
1

Coordinated Self-configuration of Virtual
Machines and Appliances using A Model-free

Learning Approach
Xiangping Bu, Jia Rao, Cheng-Zhong Xu

Department of Electrical & Computer Engineering
Wayne State University, Detroit, Michigan 48202

{xpbu, jrao, czxu}@wayne.edu

Abstract—Cloud computing has a key requirement for resource configuration in a real-time manner. In such virtualized
environments, both virtual machines (VMs) and hosted applications need to be configured on-the-fly to adapt to system dynamics.
The interplay between the layers of VMs and applications further complicates the problem of cloud configuration. Independent
tuning of each aspect may not lead to optimal system wide performance. In this paper, we propose a framework, namely CoTuner,
for coordinated configuration of VMs and resident applications. At the heart of the framework is a model-free hybrid reinforcement
learning (RL) approach, which combines the advantages of Simplex method and RL method and is further enhanced by the use
of system knowledge guided exploration policies. Experimental results on Xen-based virtualized environments with TPC-W and
TPC-C benchmarks demonstrate that CoTuner is able to drive a virtual server cluster into an optimal or near-optimal configuration
state on the fly, in response to the change of workload. It improves the systems throughput by more than 30% over independent
tuning strategies. In comparison with the coordinated tuning strategies based on basic RL or Simplex algorithm, the hybrid RL
algorithm gains 25% to 40% throughput improvement. Moreover, the algorithm is able to reduce SLA violation of the applications
by more than 80%.

Index Terms—Cloud Computing, Reinforcement Learning, Autonomic Virtual Machine Configuration, Autonomic Application
Configuration.

�

1 INTRODUCTION

Cloud computing, unlocked by virtualization,
emerges as an increasingly important infrastructure-
as-service computing paradigm. In such virtualized
environments, system performance heavily depends
on virtual machine (VM) configuration and parameter
settings of their resident applications. For the
provisioning of on-demand services, VMs need to
be re-configured to improve resource utilization
under the constraints of applications’ service level
agreement (SLA). Workload dynamics also requires
dynamic tuning of performance-critical application
parameters (e.g. MaxThreads in Tomcat server).

Auto-configuration is a non-trivial task. Hetero-
geneous resident applications and performance un-
certainty caused by VM interferences make it chal-
lenging to generate good VM configurations [16],
[10], [21]. For multi-component applications, like
Apache/Tomcat/MySQL web applications, interac-
tions between the components may even spread con-
figuration errors into the entire system. Performance
optimization of individual components does not nec-
essarily lead to overall system performance improve-
ment [6]. Moreover, the configurations of VMs and
resident applications interplay with each other. For ex-
ample, a large scale VM makes it possible to support a
high MaxThreads setting; a small MaxThreads in a

large scale VM would lead to low resource utilization.
Independent tuning of each layer of configurations
does not necessarily lead to overall optimal system
performance. The objective of this study is to develop
an automatic configuration strategy for both layers of
configurations in a coordinated manner.

There were many studies devoted to autonomic
configurations of VM resources or application pa-
rameters. For example, in [18], [17], [27], [26], [15],
feedback control approaches had achieved notable
successes in adaptive virtual resource allocation and
web application parameter tunings. However, such
control approaches rely on explicit models of tar-
get systems. Design and implementation of accurate
models of complex systems are highly knowledge-
intensive and labor-intensive. Other studies formu-
lated the problem as a combinatorial optimization.
In [30], [32], [6], [33], optimization approaches, like
hill-climbing and Simplex were experimented with
to automate the tuning process of web applications.
These heuristic approaches could be highly efficient,
but tend to trap the system into local optimum.

Reinforcement learning (RL) provides a knowledge-
free trial-and-error methodology in which a learner
tries various actions in numerous system states and
learns from the consequences of each action. RL can
potentially generate decision-theoretic optimal poli-
cies in dynamic environments [22]. It offers two major

2

advantages. First, RL does not require explicit model
of either the managed system or the external process,
like incoming traffic. Second, RL targets the maxi-
mization of long term reward instead of immediate
performance feedback. It considers the possibility that
a current decision may have delayed consequences
on both future reward and future state. It can po-
tentially deal with the delayed effect and local opti-
mum problem. Recent studies showed the feasibility
of RL approaches in many applications. Our own
works [21], [20], [5] demonstrated the applicability of
RL in auto-configuration of virtual resource and web
applications, respectively.

While RL provides many potential benefits in au-
tomatic management, there are challenges in practice.
RL suffers from poor scalability in problems with a
large state space that grows exponentially with the
state variables (i.e. configuration parameters of both
VMs and applications). Moreover, in the absence of
domain knowledge, the initial performance achieved
by RL during online training may be extremely poor.
It requires a RL-based auto-configuration stratergy to
start with a fairly large amount of exploration actions
before generating a stable policy. Normally, explo-
ration involves a process of random action selection,
which may even lead to performance degradation in
a short run.

In this paper, we present a novel hybrid approach
that combines the advantages of Simplex and RL
method to address the above practical limitations.
Instead of conducting RL search in the whole config-
urable state space, we first use Simplex method to re-
duce search space to a much smaller but “promising”
state set. To avoid performance degradation caused
by random exploration, we enhanced RL agents with
system knowledge guided exploration policy, which
uses the information of CPU and memory utilization
to guide the online configuration process. Previous
RL-based configuration work including [21], [5], [24]
employed pre-learned performance models to address
scalability and poor initial performance issues. Build-
ing an accurate performance model requires much
human effort and domain knowledge, especially for
the coordinated configuration involving the inter-
play between VM and application configurations. In
contrast, our hybrid approach does not require pre-
learned performance models and is more suitable for
high complex and dynamic systems. We summarize
contributions of this paper as follows:

(1) Model-free hybrid reinforcement learning al-
gorithm. We develop a model-free hybrid reinforce-
ment algorithm for online configurations and recon-
figurations of VM resources and application settings.
This approach combines the advantages of RL method
and Simplex method, with the enhancement of system
knowledge-guided exploration policies. The hybrid
approach significantly reduces the search space and
improves performance in the exploration stage.

(2) A coordinated tuning framework. The frame-
work facilitates an automatic tuning of VM resource
allocations and resident application parameter set-
tings in the presence of cloud dynamics. It is able
to drive the system into an optimal (or near optimal)
state within tens of interactions. Unlike previous auto-
configuration studies that only considered either vir-
tual resource management or application parameter
tuning, our framework should be the first approach
towards coordinated auto-configurations of both VM
resource and running appliances in clouds, dealing
with the interplay between them.

(3) Design and implementation of CoTuner. Our
prototype implementation of the coordinated tuning
framework, namely CoTuner, demonstrated its effec-
tiveness in an Xen-based virtualized environment.
With heterogeneously consolidated applications, in-
cluding TPCW and TPCC, CoTuner is able to adapt
VM resource allocation and appliance parameter set-
tings to cloud dynamics in a coordinated way. It
improves system throughput by more than 30% over
independent tunings. In comparison with the coor-
dianted tuning strategies that is only based on basic
RL or Simplex algorithm, our hybrid algorithm gains
25% to 40% throughput improvement. Moreover, the
algorithm is able to reduce the SLA violations of all
applications by more than 80%. We also demenstrated
the effectiveness of CoTuner in a large virtualized
environment with 100 VMs.

The rest of the paper is organized as follows. Sec-
tion 2 discusses about the challenges of coordinate
auto-configuration. Section 3 presents the overview of
the CoTuner framework. Section 4 shows the design
of our hybrid RL algorithm. Evaluation methodology
and settings are given in Section 5. Section 6 shows
experimental results. Related work is discussed in
Section 7. Section 8 concludes the paper with remarks
on limitations and possible future work.

