Dual Busy Tone Multiple Access (DBTMA) : A Multiple Access Control Scheme for Ad Hoc Networks

Z. Haas and J. Deng IEEE Trans. on Communications June, 2002

This paper completely solves hidden and exposed terminal problems

Key Idea & Goals & Main Results

g Key idea:

 \checkmark Continuously protect data packet transmission $\stackrel{*}{_}$

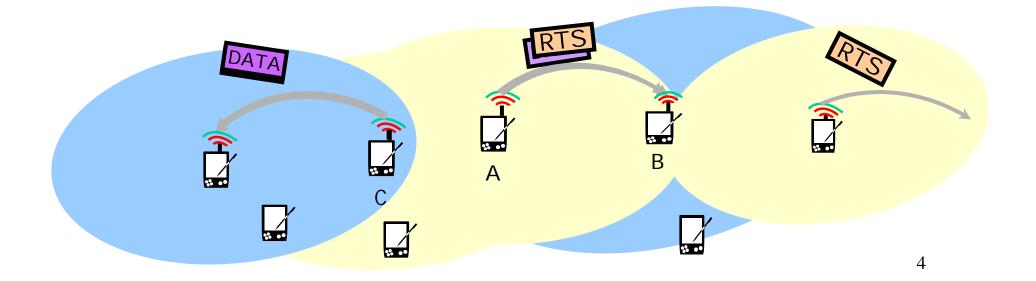
✓ Use out-band channels to distribute information

g Goals

✓ Solve hidden & exposed terminal problems

g Main Results

✓ DBTMA: two out-of-band busy tones & RTS


V Completely solve hidden & exposed terminal problems

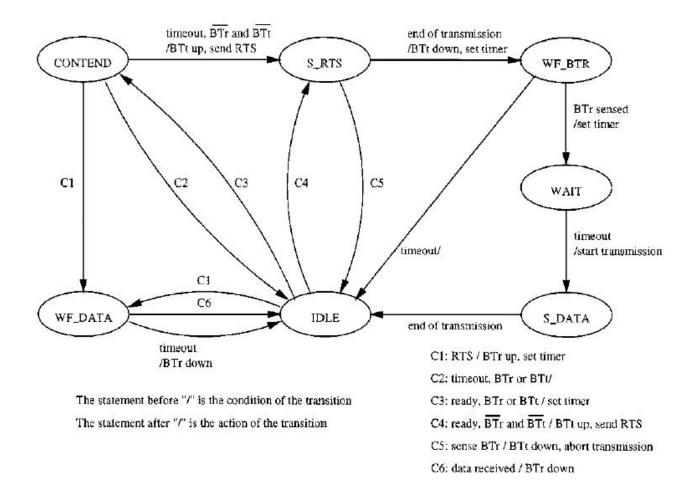
Related Works

- g BTMA (Busy Tone Multiple Access, F. A. Tobagi & L. Kleinrock 1975):
 - ✓ Using two channels: data channel & control channel
 - ✓ A control center basestation
 - ✓ When base station senses the transmission of a terminal, it broadcasts a busy tone signal to all terminals, keeping them (except the current transmitter) from accessing the channel
- g RI-BTMA (Receiver-Initiated Busy Tone Multiple Access, C. Wu & V. O. K. Li 1987)
 - ✓ Time is slotted (similar to slotted ALOHA & need time clock synchronization)
 - \checkmark A packet preamble is sent to intended receiver by the transmitter
 - \checkmark Receiver sets up an out-of-band busy tone and waits for the data
 - \checkmark When sensing busy tone, transmitter sends the data packet
- g FAMA (Floor Acquisition Multiple Access, C. L. Fuller & J.J Garecia-Luna-Aceves 1995)
 - ✓ FAMA-NPC (NPC = on-persistent packet sensing)
 - MACA
 - ✓ FAMA-NCS (NCS non-persistent carrier sensing)
 - Sensing carrier before sending RTS
 - If clear, sends RTS
 - Otherwise, waiting a random time, sensing carrier again
 - CTS is more larger than RTS

DBTMA

- **g** Two narrow-bandwidth tones
 - **I** BTt (Transmitter Busy Tone)
 - Set up by the node which has data to send
 - Stop when completing transmitting RTS
 - **i** BTr (Receiver Busy Tone)
 - Set up by the node which receives RTS
 - Stop when completely receives the data packet
- g All nodes sensing any busy tone are not allowed to send RTS
- g Any node sensing no busy tone is allowed to transmit

