
Preserving I/O Prioritization in Virtualized OSes

Kun Suo1, Yong Zhao1, Jia Rao1, Luwei Cheng2, Xiaobo Zhou3, Francis C. M. Lau4

The University of Texas at Arlington1, Facebook2,

University of Colorado, Colorado Springs3, The University of Hong Kong4

Virtualization
• A powerful abstraction that transforms a physical resource into a

more general, easy-to-use virtual form
üWorkload consolidation

üFault isolation

üService migration

• Ubiquitous in modern IT management
üJava virtual machine (JVM), container, and full-fledged virtual machine (VM)

“A program running in virtualized environments should exhibit a behavior
essentially identical to that in physical environments.”

-- [Popek and Goldberg’74]

An Inherent Semantic Gap

• Virtualization presents the illusion of dedicated, continuous
hardware, but operates on shared, discontinuous resources

• Time is discontinuous in multi-tenant systems
üVMs with capped CPU capacity account for 40% Amazon EC2 usage

üCPU multiplexing in public and private clouds

VM’s perception of time passage:
discontinuous; clock reading jumps with

intermittent gaps between each run

VM
running

VM
running

VM
descheduled

Clock ticking VM clock
stops

Sync with host clock
and restart ticking

Resource management
designed for physical systems
can be ineffective in virtualized
OSes with discontinuous time

I/O prioritization
• An important OS design to improve system responsiveness without compromising throughput.

• I/O prioritization relies on two mechanisms

ü The identification of I/O-bound tasks

ü The preemption of CPU-bound tasks

• User-configured priority -- static priority
üReal-time vs. normal priorities, e.g., SCHED_RR vs. SCHED_OTHER

• Linux completely fair scheduler (CFS) -- dynamic priority

ü uses virtual runtime (vruntime) to track how much time a task has run on CPU

ü prioritizes tasks with smaller vruntimes (“I/O-bound”) over those with larger vruntimes (“CPU-bound”)

Violation of I/O Prioritization

100% CPU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

KVM Xen Docker

Th
ro
ug
hp

ut
(G
bp

s)

Continuous time

I/O	only I/O	+	CPU

I/O app

100% CPU

I/O app
+

Compute app

I/O task always
has a higher priority

Violation of I/O Prioritization

50% CPU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

KVM Xen Docker

Th
ro
ug
hp

ut
(G
bp

s)

Continuous time

I/O	only I/O	+	CPU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

KVM Xen Docker

Th
ro
ug
hp

ut
(G
bp

s)

Discontinuous time

I/O	only I/O	+	CPU

I/O app

50% CPU

I/O app
+

Compute app

I/O task always
has a higher priority

65% loss

Violation of I/O Prioritization

50% CPU

I/O app

50% CPU

I/O app
+

Compute app

0
20
40
60
80
100
120
140
160
180
200

KVM Xen Docker

99
%
La
te
nc
y
(u
s)

Continuous time

I/O	only I/O	+	CPU

0

10

20

30

40

50

60

70

80

KVM Xen Docker

99
%
La
te
nc
y
(m

s)

Discontinuous time

I/O	only I/O	+	CPU

100x increase
27% variation

Why I/O prioritization is not effective?

Process
starts running

Process
stops running

VM is
running

VM is not
running VM is

running

Time charged
to process

Short-term Priority Inversion

• Time discontinuity may cause inaccurate CPU accounting in the guest OS

Correct
vruntime

Dilated
vruntime

vruntime dilation only
affects I/O-bound tasks

Long-term Priority Inversion

Compute taskI/O task

70%30%

100% capacity

I/O task’s 30% CPU demand is fully satisfied.
Thus, I/O performance is not degraded

Long-term Priority Inversion

Compute taskI/O task

35%

50% capacity

15% 50%

Unavailable

The CPU allocation to the I/O task is
significantly reduced

Long-term Priority Inversion

Compute taskI/O requests

50% capacity 50%

Unavailable

100% capacity

Work-conserving scheduling in the guest OS
allows compute-bound tasks to use the CPU
that can be used by I/O-bound tasks in the
future under constrained resource allocation