2 CHALLENGES OF COORDINATED CON-
FIGURATION

Automatic configuration in virtual environment is
a non-trivial task. Heterogeneous resource demands
and interference among sharing hardware VMs make
it challenging to generate optimal VM configuration.
The resident applications require on-the-fly tuning
to adapt to dynamic workload and allocated re-
sources. Detailed discussions about the challenges
of VM and application auto-configurations could be
found in [21], [5], respectively. In this section, we
put emphasis on the challenges of coordinated auto-
configuration. We illustrate why the coordinated con-
figuration strategy is necessary through simple exper-
iments.

3

2.1 Interplay between VM and Application Config-
urations
In this experiment, we demonstrate interactions be-
tween the two levels of configurations using two-
tier TPCW application. TPCW mimics a transactional
web system with an application server deployed in
the front and a database server in the backend. Each
server was running within one VM and the two
VMs were deployed on different physical machines;
see Section 5 for the details of the applications and
experimental settings. Tomcat server contains a key
performance parameter, MaxThreads, which sets the
maximum number of requests to be served simulta-
neously. A too high setting would lead to resource
contention but a conservative setting would cause
resource under-utilized. MaxThreads should be con-
figured according to the capacity of hosting machine.
To some extent, it determines the resource demand of
the web application.

Figure 1(a) and Figure 1(b) show the average re-
source (CPU) demand of the two tiers due to different
MaxThreads settings under various workloads in
terms of the number of clients. Figure 1(c) shows
the corresponding system throughputs. CPU resource
is expressed in percentage of one physical CPU:
100 means one physical CPU and 50 means half a
CPU. From the figures, we can see that the CPU de-
mand and the throughput are insensitive to parameter
MaxThreads in light loaded case due to small num-
ber of concurrent requests. Both of them increase with
the MaxThreads value in medium and heavy loaded
cases. The CPU demand and the throughput saturate
at certian levels after MaxThreads reach certain val-
ues because the setting have exceeded the maximum
concurrent requests. The impact of MaxThreads on
resource demand suggests that this parameter may af-
fect the VM configuration decisions considerably. The
system performance would also vary as application
and VM configurations interplay with each other.

2.2 Coordination in Virtual Server Clusters
Components of a multi-tier application may be dis-
tributed over multiple physical machines in the form
of virtual server cluster. Such related physical servers
require a coordinated configuration strategy due to
interactions among different tiers. In this experiment,
we still use TPCW application to demonstrate cross-
tier interplay and its impact on system performance.
The same experimental setup was used as Section 2.1.
Application tier and database tier were running on
two VMs, which were deployed on different physical
servers. Resource allocated to one tier was restricted
and increased step by step. Figure 2(a) shows that
when more resource allocated to application server,
not only the system throughput but also the database
resource demand get increased. Figure 2(b) also shows
the similar result as database resource allocation is
restricted. These observations suggest virtual resource

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

A
ve

ra
ge

 C
P

U
 d

em
an

d

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

re
q/

m
in

)

CPU resource allocated to application server

DB CPU
throughput

(a) Impact of APP on DB server and throughput

 0

 50

 100

 150

 200

 250

 300

 350

 400

 50 100 150 200 250 300 350 400 450
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

A
ve

ra
ge

 C
P

U
 d

em
an

d

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

re
q/

m
in

)

CPU resource allocated to database server

App CPU
throughput

(b) Impact of DB on APP server and throughput

Fig. 2. Interactions of application (APP) and database
(DB) server configurations.

App1/
VM

App3/
VM

Resource

Xen

App1/
VM

App3/
VM

Resource

Xen

VM-Agent

App2/
VM

App4/
VM

Resource

Xen

App2/
VM

App4/
VM

Resource

Xen

VM-Agent

Cloud Environment
VM cluster VM cluster

App-Agent

App-AgentApp-Agent

App-Agent

Fig. 3. Architecture of CoTuner framework.

configuration of one tier would greatly affect the
resource demand of other tiers. The bottleneck may
keep shifting among different tiers if the balanced
resource allocation could not be achieved. For ex-
ample, if we increase the application server’s CPU
resource from 100 percentage to 300 percentage, sys-
tem performance improvement was expected. But
this may not be the case due to bottleneck shift.
From Figure 2(a), we can see that the resource (peak)
demand of database also increase from 100 percent-
age to 250 percentage as well. If the allocated CPU
resource to database server was still 100 percent-
age, the extra workload coming from front tier may
drive the database overloaded. Figure 2(b) shows that
when allocated CPU was 100 for database, system
throughput was 60% lower than that when allocated
CPU was 250 percentage. Therefore, performance op-
timization of individual tiers does not lead to overall
system performance improvement. It is necessary to
coordinately configure all involved physical servers
instead to considering them as independent optimiza-
tion components.

4

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500 600

A
ve

ra
ge

 C
P

U
 d

em
an

d

MaxThreads

1000c
3000c
5000c

(a) Average CPU demand of App server.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500 600

A
ve

ra
ge

 C
P

U
 d

em
an

d

MaxThreads

1000c
3000c
5000c

(b) Average CPU demand of DB server.

 0

 1000

 2000

 3000

 4000

 5000

 100 200 300 400 500 600A
ve

ra
ge

 th
ro

ug
hp

ut
 (r

eq
/m

in
)

MaxThreads

1000c
3000c
5000c

(c) Average system throughput.

Fig. 1. Average resource demand and system performance due to different MaxThreads settings.

3 OVERVIEW OF COTUNER
CoTuner is designed as a coordinated auto-
configuration framework for performance
optimization in cloud computing. Figure 3 shows
its architecture. In such a virtualized environment,
VMs may interfere with each other due to resource
contention or dependence in multi-tier applications.
Such related VMs form a VM cluster, in which
VMs should be configured coordinately. The VMs in
each cluster may be placed in the same or different
physical machines. CoTuner consists of two types
of agents: VM-Agent and App-Agent. They are
in charge of virtual resource configuration and
application configuration, respectively.

Each VM-Agent controls all the VMs within one
VM cluster. It keeps monitoring the performance of
each VM and adapting their configurations to the
environment dynamics online. It takes advantage of
the control interface provided by Dom0 (in a Xen en-
vironment) to control the configuration of individual
VMs. Reconfiguration actions take place periodically
based on a predefined time interval. At each iteration,
VM-Agent receives performance feedback and uses
that information to update the configuration policy.
The objective of VM-Agent is to drive the system into
an optimal configuration state in terms of through-
put, utilization, or any other application-level utility
functions.

Each application has its own App-Agent, with dif-
ferent app-specific objectives. It monitors the perfor-
mance of appliances belonging to the same applica-
tion and refines their configurations through interac-
tions with the system in a way similar to VM-Agent.
During the configuration process, it is trying to tune
application parameters to meet the SLA requirement.

All the agents are designed as standalone daemon
residing in a dedicated management server. They
collect system informations through TCP sockets. Co-
ordinated configuration decisions made by VM-Agent
and App-Agent offers an opportunity of tradeoff be-
tween the system wide utilization and application-
specific performance.

4 HYBRID RL APPROACH
RL provides a knowledge-free methodology for au-
tomatic managment. It requires no explicit system

model and could effectively deal with local optimum
problem. Meanwhile, there are challenges in apply-
ing RL to practice. It suffers from poor scalability
and uncertain initial performance. In this section, we
present a novel hybrid RL approach. The agents take
the advantages of RL to make configuration decisions.
They also enhanced by the use of Simplex-based space
reduction and guided exploration policy.

