under cap 40 in Figure 9(b). Another observation in Figure 9 is that
rq_clock_task helped in I/O performance in some cases. For ex-
ample, for netperf TCP in Figure 9(a), it improved throughput over
I/O+CPU by as much as 12%. The improvement was due to the avoid-
ance of short-term priority inversions. However, rq_clock_task
was not e�ective for performance loss due to long-term priority
inversions. In contrast, xBALLOON improved I/O performance over
rq_clock_task on average by 48.5%, 57.4%, 95.3%, and 125x for
netperf TCP, UDP, disk I/O, and sockperf latency, respectively.

Note that xBALLOON even outperformed I/O only in some tests,
e.g., TCP throughput under cap 40 in Figure 9(a). Similar results can
also be observed in CPU sharing and the reason will be revealed in
§ 6.2.1.

6.1.2 Application Results. Next, we evaluate xBALLOON using real
world I/O-intensive applications. If not otherwise stated, the com-
pute task was mcf from the SPECCPU 2006 benchmarks [15] and
the VM had a cap of 50.
Web server applications. We hosted a Nginx [11] HTTP server
in the VM and ran Siege [13] on another machine as the client. We
simulated 200 users that sent a total of 4,000 requests. As shown in
Figure 10(a) and (b), Nginx su�ered signi�cant performance loss
when co-running with the compute-bound program. In contrast,
xBALLOON improved the throughput and 99th percentile latency by
14.4%, 14x under static priority, and by 33.3%, 10x under dynamic
priority, respectively.
Database applications. First, we evaluated the performance of
Sysbench [16], an OLTP application benchmark running on a
MySQL database. We created 10 MySQL tables and each table
contained 100,000 records. A client which contained 100 threads
performed OLTP transactions in the database. As shown in Fig-
ure 10(c), xBALLOON increased Sysbench transaction rate by 32.9%
under static priority and 20% under dynamic priority in compari-
son with I/O+CPU, respectively. Second, we tested NoSQL database
applications. We ran Redis [12] 3.0.7 as a server and used redis-
benchmark to send 100,000 requests from a client. As shown in
Figure 10(d), xBALLOON achieved close performance to I/O only
and outperformed I/O+CPU by 90.2% under static priority and 136%
under dynamic priority, respectively.

6.1.3 Preserving Static and Dynamic Priorities. It is challeng-
ing to directly verify priority preservation. The compute task’s
CPU usage reported by Linux may be inaccurate when using the
global clock rq_clock. It can contain the time the VM is paused by
xBALLOON . Instead, we used two indirect approaches.

 0

 50

 100

 150

 200

 250

 300

 350

10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
 T

im
e

(s
)

I/O+CPU
I/O(fair)+CPU+xBalloon

I/O(RT)+CPU+xBalloon

Never finished

2974 620

Figure 11: xBALLOON starves the compute task when CPU cap
is lower than the I/O demand and allows the compute task
to use slack CPU resources when CPU cap increases.

 0

 20

 40

 60

 80

 100

C
P

U
 U

til
iz

a
tio

n

Emulated I/O
CPU hog

Cap
xBalloon

 100 90 80 70 60 50 40 30 20 10

Figure 12: xBALLOON helps CFS satisfy I/O’s full demand and
later enforce fair share between I/O and compute as CPU
allocation drops. The x-axis shows CPU caps.

Enforcing static priority.We changed the CPU hog to loop for a
speci�ed number of iterations and used its completion time to infer
its CPU allocation. Figure 11 shows its completion time under vari-
ous CPU caps. The completion time in I/O+CPU is the baseline, in
which the CPU hog acquired excessive CPU due to work-conserving
scheduling in the guest. When fair sharing was enabled (white bar),
the completion time of the compute task increased, indicating that
the compute task was allocated less CPU. When static priority
was enforced (red bar), the compute tasks failed to complete under
low CPU caps (i.e., the missing data pointed by the arrow in Fig-
ure 11). xBALLOON enforced strictly higher priority for the I/O task
and starved the CPU task when the cap cannot fully satisfy I/O’s
demand. As cap increased, the CPU task was able to use slack CPU
and complete, but with longer completion time compared to that
in fair sharing.