Preserving Long-term Priority

Compute taskI/O task

35%15% 50%

20%30% 50%Preserving static priority

Preserving dynamic priority 25%25% 50%

Priority violation

xBALLOON
• Two clocks
• A CPU balloon process
• A semi-work-conserving (SWC) scheduling algorithm

Two Clocks

• Maintain two clocks in the guest OS

üGlobal clock - synchronized with wall-clock time

üVirtual clock - only ticks when the VM is running. In-guest scheduling uses this clock
[KVM]

Guest OS is made aware of time discontinuity to address
short-term priority inversion

The CPU Balloon Process

• Inspired by memory ballooning
üThe size of the memory balloon represents the memory taken away

from the VM

• The runtime of the CPU balloon process represents the
amount of time guest OS reserves for the future

Whenever the balloon process runs, it suspends the VM.
The VM is woken up upon receiving an I/O request

Semi-Work-Conserving Scheduling

NWC: balloon is running, reserving CPU for future
WC: balloon is suspended, all tasks are free to run

① Accounting starts
② More than enough
reservation, balloon sleeps

③ New accounting starts
and balloon wakes up

Non-work-conserving (NWC) Work-conserving (WC)

I/O task

Balloon

Compute task

Improving I/O performance

0

200

400

600

800

1000

20 40 60 80 100

Th
ro
ug
hp

ut
(M

b/
s)
	

CPU cap

Netperf TCP w/ static priority

0

200

400

600

800

1000

20 40 60 80 100

Th
ro
ug
hp

ut
(M

b/
s)
	

CPU cap

Netperf TCP w/ dynamic priority

I/O only I/O + CPU I/O + CPU + stealclock I/O + CPU + xBalloon

xBaloon achieves performance close to the I/O only case

Most performance gain is due to the prevention of long-
term priority inversion

Results on Amazon EC2

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Sockperf Ping

No
rm

al
iz

ed
La

te
nc

y

I/O only I/O+CPU I/O+CPU+xBalloon+fair I/O+CPU+xBalloon+RT

• A brute-force implementation of xBalloon on an m3.medium instance
üSCHEDOP_block to suspend VM
üNo semi-work-conserving mode due to no access to the hypervisor

Wiser scheduling decisions in the
guest OS can greatly improve I/O

latency in public clouds

Conclusion

Motivation
Time discontinuity due to CPU multiplexing or capping can render I/O prioritization in
the guest ineffective, leading to I/O performance loss and unpredictability.

xBalloon
A lightweight approach to preserving static and dynamic priorities between I/O- and
compute-bound tasks under discontinuity.

Evaluation
Results in a local environment and Amazon EC2 show that xBalloon improves I/O
performance in both network throughput and tail latency.

Thank you !
Questions?

Backup Slides …

How SWC Scheduling Works

Compute taskI/O requests

50% capacity 50%

Unavailable

100% capacity

Balloon

SWC

+ + = 50%

Q: What if workload is CPU-intensive and I/O-intensive at the same time?

A: If the I/O workload contains non-negligible CPU processing, it may not be wise to
place it with another CPU-bound workload as the aggregate CPU demand of the two
workloads could be well above the CPU capacity.

The CPU utilization of some workloads, such as memcached, will increase as more
user requests sent to the server side. However, they can still benefit from xBalloon if
user activities drop and become less CPU-bound and more I/O-bound.

Q: The overhead of xBalloon?

A: xBalloon’s overhead includes the time spent in user space, in the guest kernel, and
inside Xen. As the balloon is woken up by I/O events, the frequency of xBalloon
invocation depends on the intensity of the I/O workload. Our results show that in most
cases xBalloon’s overhead is negligible.