4.1 RL-based Configuration Decision Making
Reinforcement learning refers to a trial-and-error
learning process whereby an agent can learn to make
good decisions through a sequence of interactions
with the managed environment [22]. Under the auto-
configuration context, the interaction consists of ob-
serving current configuration state, selecting valid
configuration action and evaluating an immediate
reward due to the action in given state. It does not
require explicit model of either the managed system
or the external environment, like incoming traffic.

A RL problem is often modeled as a finite Markov
Decision Process (MDP). An MDP can be formulated
with a set of state S , a set of actions A, an immediate
reward function Ra(s, s

′)= E(rt+1|st = s, st+1 =
s′, at = a) and a state transition probability function
Pa(s, s

′)= Pr(st+1 = s′|st = s, at = a). At each
time interval t, the learning agent perceives it current
state st ∈ S and selects a valid action at ∈ A. The
action selection decision is determined not only by
the immediate reward, but also by the future rewards
the following states would yield. The “goodness” of
an action in a given state is measured by a value func-
tion Q(s, a), which estimates the future accumulated
rewards by taking this action:

Q(s, a) = E(
∞∑
k=0

γkrt+k+1|st = s, at = a),

where 0 < γ < 1 is a discount factor helping Q(s, a)’s
convergence. The optimal value function Q∗(s, a) is
unique and can be defined as the solution to the
following equation:

Q∗(s, a) =
∑
s′∈S

Pa(s, s
′)(Ra(s, s

′) + γmax
a′

Q∗(s′, a′)),

where s′ and a′ are the next state and action. Because

5

configuration decision is based on such long term
rewards, RL agent is able to deal with delayed effect
and local optimum problems.

The output of RL is a policy π that maps the
system states to the best actions. The optimal policy
π∗ achieves the maximal expected return from any
initial state, as defined below:

π∗(s) = argmax
a

(Ra(s, s
′) + γ

∑
s′∈S

Pa(s, s
′)Q∗(s′, a′)).

Following the optimal policy, given state s, the best
action should be the one that maximizes the sum of
the immediate reward and the expected discounted
reward of the next state s′. During each iteration, RL
agent selects action according to current policy and
observes reward feedback. The new reward is used to
update Q(s, a). Current policy π is improved based on
the updated Q(s, a). Both of the value function and
policy would converge to their optimal value after
sufficient interactions.

In this work, we formulate coordinated configura-
tion task as a RL problem. For the VM-Agent, the state
is defined as the virtualized resource configuration
of all the VMs within one VM cluster. For the App-
Agent, the state is defined as all the configurable
parameter settings of its corresponding application.
States defined on system configuration are determin-
istic in that Pa(s, s

′) = 1, which simplifies the RL
problem. They are also fully observable to RL agents.
For each configurable parameter, possible operation
can be either increase, decrease or nop. The actions for
the RL agents are defined as the combinations of the
operations on each parameter.

Immediate reward is defined to reflect the overall
system performance. Denote G and T for throughput
and response time of an application, GSLA and TSLA

for the corresponding service level agreements, and
Cthrpt and Crspt for the penalty of SLA violation. For
App-Agent, the immediate reward r is defined based
on the performance of the corresponding application
as follows:

r =
G

GSLA
+

TSLA

T
− Cthrpt − Crspt,

where

Cthrpt =

{
wthrpt∗GSLA

G if G < GSLA;
0 otherwise,

Crspt =

{
wrspt∗ T

TSLA
if T > TSLA;

0 otherwise,

where wthrpt and wrspt are the weights used to con-
trol the impact of SLA violations on the reward. In
this work, both of wthrpt and wrspt were set to 10.
Whenever SLA violation happens, a huge penalty will
be added to reward as a feedback. Recall that VM-
Agent controls all the VMs within a VM cluster. Its
immediate reward of a VM cluster with n applications
is defined as a weighted sum of the performance of

all the resident applications:

r =
n∑

i=1

wi ∗ ri,

where wi < 1 and
∑n

1 wi = 1
For RL agent, finding an optimal policy is equiva-

lent to generating the optimal value function Q∗(s, a)
for each state. During the learning, Q(s, a) need to
keep updating until its value sufficiently approxi-
mates Q∗(s, a). In this work, we employed temporal-
difference (TD) method for value function update:

Q(st, at) = Q(st, at)+α∗[rt+1+γ∗Q(st+1, at+1)−Q(st, at)],

where α is a learning rate parameter that facilitates
convergence in the presence of noisy or stochastic
transitions. The advantages of TD over other methods
(e.g. Monte Carlo or dynamic programming) are that
it requires no model of system dynamics and updates
Q(s, a) whenever the new reward is observed without
waiting for a final outcome. TD is responsive to en-
vironment variations and provides a good estimation
for long-term performance. The values of Q(s, a) are
stored in a look-up table and updated by writing
new values to the corresponding entries. The optimal
configuration policy is generated by selecting the state
with the maximal value after the table becomes stable.
Algorithm 1 shows our approach of online learning
value function (see Section 4.3 for the detials of guided
exploration policy). We set α and γ as 0.1 and 0.9,
respectively for value function updating.

Algorithm 1 Online value function learning.
1: Initialize value function table.
2: repeat
3: st = get current state();
4: at = get action(st) using guided exploration policy;
5: reconfigure(at);
6: r = observe reward();
7: st+1 = get current state();
8: at+1 = get action(st+1) using guided exploration

policy;
9: Q(st, at) = Q(st, at) + α ∗ (r + γ ∗ Q(st+1, at) −

Q(st, at));
10: st = st+1, at = at+1;
11: until value function converges

4.2 Simplex-based Space Reduction
Our previous studies [21], [5] showed that RL method
would suffer from curse of dimensionality in auto-
configuration of VMs and applications. In each case,
its state space grows exponentially with the number
of configurable variables. The poor scalability hinders
RL from being applied for the study of the interplay
of VM and application configurations. In our hybrid
RL approach, the Simplex method is used to reduce
the state space to a much smaller “promising” config-
uration set. RL agent only conduct searching on this
small set ignoring other “unpromising” states.

6

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

-30 -25 -20 -15 -10 -5 0 5

C
D

F

reward

workload1
workload2
workload3

(a) Cumulative distribution of reward(penalty)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 Workload1 Workload2 Workload3

C
P

U
 re

so
ur

ce

App Server
DB Server

(b) Variations of CPU resource under different work-
loads

Fig. 4. Searching space reduction.

The state space reduction is motivated by an ob-
servation that for a give system situation, only a
small portion of configurations would yield good
performance. Figure 4(a) shows the fraction of the
promising configurations in a search space of tens of
thousands configurations. The three types of work-
loads represent various resource demand of a multi-
tier application, defined in Table 3. As defined in
Section 4.1, a positive reward means no SLA violation
happened in any application. A negative reward im-
plies at least one application can not meet its SLA. The
result shows that only less than 10% configurations
in each case would yield positive reward. For these
desired configurations, the value of each parameter
is always within a small range compared with the
whole configurable scope. Figure 4(b) shows the vari-
ations in allocated CPU resource to TPCW application
within the positive-reward configuration set. We can
see that, for both application and database server, the
variations are less than 100 percentage of CPU under
all kinds of workloads.