0.0

100.0

200.0

300.0

400.0

500.0

0 1 2 3 4

Th
ro

ug
hp

ut
 (M

bp
s)

Number of CPU-intensive workload

(a) Sockperf throughput under static priority

I/O+CPU
I/O+CPU+xBalloon

0.0

100.0

200.0

300.0

400.0

500.0

0 1 2 3 4

Th
ro

ug
hp

ut
 (M

bp
s)

Number of CPU-intensive workload

(b) Sockperf throughput under dynamic priority

I/O+CPU
I/O+CPU+xBalloon

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

0 1 2 3 4

99
%

 L
at

en
cy

 (µ
s)

Number of CPU-intensive workload

(c) Sockperf latency under static priority

I/O+CPU
I/O+CPU+xBalloon

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

0 1 2 3 4

99
%

 L
at

en
cy

 (µ
s)

Number of CPU-intensive workload

(d) Sockperf latency under dynamic priority

I/O+CPU
I/O+CPU+xBalloon

Figure 13: I/O performance with a varying number of co-located CPU workloads.

 0

 200

 400

 600

 800

 1000

 1200

static
dynamic

Th
ro

ug
hp

ut
 (M

b/
s)

(a) Netperf TCP throughput

I/O only
I/O+CPU

I/O+CPU+xBalloon

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

static
dynamic

Th
ro

ug
hp

ut
 (M

b/
s)

(b) Netperf UDP throughput

I/O only
I/O+CPU

I/O+CPU+xBalloon

1e+02

1e+03

1e+04

1e+05

1e+06

25% 50% 75% 90% 95% 99%

La
te

nc
y

(µ
s)

Tail latency

(c) Sockperf latency under static priority

I/O-only
I/O+CPU

I/O+CPU+xBalloon

1e+02

1e+03

1e+04

1e+05

1e+06

25% 50% 75% 90% 95% 99%

La
te

nc
y

(µ
s)

Tail latency

(d) Sockperf latency under dynamic priority

I/O only
I/O+CPU

I/O+CPU+xBalloon

Figure 14: xBALLOON improves I/O performance with one I/O-bound VM and one CPU-bound VM sharing the CPU.

Preserving dynamic priority. Although Figure 11 qualitatively
demonstrates the preservation of static priority, it cannot quantita-
tively verify that the two tasks were indeed fairly scheduled under
dynamic priority. I/O processing in the guest kernel including that
in the soft and hard interrupt contexts is charged to the CPU task
if it happens to be the one running when I/O requests arrive. To
this end, we emulated the I/O task’s CPU demand using a user-
level process, which inde�nitely repeats the cycle of computing
and idling, whose ratio determines the CPU demand. We set the
emulated I/O task to demand 30% of CPU. Since the process does
not incur kernel processing, we use it to study how xBALLOON helps
preserve dynamic priority.

Figure 12 shows the CPU allocations with (right bar) and without
(left bar) xBALLOON under various cap settings. From the left bars
in each group, we can see that the I/O task can only take 30% of
the CPU time left by the cap no matter what was the new fair
share based on the cap value. In contrast, with xBALLOON , CFS
included future CPU allocations (i.e., the balloon) in fair sharing.
CFS e�ectively satis�ed the I/O demand in full when the cap was
large and enforced the fair share between the two tasks as CPU cap
dropped. We conclude that xBALLOON preserves dynamic priority
by initially granting the I/O task a higher priority and smoothly
demoting it to an equal priority.
Varying number of CPU workloads. In this experiment, we co-
locate an I/O task with a varying number of CPU workloads. We
measured TCP throughput and the 99th tail latency using sockperf.
Figure 13(a)-(d) show I/O performance when the sockper server
process ran with one to four CPU hogs. Under static priority, as
shown in Figure 13(a) and (c), xBALLOON was always able to prioritize
the I/O task. TCP throughput and latency were consistent despite
the increasing levels of contention from co-located compute tasks.
Under dynamic priority, the relative importance of the I/O task
and the compute tasks are determined by their CPU usage. As