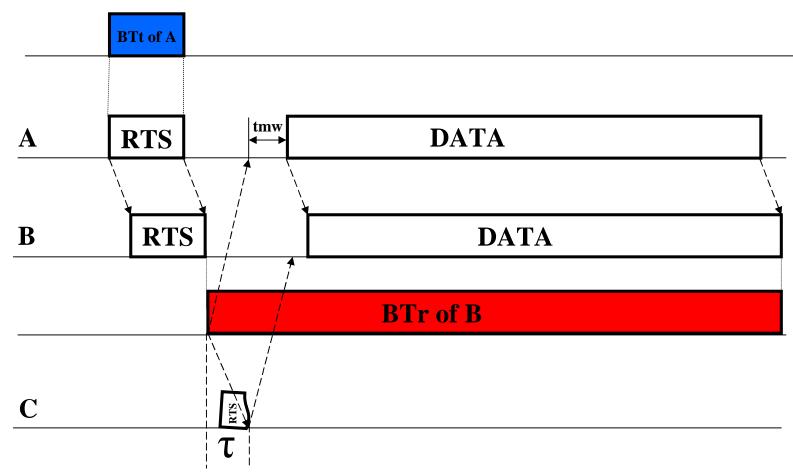
Functionalities of Busy Tones


- **g** BTr (set up by receiver)
 - ✓ Notifying the RTS sender that RTS has been received and channel has been acquired
 - ✓ Announcing to its neighbor nodes that it is receiving data packet and they should refrain from accessing the channel
- **g** BTt (set up by sender)

✓ Providing protection for the RTS packet

Seven DBTMA Operation States

- g IDLE
 - ✓ Node with on packets to send stays in IDLE state
- g CONTEND
 - ✓ Node has data to send but it is not allowed to send RTS, it stays in CONTEND state
- g S_RTS
 - ✓ Node sending RTS is in S_RTS state
- g S_DATA
 - ✓ Node sending data is in S_DATA state
- g WF_BTR
 - ✓ RTS packet sender waiting for the ACK from its intended receiver is in WF_BTR state
- g WF_DATA
 - ✓ Receiver waiting for DATA is in WF_DATA state
- g WAIT
 - ✓ Node send out RTS and senses BTr and waits a mandatory time, it is WAIT state


Finite State Machine of DBTMA

More Details for DBTMA

- g When A has data to send
 - Senses BTt and BTr
 - If both are clear
 - Turns on BTt
 - Sends out RTS and enters S_RTS state
 - Turns off BTt at the end of RTS transmission and gets out **S_RTS** state
 - Sets a timer for expected BTr and enters WF_BTR state
 - » If BTr is sensed, enters **WAIT** state and waits for tmw, then enters **S_DATA** state and sends data packet
 - » Otherwise, timer goes to zero, A goes to IDLE state
 - Enters **IDLE** state
 - Otherwise
 - Sets a random timer and goes to **CONTENT** state
 - » If BTt or BTr is still sensed when timer goes to zero, A goes to IDLE state
 - » Otherwise, A turns on BTt and enters S_RTS state and sends out RTS if no any busy tone signal is sensed
- g When B receives RTS, B turns on BTr and sets a timer for expected data packet and enters WF_DATA state
 - If **B** has not received data packet before timer goes to zero
 - **è** B turns off BTr and goes to **IDLE** state
 - Otherwise, **B** receives data packet and turns off its BTr when completely getting the data packet
- **q** When BTr sensed by any Other Node which is in **S_RTS** state, the node aborts it RTS and goes to **IDLE** state

Time Diagram of DBTMA

- t_{mw} = Mandatory waiting time
 - = 2 maximum propagation delay between the transmitter and receiver
 - =2t

Performance Analysis (single broadcast domain case)

- **g** Assumptions:
 - A lot of nodes and all nodes are in the same broadcast domain
 - i No channel fading, capture effect
 - Packet collisions are the only reason for packet errors
 - Data processing time and transmit/receive turn around time are negligible
 - Bandwidth consumption of busy tones is negligible compared with data channel