To find the high-reward configuration set, we first
divide the original state space S into multiple exclu-
sive subsets by discretizing the configurable scope of
each parameter i into mi ranges. The states whose pa-
rameter settings fall into the same range are classified
into the same subset. For each range, its median value
is used to represent the whole configurable interval.
The original space S is then converted to a range-
based search space S′, in which each parameter i has
mi configurable steps and each state represents a sub-
set of configuration states in S. The best state s′b in S′

could be considered as the high-reward configuration
set in the original search space S.

To determine the s′b, we enhance the RL learning
agents with the downhill Simplex method. It is a
high efficient heuristic based method for nonlinear,

unconstrained optimization problems. A simplex is a
set of n+1 points in �n. Its objective is to optimize un-
known functions f(x) for x ∈ �n through a sequence
of transformations of the working simplex. For each
App-Agent or VM-Agent, if there are n configurable
parameters in all, the used simplex would contain
n + 1 vertices. The goal is to maximize the system
performance in terms of the reward. At each iteration,
agents receive performance feedback and select next
configuration action based on the heuristic rules.

The Simplex algorithm starts by selecting a random
working simplex S̃, whose vertices represent config-
uration states. Each iteration involves five steps: (1)
Ordering—ranking the vertices in S̃ according to a
pre-defined utility function; (2) Reflection—replacing
worst vertex with a new vertex reflected through the
centroid of the remaining n vertices. If the reflected
vertex is better than the old vertex, accept the new
vertex; (3) Expansion—If reflected vertex is the best
one in current S̃, expand the vertex more along the
reflected direction. If the expanded vertex better than
the reflected one, accept the former; (4) Contraction—
If the reflected vertex is worse than the second worst
one, contract the worst vertex towards the better
one; (5) Reduction—If none of the above steps can
achieve a better vertex, shrink the S̃ around the cen-
troid. During online search, S̃ keeps transforming and
shrinking, and finally converges to the optimal state.
Algorithm 2 shows our Simplex-based space reduc-
tion method in the reduction of the configurable state
space. Parameters β, ω, ζ and λ are respectively the
scale factor of the reflection, expansion, contraction
and reduction. They were set to 1, 2, 0.5 and 0.5. The
stop threshold τ was set to 0.05 to limit the searching
time. More details about downhill Simplex method
could be found in [3].

The downhill Simplex method is more time efficient
than learning-based RL methods. For the small-scale
range-based space S′, it is able to quickly locate
the best state s′b. Recall that s′b represents a set of
configurations in orignal state space S. RL searching
is only conducted within this best configuration set.
The size of the actual search space is reduced to
1/

∏n
i=1 mi of the orignal state space size. In this work,

for each parameter, we set m = 3, representing high,
median and low settings. Because the space reduction
process is conducted on each individual parameter,
the reduction rate also increases exponentially with
the problem scale. The RL algorithm can be always
guaranteed a relatively small search space even when
the original space grows tremendously.

4.3 System Knowledge Guided Exploration
It is known that there are two types of interactions
between RL agents and the managed system: ex-
ploitation and exploration. Exploitation is to follow
the current optimal policy; in contrast exploration
is the selection of random actions to capture the

7

Algorithm 2 Simplex-based space reduction.
1: Form a ranged-based search space S′;
2: Select a working smplex S̃ = {si : si ∈ S′, 1 ≤ i ≤

n+ 1};
3: /* State si is a vector of configurable paramters.
4: Following state operations are all vector operations */
5: Define utility function f(si) = 1/ri; /* ri is the reward

of si */
6: Given stop threshold τ ;
7: repeat
8: Ordering sample set S̃ according to utility function:

f(s1) ≤ f(s2) ≤ f(sn+1); /* sn+1 is the worst state
*/

9: calculate the centroid s0 =
∑n

1 si/n;
10: Reflection: sr = s0 + β ∗ (s0 − sn+1);

if f(s1) ≤ f(sr) ≤ f(sn)
then replace sn+1 with sr and goto step 8;

11: Expansion: if f(sr) ≤ f(s1)
then se = s0 + ω ∗ (s0 − sn+1);

if f(se) ≤ f(sr)
then replace sn+1 with se and goto step 8;
else replace sn+1 with sr and goto step 8;

12: Contraction: sc = sn+1 + ζ ∗ (s0 − sn+1);
if f(sc) ≤ f(sn+1)
then replace sn+1 with sc and goto step 8;

13: Reduction: replace all the points except s1 with
si = s1 + λ ∗ (si − s1) for i, 2 ≤ i ≤ n+ 1 ;
goto step 8;

14: until stdev(S̃) ≤ τ

system dynamics so as to refine the existing policy.
RL agent requires a certain amount of exploration
operations to accumulate sufficient system knowledge
for generating a stable policy. Basic RL algorithm
adopts ε − greedy policy for action selection, under
which the agent mostly conducts exploitation expect
for random selections with a probability ε. How to
balance exploitation and exploration is a fundamental
problem for RL algorithms. A too small ε would slow
down the learning process due to limited observa-
tions. In contrast, a too large ε would cause per-
formance fluctuations because of frequently visiting
suboptimal states.

Notice that performance fluctuations are mostly
caused by selecting unwise actions during explo-
ration. For example, removing resource from a busy
VM would lead to more severe contention. Increasing
the MaxThreads value in a busy web server would
cause overload. To help RL agent make a wise de-
cision, we employ a system knowledge-guided ex-
ploration policy. We consider two most performance
relevant system metrics, CPU and memory utiliza-
tion. Associated with each metric, the upper bound
and lower bound are defined to regulate resource
utlization. We denote Uub

cpu, U lb
cpu, Uub

mem, and U lb
mem

as the upper bound and lower bound for CPU and
memory, respectively. Resource utilizations should be
kept within the ranges.

During the configuration process, the RL agents
would keep a set of valid actions, A , for each
state. It is divided into three exclusive subsets: Ainc,

Adec, and Anop, which represent the set of actions
to increase resources, decrease resources, and keep
unchanged, respectively. If current resource utilization
U goes beyond the corresponding Uub, actions in Adec

would be removed from A to avoid further resource
reduction. In contrast, if U becomes below the U lb,
actions in Ainc would be removed to prevent resource
waste, see Algorithm 3 for the details. The new policy
is expected to guide the exploration to select wise
actions. Under this protection, a higher exploration
rate could be used to collect more system information
quickly. In this work, we set the exploration rate to 0.3
to accelerate the learning process. The resource upper
bound and lower bound were set in Table 1, based on
our experiences. We implemented system knowledge-
guided exploration policy in VM-Agent and TPCW
App-Agent.

Algorithm 3 System knowledge-guided exploration
policy.

1: Given exploration rate ε;
2: Given Uub

cpu, U lb
cpu, Uub

mem, U lb
mem;

3: Generate random number ran in [0,1];
4: if ran ≥ ε then select the best observed action a ∈ A;
5: else
6: for all monitored system resources do
7: Check U ;
8: if U ≥ Uub then A = A−Adec;
9: else

10: if U ≤ U lb then A = A−Ainc;
11: end for
12: Random Select action a ∈ A;

4.4 Coordinated Auto-configuration
Recall that the processes of VM and application con-
figurations interfere with each other. In some cases,
system performance heavily depends on the order
of the configuration procedures. For example, if we
tune VM configuration first, an application parameter
setting error would mislead the VM configuration
decision and cause performance degradation and vice
versa. Instead of specifying the configuration order
for each situation, we employ a strategy that repeats
the two levels of configuration alternatively until the
system performance is stabilized. The coordinated
configuration algorithm within individual VM cluster
is shown in Algorithm 4. Different VM clusters should
conduct configuration task in parallel. The algorithm
starts the VM configuration at the beginning of the
first loop because it helps involving all VMs as soon
as possible. To quickly erase the side effect of unwise
configurations, VM-Agent and App-Agent take Sim-
plex searching alternatively at first. This makes agents
putting more focus on promising states and reduces
the algorithm’s convergence time.