shown in Figure 13(b) and (d), I/O throughput gradually dropped
and latency increased as the number of CPU hogs increased. When
there were only two tasks sharing the CPU, i.e., the I/O task and one
compute task, the CPU demand of the sockper server process is
lower than the fair share, i.e., 50% of CPU. Thus, xBALLOON prioritized
the I/O task and achieved similar performance compared to that
under static priority. As CPU competition ramped up, the CPU
allocation to each task decreased and the demand of the I/O task
gradually exceeded the fair share. To enforce max-min fairness,
xBALLOON assigned an equal priority to the I/O task. The degraded I/O
performance was due to a decreasing fair share and CPU allocation
to the I/O task. Nevertheless, xBALLOON substantially improved I/O
performance under both static and dynamic priorities compared to
the I/O+CPU case.

6.2 CPU Sharing
CPU sharing presents a more challenging consolidation scenario,
in which multiple VMs share the same pCPU. We evaluate xBALLOON
with two VMs sharing one pCPU but the results can be extended
to more than two VMs.

6.2.1 Sharing with CPU-bound VM. We start with a relatively
simple scenario, in which one VM ran a mix of I/O- and CPU-bound
workloads and the other VM was CPU-bound. Both VMs were
assigned with equal weights. As the CPU-bound VM was unable
to preempt the I/O-bound VM, xBALLOON should guarantee that the
I/O task, even co-running with the compute task, can preempt the
CPU-bound VM at any time.

Figure 14(a) and (b) show the netperf TCP/UDP throughput
under static and dynamic priorities. xBALLOON improved TCP and
UDP throughput over I/O+CPU. The improvement on TCP through-
put was 18.6% and 34.4% under static and dynamic priority, respec-
tively. Similar to our observations in Figure 9(a) under CPU capping,

Jia Rao

Jia Rao

Jia Rao

1e+02

1e+03

1e+04

1e+05

1e+06

25% 50% 75% 90% 95% 99%

La
te

nc
y

(µ
s)

Tail latency

(a) Sockperf latency under static priority

I/O only
I/O+CPU

I/O+CPU+xBalloon

1e+02

1e+03

1e+04

1e+05

1e+06

25% 50% 75% 90% 95% 99%

La
te

nc
y

(µ
s)

Tail latency

(b) Sockperf latency under dynamic priority

I/O only
I/O+CPU

I/O+CPU+xBalloon

Figure 15: xBALLOON improves I/O performance with two I/O-
bound VMs sharing the CPU.

xBALLOON with dynamic priority outperformed the reference I/O per-
formance in I/O only. The reason is that when the I/O task ran
alone or ran in a real-time priority with xBALLOON , it used as much
time as it can until the entire VM is suspended due to CPU cap or
descheduled due to insu�cient credits. The VM was suspended for
one accounting period (30ms in Xen) or descheduled for one time
slice (also 30ms in Xen) before next credit re�ll.

In contrast, when the I/O task ran with xBALLOON under CFS fair
sharing, it did not fully exercise its CPU demand. The VM can
maintain a utilization no larger than the CPU cap or never used
up its credit so as to enter the OVER state, either of which avoided
long time freeze of the VM. This �nding suggests that temporarily
throttling I/O demand under constrained CPU allocation can lead
to superior performance. As shown in Figure 14(c) and (d), xBALLOON
achieved almost identical latency distribution compared to the
reference latency distribution while I/O+CPU had wildly growing
75th percentile latency.

6.2.2 Sharing between I/O-bound VMs. The most challenging
scenario is to consolidate two VMs, each running a mix of I/O- and
CPU-bound workloads, and to preserve I/O prioritization in each
VM. As the two VMs shared the Gigabit NIC on the host, the net-
work would be the bottleneck if throughput tests were performed.
Thus, we measured the tail latency on each VM using sockperf
UDP test. The CPU-bound tasks were mcf. Figure 15(a) and (b) show
the latency distribution of the two VMs. With xBALLOON , both VMs
had predictable and low tail latency close to the reference I/O only
case. The latencies were not a�ected by co-running compute tasks,
showing a clear preservation of I/O prioritization in both VMs.