DATA Packet Transmission time = d

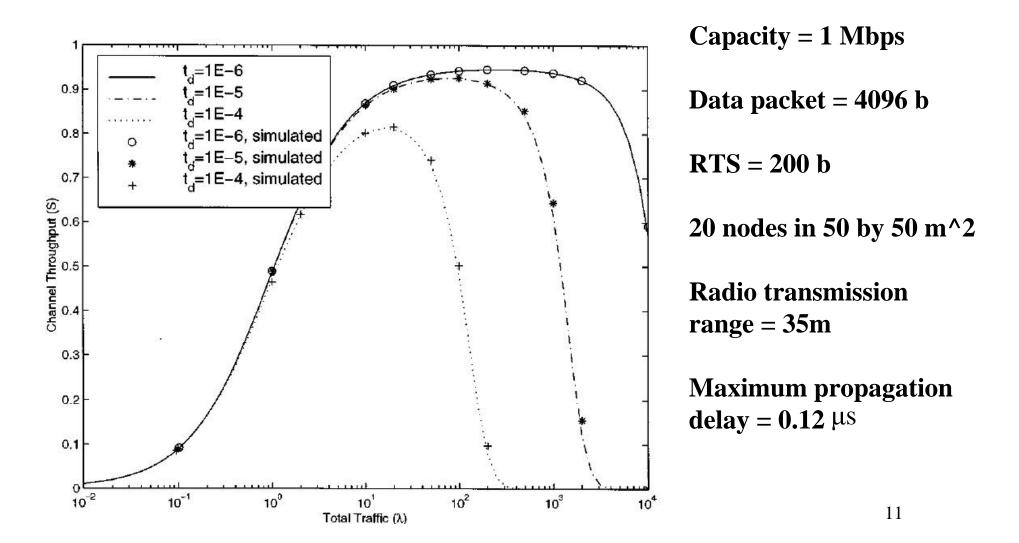
RTS transmission time = g

Maximum one way propagation delay = τ

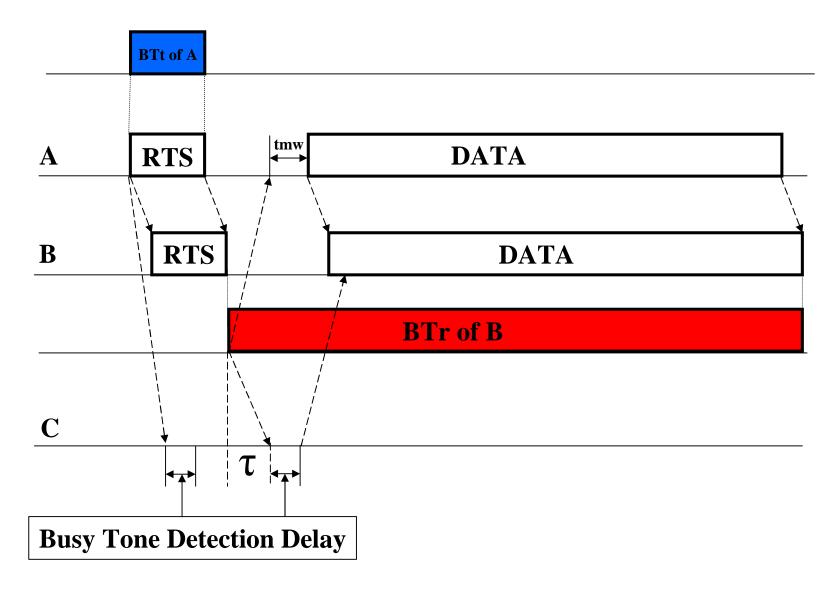
Busy tone detection delay = t_d

Mandatory waiting time = $t_{wm} = 2t$

All nodes collectively generate Poisson traffic with mean rate l


Probability of successful RTS transmission $P_s = e^{-I(t_d+t)}$

A successful transmission period = $d + g + t_d + 6t$


Average failed busy period $T_f = g + t + 0.5t_d$

Channel throughput =
$$\frac{P_s d}{P_s (d + g + t_d + 6t) + (1 - P_s)T_f + 1/I}$$

Channel Throughputs of DBTMA (Single Broadcast Region)

Impact of Busy Tone Detection Delay

Channel Throughput (ad-hoc network)