The Balloon Process

void	balloon	(void)
{

int ret;
while(1)
{ret	=	syscall(__NR_sched_balloon);
if	(ret)sched_yield();

}
}

Priority Inversions in Containers

• As long as the I/O task and the compute task share limited resource
allocations, e.g., belonging to the same cgroup, long-term priority
inversion could happen

Putting It Together

Simplicity:
balloon easy to disable

Minimal intrusiveness:
one tweak in CFS and one
new mechanism in Xen

Autonomy:
Guest OS has total control,
no optimization at Xen

Hypervisor

VM

Balloon

Guest OS
sleeps

wait queue

NICHardware

SWC
daemon

vm_fast_pause

vm_unpase

VIRQ

Evaluation

Hardware
DELL PowerEdge T420 servers, two six-core Intel Xeon E5-2410 1.9GHz processors,
32GB memory, one Gigabit Network card and a 1TB 7200RPM SATA hard disk.

Software
Linux 3.18.21 as the guest and dom0 OS, and Xen 4.5.0 as the hypervisor.
Benchmark: netperf, sockperf, memcached, Nginx, MySQL, etc.

Configuration
VMs were configured with one vCPU (four vCPUs) and 4GB memory.
Simulate the time discontinuity through CPU capping and CPU sharing.

Impact on Compute tasks

0

50

100

150

200

250

300

350

400

10 20 30 40 50 60 70 80 90 100
CPU	cap

I/O+CPU I/O+CPU+xBalloon-fair I/O+CPU+xBalloon-RT

2974 620

Ex
ec

ut
io

n
tim

e
(s

)

xBalloon deprives the
compute task of CPU
when the cap is lower
than the I/O demand

xBalloon allows the
compute task to use
slack CPU resources

when CPU cap increases
When CPU cap is 20%,

I/O task : Compute task

= 10:10

When	CPU	cap	is	80%,	
I/O	task	:	Compute	task

=	30:50

SPI only hurts I/O workload

I/O-intensive app stops running
for a long time when its

vruntime dilates

SPI only hurts I/O workload

CPU-intensive app keeps
running for a long time when its

vruntime dilates

Improve the I/O performance

0

50

100

150

200

250

300

350

0 1 2 3 4

Th
ro
ug
hp

ut
(M

b/
s)
	

Sockperf throughput under static priority

I/O+CPU I/O+CPU+xBalloon

Number of CPU-intensive workload

0

50

100

150

200

250

300

350

0 1 2 3 4

Th
ro
ug
hp

ut
(M

b/
s)
	

Sockperf throughput under dynamic priority

I/O+CPU I/O+CPU+xBalloon

Number of CPU-intensive workload

vb

The throughput keeps the
same when number of CPU-
intensive apps increases.

The throughput decreases as
the number of CPU-intensive

apps increases.

Improve the I/O performance

1

10

100

1000

10000

100000

1000000

20 40 60 80 100

99
%
ta
il
la
te
nc
y
(u
s)

CPU cap

Sockperf TCP in static priority

I/O only I/O+CPU

I/O+CPU+ stealclock I/O+CPU+stealclock+xBalloon

1

10

100

1000

10000

100000

1000000

20 40 60 80 100

99
%
ta
il
la
te
nc
y
(u
s)

CPU cap

Sockperf TCP in dynamic priority

I/O only I/O+CPU

I/O+CPU+ stealclock I/O+CPU+stealclock+xBalloon

Stealclock is not
effective to I/O task

in static priority while
xBalloon is.

xBALLOON improves the
99% tail latency by 71%.

Violation of I/O Prioritization

50% CPU

I/O app

50% CPU

I/O app
+

Compute app

0
20
40
60
80
100
120
140
160
180
200

KVM Xen Docker
99

%
La
te
nc
y
(u
s)

Continuous time

I/O	only I/O	+	CPU

0

10

20

30

40

50

60

70

80

KVM Xen Docker

99
%
La
te
nc
y
(m

s)

Discontinuous time

I/O	only I/O	+	CPU

• Virtualization and multi-tenancy do not preserve the property of I/O
prioritization

• I/O tasks are affected by compute-bound tasks with significantly
degraded and wildly unpredictable performance