6.3 Results on SMP VMs
This section presents an evaluation of xBALLOON with SMP VMs.
We are interested in evaluating the e�ectiveness of xBALLOON in
preserving I/O prioritization for multi-threaded workloads and
studying its impact to the fairness of SMP CPU allocation and the
overall system utilization. We con�gured two 4-vCPU VMs to share
a set of 4 pCPUs and pinned each vCPU in a VM to a separate pCPU.
As a result, two vCPUs from di�erent VMs compete for the same
pCPU in a time-sharing manner. We used the multi-threaded Data
Caching benchmark from Cloudsuite [4] as the latency-sensitive,
I/O-bound workload and mcf as the compute-bound workload. The
Data Caching benchmark uses memcached [9] con�gured with 4
threads to simulate the behavior of a Twitter caching server using
the twitter dataset. Two client machines, eachwith 4 worker threads

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 5 10 15 20

C
PU

 u
til

iz
at

io
n

Time (s)

VM1

VM2

Figure 16: xBALLOON does not cause signi�cant idleness in the
host and preserves fairness in CPU allocation.

and 20 connections were used to send requests at a rate of 5000 per
second. The ratio of GET and SET was set to 4:1. To fully utilize four
vCPUs, four copies of mcf were run in each VM.

Since the caching benchmark is network intensive, the 1Gbps
Ethernet on the host machine was the bottleneck when two VMs
both ran memcached. Thus, We measured the performance of multi-
threaded I/O in one VM while the other VM only executed the
compute-bound programs. Table 1 shows the throughput (request
per second) and latency (ms) of memcached. I/O only was the
case when one VM was dedicated to memcached and the other
VM hosted the compute-bound workload. Because Xen prioritizes
I/O workloads at the hypervisor level, the consolidation of I/O-
and CPU-bound workloads in separate VMs does not a�ect I/O
performance, we regard I/O only as the reference I/O performance.
Similar to previous observations, the co-location of memcached
and mcf (denoted as I/O+CPU), in addition to sharing pCPUs with
another compute-bound VM, in�icted signi�cant I/O performance
degradation. While throughput was not much a�ected, the average
and tail latency were drastically increased by several orders of
multitude under both static and dynamic priority. To preserve I/O
prioritization, we enabled four balloon processes, each bound to
a vCPU, in the memcached VM. Results (in bold font) show that
xBALLOON e�ectively preserved both static and dynamic priorities
and achieved performance close to the reference performance.

Figure 16 shows the CPU utilizations of the two VMs when they
were both running a mixture of memcached and mcf with xBALLOON
enabled in both VMs. Recall that xBALLOON switches to NWC mode
at the beginning of each accounting period. Thus, it is possible that
both VMs could schedule the balloon process and yield CPU at the
same time, causing idleness in the host machine. Figure 16 show
that it took approximately 6s for the CPU allocation to converge
to the fair share (i.e., 200%, half of the 4-pCPU capacity) and no
signi�cant CPU idling was observed in the host. As discussed in
§ 4.3, it is unlikely that both VMs yield CPU. Even if this happens,
the host only experiences transient idleness and xBALLOON helps to
coordinate the scheduling of the two VMs such that their busy and
idle (due to the balloon) periods are interleaved.