5 EVALUATION DESIGN
To evaluate the efficacy of CoTuner, we designed
experiments to test the following capabilities of the

8

Algorithm 4 Coordinated auto-configuration algo-
rithm.

1: Form search space S′ for VM-Agent;
2: Form search space S′ for each App-Agent;
3: repeat
4: All the VM-Agent Perform Simplex searching on the

corresponding S′;
5: All the App-Agents Perform Simplex searching in

parallel on the corresponding S′;
6: Select high-reward configuration set for VM-Agent;
7: Select high-reward configuration sets for App-

Agents;
8: VM-Agents Perform RL based Auto-configuration

using guided exploration policy;
9: App-Agents Perform RL based Auto-configuration in

parallel using guided exploration policy;
10: until performance gets stable

TABLE 1
Resource thresholds setting.

Apps Uub
cpu U lb

cpu Uub
mem U lb

mem

TPCW 60% 40% 80% 50%
TPCC 80% 50% 80% 50%

approach: (1) Automatically adjust VM and appli-
cation configurations according to system dynamics
(Section 6.1); (2) Optimize system wide performance
as well as reducing SLA violations for each applica-
tion (Section 6.1); (3) Deal with the interplay between
the two level of configurations and improve system
performance over independent tuning (Section 6.2);
(4) Improve configuration efficiency and regulate re-
source utilizations (Section 6.3); (5) Scale to a large
virtual cluster (Section 6.4).

We developed a prototypes of the CoTuner frame-
work and tested it on a DELL server cluster, connected
by a gigabit Ethernet. Each server was configured
with 2 quad-core Xeon CPUs and 8GB memory, and
virtualized through Xen Vesion 3.1. Both the driver
domain (Dom0) and the VMs were running CentOS
5.0 with Linux kernel 2.6.18.

We selected two benchmark applications, TPCW
and TPCC. TPCW [1] is an online book store appli-
cation, consisting of a tier of application in the front
and a tier of database in the back. TPCC [2] is an
online transaction processing (OLTP) workload that
represents a wholesale parts supplier operating out
of a number of warehouses. Unlike TPCW which is
largely CPU-intensive, TPCC contains a large amount
of lightweight disk reads and sporadic heavy writes
and its performance is more sensitive to memory
size. The TPCW application was run Tomcat/MySQL
servers. MySQL was used as the database server in
TPCC applications.

To characterize the behavior of each application, we
first conducted experiments in two physical servers,
each hosting two VMs. We deployed TPCW across
the two servers with application server on one server
and database on the other. Each physical server also

TABLE 2
Tunable performance critical parameters.

Parameters Default Setting
Virtual cpu time equally allocated

Machine memory equally allocated
Tomcat MaxThreads 150

Session timeout 30
keyBufferSize 32MB

MySQL maxHeapSize 32MB

hosted one TPCC instance. Such configuration repre-
sents a typical scenario of VM deployment: a multi-
tier application is deployed across different servers,
and heterogeneous applications may be consolidated
in the same physical server. We pinned the two VMs
on the same physical server onto 4 physical cores and
4 GB memory to cap the VM resource in order to
demonstrate the effect of configuration in a resource-
contented system. We also evaluated the scalability of
our approach on a virtualized environment with 16
physical servers and 100 VMs.

We used the metrics of throughput and response
time to evaluate the applications performance. We
define system-wide throughput to be accumulated
throughput of all running applications within the sys-
tem. We assumed response time SLA to be 5 seconds
for both TPCW and TPCC applications. To evaluate
and compare application throughput under different
workloads, we define the throughput when 95% of
incoming requests are finished in time (5 seconds in
our experiments) as a reference value (i.e. throughput
SLA) for normalization.

We selected virtual CPU time and virtual mem-
ory as VM configuration parameters. The config-
uration actions were issued through Dom0’s priv-
ileged control interface xm. For the TPCW and
TPCC applications, four most performance-critical
parameters are MaxThreads, Session Timeout,
keyBufferSize, and maxHeapSize. Their default
settings are shown in Table 2.

6 EXPERIMENTAL RESULTS

6.1 System Wide Performance Optimization
In this section, we evaluate CoTuner’s capabilities
in configuration adaptation, performance optimiza-
tion and SLA guarantee during workload changing.
The workload intensity of TPCW application is de-
termined by the number of concurrent clients and
that of TPCC application is controlled by the number
of warehouses. We defined three types of workload
mixes in Table 3, representing various resource de-
mands of the applications. We ran the experiment
for 240 configuration iterations; each iteration lasted 1
minute. That is, the cloud system performed a recon-
figuration operation every 1 minute. To demonstrate
the adaptivity of the reconfiguration process, we di-
vided the 240 iterations into 3 phases and changed the

9

TABLE 3
Workloads settings.

Workloads TPCW TPCC-1 TPCC-2
workload-1 1000 clients 30 WHs 10 WHs
workload-2 3000 clients 5 WHs 5 WHs
workload-3 2000 clients 10 WHs 20 WHs

TABLE 4
Application parameter configuration.

Parameter wkload1 wkload2 wkload3
MaxThreads 100 350 250

Session timeout 5 sec 1 sec 3 sec
KeyBufferSize(TPCC1) 64MB 16MB 32MB
maxHeapSize(TPCC1) 64MB 16MB 64MB
KeyBufferSize(TPCC2) 64MB 32MB 64MB
maxHeapSize(TPCC2) 128MB 16MB 64MB

workload mix from workload-1, to workload-2, and to
workload-3 every 80 iterations. We assumed virtual
resources were initially evenly distributed among the
VMs and that the virtual appliances were run in their
default parameter settings in the beginning.

Figure 5 shows the CPU and memory allocations
to the applications on both servers. Each data point
is an average of a moving window of 20 iterations.
From the figure, we can see that in the first phase,
CoTuner gave more portions of CPU and memory
resources to TPCC applications to meet their SLAs.
When workload mix changed from workload-1 to
workload-2 at iteration 80, TPCW workload became
heavy and TPCC workload applications was reduced.
In response to the workload change, CoTuner re-
claimed idle resources from TPCC applications and
allocated them to the TPCW. In the last phase, all the
applications were under medium workloads. They all
obtained sufficient resources proportionally to their
demands. Table 4 shows the parameter settings of
the three applications due to CoTuner under three
workloads. These key parameters were reconfigured
according to incoming workloads and allocated re-
sources. The result demonstrates that CoTuner was
able to detect the system variations and adapt both
VM and application configurations to dynamic traf-
fics.

Figure 6 shows the accumulated throughput of all
three applications due to our hybrid RL algorithm in
the CoTuner framework. For comparison, we imple-
mented three other algorithms for coordinated con-
figuration under the framework: Simplex algorithm,
basic RL (BRL) and Model-based RL (MRL). They fol-
lowed the same configuration strategy only different
in decision algorithms. Simplex and BRL framework
used standard Nelder-Mead and Reinforcement algo-
rithm respectively as their decision making method.
To avoid performance fluctuations, we set exploration
rate as low as 0.05 for BRL approach and a relatively
relaxed stop threshold 0.1 for Simplex algorithm.