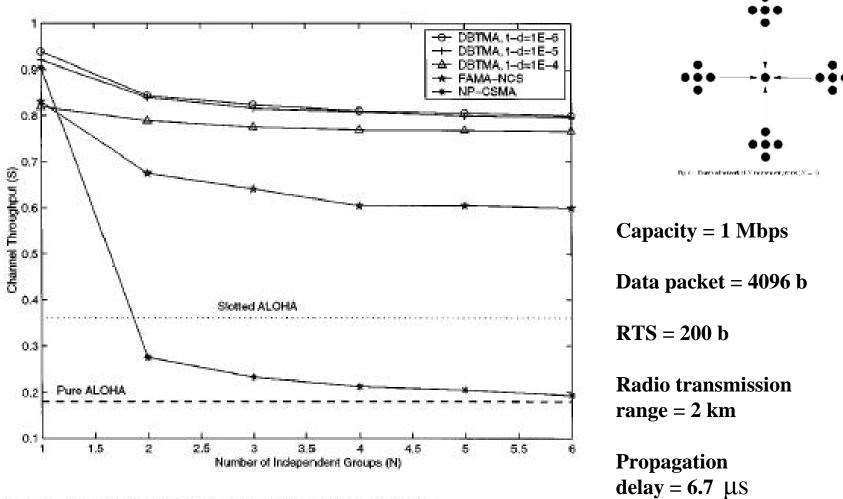


Fig. 7. Channel throughput of DBTMA with different N.

Comparisons of Channel Throughput

(1) (1)

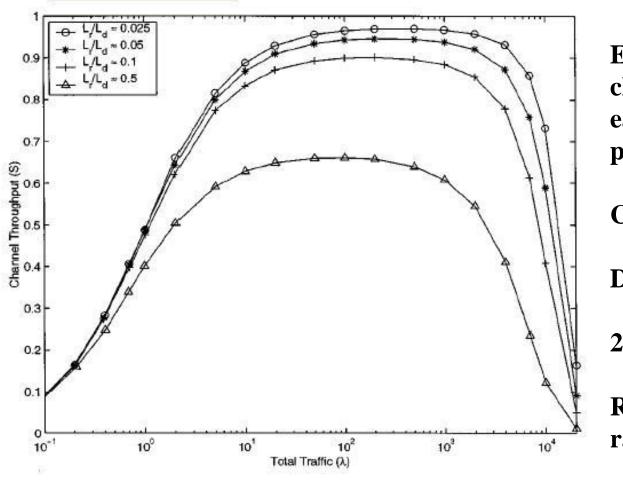

Configuration	DBTMA	FAMA-NCS	MACAW
(a)	.94	.78	.63
(b)	.84	.59	.49
(c) B 1	.94	.75	.45
(c) B2	.94	.75	.39
(d) average	.69	.49	.06
(d) N1, 4, 5, 8	.90	.57	.07
(d) N2, 3, 6, 7	.48	.42	.05

Fig. 9. Channel throughput comparisons.

Fig. 8. Simulated topologies.

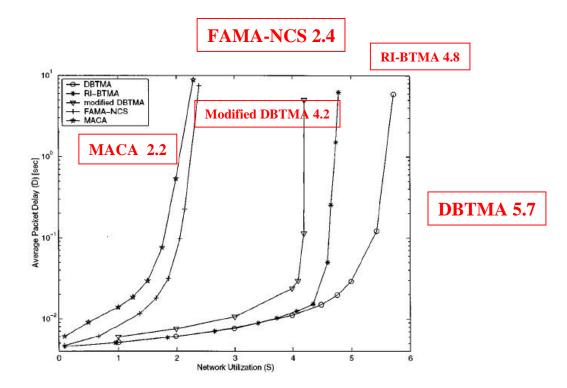
Capacity = 256 kbps Data packet = 4096 b RTS = 200 b Each node are 6 km from each other Propagation delay = 20 μ S

Comparison of Different Length of Control Packet

Full connected network

Every node randomly choose its destination for each generated data packet

Capacity = 1 Mbps


Data packet size =4096 b

20 nodes in 50 by 50 m²

Radio transmission range = 35 m

Propagation delay = $0.15 \mu s$

Network Utilization of DBTMA in Multi-Hop Networks

50 nodes in 400 by 400 m^2

Radio transmission range = 100 m

RTS size = 200 b

Packet size = 4096 b

Capacity = 1 Mbps

Propagation delay = $0.33 \ \mu S$

Packet arrival at each node is Poisson distributed

Each node randomly selects a neighbor as the destination of each packet

Summary

- **g** DBTMA does solve hidden & exposed terminal problems
- **g** DBTMA is based on the idea presented in RI-BTMA
- **g** Some idea
 - ✓ Using some kind of out-of-band control channel to propagate some info to achieve some performance targets