6.4 Discussion
Overhead. xBALLOON’s overhead includes the time spent in user
space, in the guest kernel, and inside Xen. As the balloon is woken
up by I/O events, the frequency of xBALLOON invocation depends on
the intensity of the I/O workload. The overhead is negligible in most
cases. As CPU cap or share drops close to the actual I/O demand,

Experiment rps avg_lat 90th 95th 99th std
I/O only 5010.3 0.167 0.192 0.204 0.251 0.094

I/O+CPU(S) 5015.6 38.053 79.311 80.393 81.152 31.418
I/O+CPU+xBALLOON(S) 4997.7 0.169 0.197 0.211 0.263 0.097

I/O+CPU(D) 5023.1 39.352 80.128 82.336 83.713 32.926
I/O+CPU+xBALLOON(D) 4998.3 0.164 0.190 0.204 0.259 0.114

Table 1: The throughput (request per second) and latency (ms) of the caching benchmark in various test scenarios. S and D
denote static and dynamic priority for the I/O workload, respectively.

xBALLOON can lower the CPU available to serving I/O, leading to
moderate degradation of I/O performance.
Target I/O workloads. For most I/O-bound applications, xBALLOON
can e�ectively improve its throughput or latency when co-locating
with CPU-intensive applications under discontinuous time. How-
ever, xBALLOON is not e�ective for workloads with both substantial
I/O and computational requirements. The reason is that the priority
inversion issue is not signi�cant between compute-intensive I/O
workloads and real compute-bound workloads, thereby leaving
little room for improvement.
Applicability to other hypervisors. xBALLOON can be extended
to other hypervisors, such as KVM. The changes to hypervisor are
new mechanisms to support e�cient VM pause and the noti�cation
of the switch of NWC and WC modes. No algorithmic change is
needed to the VM scheduling. To port xBALLOON to KVM, the key is
to de�ne the SWC mode in the context of CFS, the VM scheduler
in KVM, instead of Xen’s credit scheduler.

6.5 Results on Amazon EC2
Last, we show the e�ectiveness of xBALLOON on Amazon EC2. Even
though we do not have access to the hypervisor, xBALLOON can still
pause an EC2 instance. We used the hypercall SCHEDOP_block to
pause the VM and disabled SWC scheduling. We built a AmazonMa-
chine Image (AMI) with ourmodi�ed Linux kernel on an m3.medium
instance, whose network bandwidth is capped at 340Mbps and CPU
at about 60%. Thus, we can only test on network latency. Figure 17
shows the results on TCP 99th percentile latency using sockperf
and the average latency of ping. Since Linux network stack directly
responds to ping’s ICMP requests, it is not possible to assign real-
time priority to a user space process. Thus, we skipped real-time
results for ping. The �gure shows that xBALLOON e�ectively reduced
TCP tail latency by 68% and even achieved a lower latency in ping
test than the I/O only case. Although the test lacks important opti-
mizations for xBALLOON , it shows that wiser scheduling inside the
guest, without undermining the autonomy of the VM or changing
resource management at the hypervisor, can greatly improve I/O
performance.

7 RELATEDWORK
Bridging the semantic gaps. The semantic gap in virtualized en-
vironments has been a well-recognized issue. There were studies
on bridging the gaps for VM introspection [20, 21, 38], adapting
TCP congestion control [19], optimizing virtualized I/O schedul-
ing [30, 36], inferring information about process [27] and bu�er
management [26] inside VMs; however they focused on exposing

 0

 1

 2

 3

 4

 5

sockperf ping

N
or

m
al

iz
ed

 la
te

nc
y

I/O only
I/O+CPU

I/O(RT)+CPU+xBalloon
I/O(fair)+CPU+xBalloon

Figure 17: xBALLOON helps reduce network latency on EC2.