 0
 50

 100
 150
 200
 250
 300
 350
 400

20 40 60 80 100 120 140 160 180 200 220 240C
P

U
 A

llo
ca

tio
n(

P
er

ce
nt

ag
e)

Number of iterations

APP DB TPCC1 TPCC2

(a) CPU allocation

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

20 40 60 80 100 120 140 160 180 200 220 240M
em

or
y

A
llo

ca
tio

n(
M

B
)

Number of iterations

APP DB TPCC1 TPCC2

(b) Memory allocation

Fig. 5. Resource allocations to different VMs.

 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000

20 40 60 80 100 120 140 160 180 200 220 240

Th
ro

ug
hp

ut
(r

eq
/m

in
)

Number of iterations

CoTuner
MRL

Simplex
BRL

Fig. 6. System wide performance due to different con-
figuration strategies.

Simplex method was used in previous study [33] for
automatic parameter tuning. MRL adopt model-based
reinforcement learning method used in our previous
work [21]. We built the performance prediction model
for each workload elaborately. Because MRL assumed
the perfect future knowledge of incoming workload
and the accurate performance model, its results set
an upper bound of the performance.

From the figure, we can see that CoTuner with
hybrid RL algorithm was able to consistently optimize
system wide throughput and drive the system into
a high-productive configuration state rapidly when-
ever there is an abrupt workload change. Although
performance fluctuations (represented as error bar)
happened at the initial adaptation stage, the variations
in throughput were significantly reduced after hybrid
RL agent had observed sufficient configuration states
(usually after 40 iterations for each workload). It
is expected that Simplex and BRL strategies led to
much more performance fluctuations and degrada-
tion. CoTuner gained more than 30% performance
improvement over the Simplex strategy and as much
as 40% improvement over the BRL strategy. Due to
the use of prediction models, MRL strategy could
drive system to a high-productive configuration faster
than CoTuner. But the hybrid RL was able to achieve
more than 95% of the optimal performance due to
MRL after accumulating a certain amount of system
information.

From the figure, we can also know that the Simplex
and BRL frameworks had the capability of adapting

10

configurations to system dynamics and improving
system performance. But their limitations restricted
their applications in online auto-configuration. Sim-
plex method is based on a series of heuristic trail-and-
error tests. It tends to be trapped in local optimal state.
In contrast, CoTuner performs a RL-based search fol-
lowing Simplex search. The objective of maximizing
accumulated long term reward in RL inherently solve
this problem. BRL strategy requires a long exploration
time. It can not generate an optimal policy for such
a large state space in tens of iterations due to too
few observations. The hybrid RL approach in CoTuner
framework employs Simplex method to reduce the
huge search space and execute RL searching only
within the high-reward configuration set. It takes
the advantages of both approaches and appropriately
addresses their limitations.

We note that Figure 6 shows the accumulated
throughput of all three applications. To reflect the
service quality of individual applications with respect
to their respective SLA requirements, we present their
normalized throughput due to different configuration
in Figure 7. The figures show that CoTuner frame-
work was able to improve the performance of each
individual application and guarantee their SLAs after
the system became stable. In contrast, Simplex and
BRL framework may treat applications unfairly due
to unbalanced resource configurationa. For example,
controlled by Simplex framework, TPCW application
yield a high throughput under workload2. The nor-
malized values reached 1.2 after it became stable.
However, TPCC1 and TPCC2 applications were un-
fairly treated under workload2 with a delivery of
about 80% SLA throughputs. In cloud computing
environment, different applications maybe belong to
different users. Their performance should be equally
guaranteed. It is not reasonable to sacrifice any ap-
plication even if for system wide performance im-
provement. In CoTuner, SLA is guaranteed by adding
a huge penalty to the reward if any SLA violation
happened.

Figure 8 shows cumulative distribution of SLA
violations with respect to throughput and response
time over the 240 configuration iterations. From Fig-
ure 8(a), we can observe that CoTuner was able to
keep system wide throughput SLA violation rate less
than 15% during the configuration process. In con-
trast, the SLA violation rates due to Simplex and BRL
strategies could reach as high as 85% due to their low
efficiency of finding good configurations. Figure 8(b)
shows the CoTuner’s SLA violations distribution, in
terms of response time, for each application. From
the figure, less than 15% violation rates could be
observed.

6.2 Benefits of Coordinated Configuration
As discussed in Section 2, VM and application con-
figurations are related. Independent tuning either of

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

20 40 60 80 100 120 140 160 180 200 220 240

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

CoTuner MRL Simplex BRL

(a) TPCW

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

20 40 60 80 100 120 140 160 180 200 220 240

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

CoTuner MRL Simplex BRL

(b) TPCC1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

20 40 60 80 100 120 140 160 180 200 220 240

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

CoTuner MRL Simplex BRL

(c) TPCC2

Fig. 7. Application performance due to different con-
figuration frameworks.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.6 0.8 1 1.2 1.4

C
D

F

normalized throughput

CoTuner
Simplex

BRL
MRL

(a) throughput

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 2 3 4 5 6

C
D

F

response time

TPCW
TPCC1
TPCC2

(b) response time

Fig. 8. Cumulative distribution of SLA violations.

them can hardly lead to optimal system-wide per-
formance. In this section, we demonstrate how well
CoTuner deal with the interplay and how much per-
formance improvement could be resulted from coor-
dinated configuration.

We considered one TPCW application with a work-
load of 3000 clients in this experiment. In the first
phase of 80 iterations, App-agent was disabled and
the application parameter, MaxThreads, was set to
a small value of 50. We enabled the VM-agent and

11

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120 140 160
 0

 0.2

 0.4

 0.6

 0.8

 1
A

ve
ra

ge
 th

ro
ug

hp
ut

 (r
eq

/m
in

)

A
llo

ca
te

d
R

es
ou

rc
e

Number of iterations

Throughput
CPU

Memory

Fig. 9. Interaction between VM and Application config-
urations.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

workload1 workload2 workload3

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t CoTuner

App-Only
VM-Only

Server-Independent

Fig. 10. System performance due to different configu-
ration strategies.

App-agents at iteration 81, which configured the VM
and application parameters in a coordinated way.
Figure 9 shows that the throughput saturated at 1500
requests/minute in the first phase due to the low
setting of MaxThreads. The App-agent enabled at
iteration 81 increased MaxThreads to 350 automat-
ically and brought the system performance up to
2800 requests/minute in the second phase. Figure 9
also shows the CPU and memory resource allocation
over the time, normalized to their caps: 400 CPU
percentage and 4GB memory. Since extra resource
could not improve the throughput, VM-Agent just
allocated 20% of them to TPCW and reserved the
remaining for other applications. After the application
misconfiguration was corrected, CoTuner increased
the resource allocation to more than 60% for both CPU
and memory within 40 iterations. The results suggest
that CoTuner was able to deal with the interactions be-
tween VM and application configurations efficiently.

We compared CoTuner with three independent
tuning strategies: VM-Only, App-Only and Server-
independent. VM-Only and App-Only agents con-
sider single aspect of the two level configurations.
For VM-Only agent, we assumed the default settings
for application parameters. For App-Only agent, vir-
tual resources were evenly distributed to the VMs.
In Server-independent strategy, each physical server
pursues its performance optimization individually.
For fairness in comparison, all agents are run with a
hybrid RL algorithm and a system knowledge-guided
exploration policy. Recall that the system performance
resulted from MRL was optimal for application spe-
cific workloads. We normalize the throughputs due to
different tuning strategies to the maximum through-
put in Figure 10. From the figure, we can see that

CoTuner could deliver as much as 95% of the upper
bound for all the workloads. It was able to adapt both
VM and application configurations to the traffic dy-
namics. In contrast, Server-independent agent could
never reach 80% of the maximum throughput. Perfor-
mance of VM-Only and App-Only agents fluctuated
to a large extent due to their limited adaptability.
Coordinated tuning achieved an improvement of sys-
tem wide performance by 20%-33% over independent
tuning. We note that independent tuning assumed
default application parameter settings or even VM
resource distribution. Any misconfiguration in either
aspect would lead to significant performance degra-
dation, as shown in Figure 9. Coordinated tuning is
able to correct such misconfiguration and improve
performance.

6.3 Effect of Guided Exploration

In this experiment, we examined the effect of the
system knowledge-guided exploration policy, in com-
parison with the standard ε− greedy policy. We con-
sidered a single TPCW application with VM-Agent
in operation. Application parameters were carefully
tuned to adapt to the workload.

Figure 11(a) shows the guided exploration policy
gained throughput improvement as much as 200%
over the ε− greedy policy. It was able to lead the sys-
tem to a good configuration state within 15 iterations.
The result also suggests that system performance ob-
tained consistent improvement during configuration
process. The large variation in the beginning was due
to lack of memory resource. However the guided
policy could quickly direct the VM-Agent to correct
this misconfiguration and bring the throughput back
to a normal level.

Figure 11(b) also shows the change of memory allo-
cation and utilization of the Tomcat application server.
We can see that at iteration 1, the memory utilization
went beyond Uub

mem (80%) and approached nearly
100%. Accordingly, the guided policy selected an ac-
tion of “memory increase” in the next two iterations,
leading to significant performance improvement at
iteration 2 and 3. Similarly, at iteration 20, memory
utilization dropped down to 40% below U lb

mem (50%).
An action of “memory decrease” helped reclaim idle
resource. After that, memory utilization was brought
back to 70% without compromising system through-
put.

Figure 12 shows the cummulative distributions of
resource utilization for multiple applications we ex-
perimented with in Section 6.1. We considered the
two TPCW VMs as a group (TPCW) and the other
two TPCC VMs as another group (TPCC). The ver-
tical lines represent the bounds for CPU or memory
utilizations defined in Table 1. We can see that, for
both CPU and memory resources, the outlier points
are below 20%. This suggests that guided exploration

12

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30

Th
ro

ug
hp

ut
 (r

eq
/m

in
)

Number of Iterations

guided exploration
epsilon-greedy

(a) Throughput

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30
 40

 50

 60

 70

 80

 90

 100

A
llo

ca
te

d
M

em
or

y
(M

B
)

M
em

or
y

U
til

iz
at

io
n

(%
)

Number of Iterations

Allocation
Utilization

(b) Memory allocation

Fig. 11. Effect of guided exploration in comparison with
ε− greedy.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100

C
D

F

CPU utilization

TPCW
TPCC

(a) CPU utilization distribution.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100

C
D

F

CPU utilization

TPCW
TPCC

(b) Memory utilization distribution.

Fig. 12. Bounded resource utilization.

policy could effectively bound the resource utilization
and lead to a higher learning efficiency.

6.4 Scalability Analysis
In this section, we evaluate the scalability of CoTuner
using testbeds with 16 physical servers and 100 VMs.
40 instances of the multi-tier TPCW application and
20 instances of the TPCC application were deployed,
which formed several VM clusters in different sizes.
All VM clusters conducted configuration tasks in
parallel. We defined the largest VM cluster as the
dominant cluster. We ran the experiments five times
with different number of VMs from 20 to 100. Each
experiment lasted for 720 iterations. The applications
changed their workloads very 240 iterations.

Figure 13 shows the settling time of configuration
agents in testbeds of different sizes. We defined the
settling time as the duration (number of iterations)
required for the performance to reach and stay within
a specified error band (5% in this work) around the fi-
nal value. From the figure, we can see that the settling
time increased slightly with the scale of the testbed.
Because the configuration processes run in parallel,
the system wide performance is usually determined
by the dominant cluster. The performance deviations
were due to existing multiple dominant clusters. For
example, there were 2 dominant clusters with size
16 in the third testbed and 5 dominant clusters with
size 16 in the fifth testbed. The result shows that
CoTuner was able to keep average settling time under
85 iterations for all the testbeds. It retained the high
efficiency when the controlled system scaled up.

Figure 13 also shows the average SLA violation
rates with respect to throughput and response time
among all the running applications. The SLA violation
rate was defined as the number of configuration steps
leading to SLA violations over the total number of
running iterations. It involved transient configuration
states over the online learning time and steady states
reached after the policy becomes stable. CoTuner was
able to keep the overall SLA violation rate under 12%.
When the system in steady state, the average SLA
violation rate was no more than 4.1%.

 0

5

10

15

S
LA

 v
io

la
tio

n
ra

te
 (%

)

Number of VMs

Throughput steady
Throughput transient

Response time steady
Response time transient

10080604020

 40

 60

 80

 100

 120

S
et

tli
ng

 ti
m

e(
ite

ra
tio

ns
)

Settling time

Fig. 13. Scalability analysis.

7 RELATED WORK

In [13], Kephart and Chess defined autonomic com-
puting as a general methodology in which comput-
ing systems can manage themselves given high level
objectives from administrators. A recent comprehen-
sive survey of autonomic computing works can been
seen in [11]. Cloud dynamics requires an autonomic
management strategy. Many researches have devoted
to adaptive configuring virtual machines and resident
application parameters for optimizing system perfor-
mance.

In [30], [6], [33], classical combinatorial optimiza-
tion approaches were applied to automate the tuning

13

process. In their works, automated configuration is to
find a combination of parameters setting that max-
imizes the performance function. Such approaches
were applied to configuration of software systems like
Apache server [29], application server [30], database
server [14] and online transaction services [6], [33]. Xi,
et al. [30] and Zhang, et al. [33] used hill-climbing and
Simplex algorithms to search optimal server configu-
rations for performance optimization. These heuristic
approaches tend to trap the system into local opti-
mums when the complexity of configuration problem
is increased due to cloud dynamics. By maximizing
the long term reward, RL could effectively avoid local
optimum problem. Moreover, these works assumed
the hardware resources allocated to the applications
were unchanged. In contrast, our work consider ap-
plication parameter tuning in the presence of virtual
resource variation.

There were other recent approaches based on feed-
back control for online configuration. In [19], Padala,
et al. attempted to apply adaptive control to automate
the configuration of virtual machine resources. Xu, et
al. proposed an adaptive controller to modulate CPU
share between different classes of traffic for page-view
response time guarantees [28], [31]. In [8], Gong, et al.
developed a model-predictive feedback controller for
responsive power capping. They further proposed an
adaptive control method to coordinate power and per-
formance in virtual machines [9]. For controllability,
most of them restricted themselves to the tuning of
limited number of parameters of target sytems. In [7],
a distributed controller was proposed in a two-tier
website with an actuator in each tier. Padala et al. [17]
and Wang et al. [27] successfully applied multi-input
multi-out controllers to adaptively configure resource
in virtual data centers. Their approaches rely on pre-
defined explicit system models, building which can
be highly knowledge-intensive and labor-intensive for
complex system. Different from them, our hybrid RL
approach does not require explicit model of either the
managed system or the external process.