VM information to the hypervisor to aid bare-metal resource man-
agement. Such designs not only make the hypervisor more complex
but also make enforcing fairness between tenants di�cult. In con-
trast, xBALLOON focuses on exposing the information on resource
allocation at the hypervisor to the guest OS to make wise sched-
uling decisions inside VMs. xBALLOON improves I/O performance
in VMs without violating the autonomy VM’s resource manage-
ment or seeking any algorithmic changes at the hypervisor for I/O
optimization.
Optimizing the critical I/O path. As virtualization introduces
additional layers of abstraction, indirection, and data movement,
the critical I/O path in virtualized systems contains excessive asyn-
chrony and latency [40]. To reduce virtualization overhead, existing
work optimizes the critical I/O path by o�oading performance criti-
cal operations from VMs to the hypervisor, such as TCP ACK gener-
ation and congestion control [22, 29], TCP segmentation/checksum
calculation [33], and device driver functionalities [34], or by packet
coalescing [35]. Other work proposed more aggressive changes to
I/O virtualization via exit-less interrupt delivery [24] and I/O path
reconstruction [23, 25, 32]. xBALLOON is complementary to these
approaches and guarantees critical I/O operations to be scheduled
timely in the guest OS.
Reducing VM scheduling delays. The VM scheduling delay pre-
vents I/O operations from VMs being timely processed. To address
this issue, many e�orts, like shortening time slices [17, 46], partial
boosting [30, 39] or dedicating CPUs [45] are proposed. There are
also other work focusing on optimizing scheduling for MapReduce
clusters [28], data center workloads [47] and I/O interrupt han-
dling on SMP VMs [19]. We accept that long scheduling delays
may be inevitable due to resource sharing, but I/O performance
can be optimized given the resource constraint. We show that long
I/O processing delay can be avoided by prioritizing I/O in guest
scheduling. VM scheduling delay can also be alleviated by using
smaller time slices in the hypervisor. There are two drawbacks

Jia Rao

to use small time slices. First, while I/O workloads bene�t from
short time slices due to more responsive scheduling, CPU-bound
workloads could su�er performance degradation because frequent
context switching causes loss of data locality. Second, the change of
VM time slice at the hypervisor will a�ect all users. It may be unde-
sirable for some users. In contrast, xBALLOON allows the guest OS to
autonomously decide how to use its CPU. Our work is most related
to task-aware VM scheduling [30], which prioritizes VMs doing I/O
and de-schedules them once the hypervisor detects the VMs are
performing computation. xBALLOON o�ers several advantages over
this approach. First, it precisely preserves the static and dynamic
priorities. Second, xBALLOON does not make algorithmic changes to a
hypervisor’s core scheduling algorithm.

8 CONCLUSION
This paper demonstrates that task scheduling in the guest OS should
be adapted to e�ciently utilize virtual CPU resources. Time discon-
tinuity due to CPU multiplexing or capping can render I/O prior-
itization in the guest ine�ective, leading to I/O performance loss
and unpredictability. This paper presents xBALLOON , a lightweight
approach to preserving static and dynamic priorities between I/O-
and compute-bound tasks. xBALLOON centers on two designs: a CPU
balloon representing CPU reservations and semi-work-conserving
scheduling in VM. We demonstrate that xBALLOON is e�ective in
boosting I/O performance and preserving priorities in both CPU
capping and sharing.

9 ACKNOWLEDGEMENT
We are grateful to our reviewers for their comments on this paper
and our shepherd Ji-Yong Shin for his suggestions. This research
was supported in part by U.S. NSF grants CNS-1649502 and IIS-
1633753.

REFERENCES
[1] Amazon ec2 t2 instances. https://goo.gl/vbCpkV.
[2] Amazon elastic compute cloud(ec2). http://aws.amazon.com/ec2/.
[3] Aws instance usage report from rightscale users. https://goo.gl/AjDKiK.
[4] Cloudsuite: The benchmark suite of cloud services. http://cloudsuite.ch/.
[5] Credit scheduler cap. https://wiki.xen.org/wiki/Credit_Scheduler#Cap.
[6] The docker container. https://www.docker.com/.
[7] Kernel based virtual machine. http://www.linux-kvm.org/.
[8] Kvm cpu accounting. https://github.com/penberg/linux-kvm/blob/master/kernel/

sched/sched.h.
[9] Memcached. https://memcached.org/.
[10] Netperf. http://www.netperf.org/.
[11] Nginx. https://www.nginx.com/.
[12] Redis. http://redis.io.
[13] Siege. https://www.joedog.org/siege-home/.
[14] Sockperf. https://github.com/Mellanox/sockperf.
[15] Spec cpu 2006 benchmark. https://www.spec.org/cpu2006/.
[16] The sysbench benchmark suite. https://github.com/akopytov/sysbench.
[17] A��, J., P���, C. H., ��� H��, J. Micro-sliced virtual processors to hide the

e�ect of discontinuous cpu availability for consolidated systems. In Proc. of the
47th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)
(2014).

[18] B�����, P., D�������, B., F�����, K., H���, S., H�����, T. L., H�, A., N�����
�����, R., P����, I., ��� W�������, A. Xen and the art of virtualization. In Proc.
of ACM Symposium on Operating Systems Principles (SOSP) (2003).

[19] C����, L., W���, C., ��� L��, F. C. M. PVTCP: towards practical and e�ective
congestion control in virtualized datacenters. In Proc. of IEEE International
Conference on Network Protocols (ICNP) (2013).

[20] D�����G�����, B., L���, T., Z������, M., G�����, J., ��� L��, W. Virtuoso:
Narrowing the semantic gap in virtual machine introspection. In Proceedings of
the IEEE Symposium on Security and Privacy(SP) (2011).

[21] F�, Y., ��� L��, Z. Space traveling across vm: Automatically bridging the semantic
gap in virtual machine introspection via online kernel data redirection. In
Proceedings of the 2012 IEEE Symposium on Security and Privacy(SP) (2012).

[22] G�����, S., K��������, A., K�������, R. R., ��� X�, D. Opportunistic �ooding
to improve TCP transmit performance in virtualized clouds. In Proceedings of
ACM Symposium on Cloud Computing (SoCC) (2011).

[23] G�����, S., X�, C., K�������, R. R., ��� X�, D. vpipe: Piped i/o o�oading
for e�cient data movement in virtualized clouds. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC) (2014).

[24] G�����, A., A���, N., H��’E�, N., B���Y�����, M., L�����, A., S�������, A.,
��� T������, D. Eli: bare-metal performance for i/o virtualization. In Proceed-
ings of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2012).

[25] H����, J., R�����������, K., ��� W���, T. Netvm: high performance and
�exible networking using virtualization on commodity platforms. In Proceedings
of the 11th USENIX Conference on Networked Systems Design and Implementation
(NSDI) (2014).

[26] J����, S. T., A������D������, A. C., ���A������D������, R. H. Geiger: monitor-
ing the bu�er cache in a virtual machine environment. In Proceedings of the 12th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2006).

[27] J����, S. T., A������D������, A. C., A������D������, R. H., �� ��. Antfarm:
Tracking processes in a virtual machine environment. InUSENIXAnnual Technical
Conference(USENIX ATC) (2006).

[28] K���, H., C���, Y., W���, J. L., S���, R., ��� W�, J. Enhancement of xen’s
scheduler for mapreduce workloads. In Proceedings of the 20th international
symposium on High performance distributed computing (HPDC) (2011).

[29] K��������, A., G�����, S., K�������, R. R., ��� X�, D. vsnoop: Improving
tcp throughput in virtualized environments via acknowledgement o�oad. In
Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC) (2010).

[30] K��, H., L��, H., J����, J., J�, H., ��� L��, J. Task-aware virtual machine
scheduling for i/o performance. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments (VEE) (2009).

[31] L�������, J., ��� K��������, C. Reconciling high server utilization and sub-
millisecond quality-of-service. In Proceedings of the Ninth European Conference
on Computer Systems (EuroSys) (2014).

[32] M������, J., A����, M., R�����, C., O������, V., H����, M., B������, R., ���
H����, F. Clickos and the art of network function virtualization. In Proceedings
of the 11th USENIX Conference on Networked Systems Design and Implementation
(NSDI) (2014).

[33] M����, A., C��, A. L., ��� Z���������, W. Optimizing network virtualization
in xen. In Proceedings of USENIX Annual Technical Conference (USENIX ATC)
(2006).

[34] M����, A., S�������, S., ��� Z���������, W. Twindrivers: semi-automatic
derivation of fast and safe hypervisor network drivers from guest os drivers.
In ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS) (2009).

[35] M����, A., ��� Z���������, W. Optimizing tcp receive performance. In
Proceedings of USENIX Annual Technical Conference (USENIX ATC) (2008).