RL-based approaches were initially applied to au-
tomatic configuration of application parameters in
web systems [5] and VM resource in virtual data
centers [21] independently. Both works designed the
configuration agents to be run with model-based per-
formance approximators or pre-learned initial Q-table,
for the purpose of addressing the scalability and poor
initial performance issues. In [20], we proposed a
scalable distributed RL algorithm for elastic virtual
resource provisioning in a large scale data center. The
configuration agents were enhanced with a highly
efficient representation of experiences (CMAC) and
intelligent initial policies to improve system perfor-
mance. However, the interplay between the two layers
of configurations significantly increases the complex-
ity of coordinated configuration task. Building an
accurate performance approximator or initial policies

requires much human effort and knowledge in such
context. In contrast, our hybrid RL algorithm employs
Simplex method to reduce state space and uses sys-
tem knowledge-guided exploration policy to guide
configuration process. It does not assume any perfor-
mance model or initial policy. The Simplex method
and RL method have found their applications in
other aspects of computer systems. Zheng, et al. [33]
applied Simplex method to reduce the number of
trails and error testings in automatic configuration of
web services. Recent studies showed the feasibility of
RL approaches in resource allocation [21], [23], [25],
power management [24], job scheduling in grid [4]
and memory controller [12].

Previous studies on virtual resource management
or application parameter tuning considered these two
layers of configurations independently. To our best
knowledge, CoTuner framework should be the first
approach towards coordinated auto-configurations of
both VM resource and running appliances in clouds,
dealing with interference between them.

8 CONCLUSIONS

In this paper, we have presented a model-free co-
ordinated auto-configuration framework CoTuner to
automatically tune both virtual resource allocations
and application parameters for system performance
optimization. At the heart of the framework is an
efficient approach based on Simplex optimization and
reinforcement learning methods. It is enhanced by
system knowledge-guided exploration policy to ac-
celerate the learning process. Experimental results on
Xen VMs with TPCW and TPCC benchmarks showed
the CoTuner was able to adapt VM and appliance
configurations to cloud dynamics and drive system
to an optimal or near optimal state eventually.

Current implementation of CoTuner framework
was limited to web appliances, focusing on the re-
sources of CPU and memory. Other important re-
sources such as network I/O, disk I/O, especially L2
cache for multi-core CPUs should be considered in
future work. Moreover, the newly designed guided
exploration policy just worked well for VM-Agent
and TPC-W App-Agent. More application specific do-
main knowledge was needed for other App-Agents.
A general guided exploration policy deserves fur-
ther study. The CoTuner framework required no pre-
built models through machining learning or system
identification. Due to the lack of system dynamic
knowledge, it may take a little longer time to find
an optimal configuration compared with other model-
based approaches. This hinders the CoTuner from
being applied for short-lived appliances or virtual
machines. Moreover, CoTuner could not generate a
global policy for all states. It just focus on more
promising configuration set.

14

REFERENCES

[1] http://www.tpc.org/tpcw.
[2] http://www.tpc.org/tpcc.
[3] M. Avriel. Nonlinear Programming: Analysis and

Methods. Dover Publishing, 2003.
[4] A. Bar-Hillel, A. Di-Nur, L. Ein-Dor, R. Gilad-

Bachrach, and Y. Ittach. Workstation capacity
tuning using reinforcement learning. In SC, 2007.

[5] X. Bu, J. Rao, and C.-Z. Xu. A reinforcement
learning approach to online web systems auto-
configuration. In ICDCS, 2009.

[6] I.-H. Chung and J. K. Hollingsworth. Automated
cluster-based web service performance tuning. In
HPDC, pages 36–44, 2004.

[7] Y. Diao, J. L. H. andTesauro Sujay S. Parekh,
H. Shaikh, and M. Surendra. Controlling quality
of service in multi-tier web applications. In
ICDCS, page 25, 2006.

[8] J. Gong and C.-Z. Xu. A gray-box feedback
control approach for system-level peak power
management. In ICPP, 2010.

[9] J. Gong and C.-Z. Xu. vpnp: Automated coordi-
nation of power and performance in virtualized
datacenters. In IWQoS, 2010.

[10] D. Gupta, L. Cherkasova, R. Gardner, and
A. Vahdat. Enforcing performance isolation
across virtual machines in xen. In Middleware,
2006.

[11] M. C. Huebscher and J. A. McCann. A survey
of autonomic computing - degrees, models, and
applications. ACM Comput. Surv., 40(3), 2008.

[12] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana.
Self-optimizing memory controllers: A reinforce-
ment learning approach. In ISCA, 2008.

[13] J.O.Kephart and D.M.Chess. The vision of auto-
nomic computing. In IEEE Computer, 2003.

[14] E. Kwan, S. Lightstone, K. B. Schiefer, A. J. Storm,
and L. Wu. Automatic database configuration
for db2 universal database: Compressing years of
performance expertise into seconds of execution.
In BTW, pages 620–629, 2003.

[15] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L. Heller-
stein, and S. S. Parekh. Online response time
optimization of apache web server. In IWQoS,
pages 461–478, 2003.

[16] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling
i/o in virtual machine monitors. In VEE, 2008.

[17] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu,
M. Uysal, Z. Wang, S. Singhal, and A. Merchant.
Automated control of multiple virtualized re-
sources. In EuroSys, pages 13–26, 2009.

[18] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, A. Merchant, and K. Salem. Adaptive
control of virtualized resources in utility comput-
ing environments. In EuroSys, 2007.

[19] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, A. Merchant, and K. Salem. Adaptive

control of virtualized resources in utility comput-
ing environments. In EuroSys, 2007.

[20] J. Rao, X. Bu, and C.-Z. Xu. A distributed
self-learning approach for elastic provisioning of
virtualized cloud resources. In MASCOTS, 2011.

[21] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin.
Vconf:a reinforcement learning approach to vir-
tual machines auto-configuraiton. In ICAC, 2009.

[22] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[23] G. Tesauro. Online resource allocation using de-
compositional reinforcement learning. In AAAI,
2005.

[24] G. Tesauro, R. Das, H. Chan, J. Kephart,
D. Levine, F. Rawson, and C. Lefurgy. Managing
power consumption and performance of com-
puting systems using reinforcement learning. In
Advances in Neural Information Processing Systems
20. 2007.

[25] G. Tesauro, N. K. Jong, R. Das, and M. N. Ben-
nani. On the use of hybrid reinforcement learn-
ing for autonomic resource allocation. Cluster
Computing, 2007.

[26] Y. Wang, R. Deaver, and X. Wang. Virtual batch-
ing: Request batching for energy conservation in
virtualized servers. In IWQoS, 2010.

[27] Y. Wang, X. Wang, M. Chen, and X. Zhu. Power-
efficient response time guarantees for virtualized
enterprise servers. In IEEE Real-Time Systems
Symposium, pages 303–312, 2008.

[28] J. Wei and C.-Z. Xu. eqos: Provisioning of
client-perceived end-to-end qos guarantees in
web servers. IEEE Trans. Computers, 55(12):1543–
1556, 2006.

[29] A. Whitaker, R. S. Cox, and S. D. Gribble. Config-
uration debugging as search: Finding the needle
in the haystack. In OSDI, 2004.

[30] B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and
L. Zhang. A smart hill-climbing algorithm for
application server configuration. In WWW, pages
287–296, 2004.

[31] C.-Z. Xu, J. Wei, and F. Liu. Model predictive
feedback control for end-to-end qos guarantees
in web servers. In IEEE Computer, 2008.

[32] Y. Zhang, W. Qu, and A. Liu. Automatic perfor-
mance tuning for j2ee application server systems.
In WISE, 2005.

[33] W. Zheng, R. Bianchini, and T. D. Nguyen. Au-
tomatic configuration of internet services. In
EuroSys, 2007.