[36] O�����, D., C��, A. L., ��� R�����, S. Scheduling i/o in virtual machine moni-
tors. In Proceedings of the fourth ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments(VEE) (2008).

[37] P����, G. J., ��� G�������, R. P. Formal requirements for virtualizable third
generation architectures. Commun. ACM 17, 7 (1974).

[38] S�����, A., F�, Y., ��� L��, Z. Hybrid-bridge: E�ciently bridging the seman-
tic gap in virtual machine introspection via decoupled execution and training
memoization. In Proceedings of the 21st Annual Network and Distributed System
Security Symposium (NDSS) (2014).

[39] S���, H., ��� L��, S.�M. Cfs-v: I/o demand-driven vm scheduler in kvm. Software
R&D Center, Samsung Electronics (2014).

[40] S��, K., R��, J., C����, L., ��� C. M. L��, F. Time capsule: Tracing packet
latency across di�erent layers in virtualized systems. In Proceedings of the 7th
ACM SIGOPS Asia-Paci�c Workshop on Systems (APSys) (2016).

[41] VM����. Vmware horizon view architecture planning 6.0. In VMware Technical
White Paper (2014).

[42] W����������, C., ��� R��������, M. I/O virtualization. Commun. ACM 55, 1
(Jan. 2012).

[43] W����������, C. A. Memory resource management in vmware ESX server. In
Proceedings of the Symposium on Operating System Design and Implementation
(OSDI) (2002).

[44] W���, G., ��� N�, T. S. E. The impact of virtualization on network performance
of amazon ec2 data center. In Proceedings of the 29th Conference on Information
Communications (INFOCOM) (2010).

[45] X�, C., G�����, S., L�, H., K�������, R., ��� X�, D. vturbo: Accelerating virtual
machine i/o processing using designated turbo-sliced core. In Proceedings of the
2013 USENIX Conference on Annual Technical Conference (ATC) (2013).

Jia Rao

https://goo.gl/vbCpkV
http://aws.amazon.com/ec2/
https://goo.gl/AjDKiK
http://cloudsuite.ch/
https://wiki.xen.org/wiki/Credit_Scheduler#Cap
https://www.docker.com/
http://www.linux-kvm.org/
https://github.com/penberg/linux-kvm/blob/master/kernel/sched/sched.h
https://github.com/penberg/linux-kvm/blob/master/kernel/sched/sched.h
https://memcached.org/
http://www.netperf.org/
https://www.nginx.com/
http://redis.io
https://www.joedog.org/siege-home/
https://github.com/Mellanox/sockperf
https://www.spec.org/cpu2006/
https://github.com/akopytov/sysbench

[46] X�, C., G�����, S., R��, P. N., K��������, A., K�������, R. R., ��� X�, D.
vSlicer: latency-aware virtual machine scheduling via di�erentiated-frequency
cpu slicing. In Proceedings of the international symposium on High-Performance
Parallel and Distributed Computing (HPDC) (2012).

[47] X�, Y., B�����, M., N����, B., ��� J�������, F. Small is better: Avoiding latency
traps in virtualized data centers. In Proceedings of the 4th annual Symposium on
Cloud Computing (SoCC) (2013).

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Assumptions
	2.2 I/O Prioritization in Linux
	2.3 Time Discontinuity
	2.4 Degraded I/O Performance due to CPU Discontinuity

	3 Analyzing Priority Inversions
	3.1 Short-term Priority Inversion
	3.2 Long-term Priority Inversion

	4 xBALLOON Design
	4.1 Differential Clocks
	4.2 CPU Balloon
	4.3 Semi-Work-Conserving Scheduling
	4.4 Enforcing Static Priority
	4.5 Preserving Dynamic Priority

	5 Implementation
	6 Evaluation
	6.1 CPU Capping
	6.2 CPU Sharing
	6.3 Results on SMP VMs
	6.4 Discussion
	6.5 Results on Amazon EC2

	7 Related Work
	8 Conclusion
	9 Acknowledgement
	References

