I -TCP: I ndirect TCP for Mobile Hosts

Authors: Ajay Bakre and B.R.Badrinath Proceedings of IEEE ICDCS 1995

Outline

- **§** Brief Review of TCP
- § Motivation & Main I dea
- § I -TCP protocol
- § Performance Evaluation
- § Conclusion & Limitation

Motivation & Main I dea

- **§** Wireless link is error-prone
- **§** Mobile node moves around
- § Packet loss may be due to transmission error, mobility, not only due to congestion
- **§** TCP cannot distinguish packet loss due to congestion or transmission error
- **§** For TCP over wireless networks, unnecessarily triggers slow start procedure will cause throughput degradation
- **§** Goal: modify regular TCP protocol to improve the performance (throughput)
- § Main approach: split the end-to-end connection into two TCP connections
 - Wired part
 - Wireless part
 - Hide wireless link from TCP sender

System Model

Consider a mobile host communicates with a fixed host in a wired network with Mobile Support Routers (MSR)

Split Connection Approach

Example : I - TCP connection setup

Experimental Mobile Internetworking Testbed

3 MSRs (base station); Channel capacity 2Mbps,; MSRs are connected to 10Mbps Ethernet

Cell Configurations

- 1. No moves
- 2. Moves between overlapped cells
- Moves between nonoverlapped cells with 0 second between cells
- 4. Moves between nonoverlapped cells with one second between cells

(c) Non-overlapped non-adjacent cells

Performance over Local Area

Protocol	No moves	Overlapped cells	Nonoverlapped cells with 0 sec. b/w cells	Nonoverlapped cells with 1 sec. b/w cells			
FH to MH throughput in Kbytes/sec.							
Regular TCP	65.5	62.6	38.7	23.7			
I-TCP	70.1	65.4	44.8	36.3			
MH to FH throughput in Kbytes/sec.							
Regular TCP	76.3	71.5	53.1	35.9			
I-TCP	87.6	74.3	67.9	58.0			

- 1. FH and MH communication involves only a few hops within campus
- 2. 4 MB data are delivered

Effects of Wireless Losses (Local Area)

Performance over Wide Area

Protocol	No moves	Overlapped cells	Nonoverlapped cells with 0 sec. b/w cells	Nonoverlapped cells with 1 sec. b/w cells		
FH to MH throughput in Kbytes/sec.						
Regular TCP	13.3	13.3	8.9	5.2		
I-TCP	26.8	28.0	19.1	16.0		
MH to FH throughput in Kbytes/sec.						
Regular TCP	31.0	30.0	16.9	10.6		
I-TCP	71.3	61.7	57.4	46.4		

- 1. FH and MH communication involves only a longhaul link over Internet
- 2. 2 MB data are delivered

Effects of Wireless Losses (Wide Area)

Advantages of I - TCP

- 1. Simple Implementation
- 2. Backward compatible to TCP fixed hosts FH unaware of MSRs
- 3. Separates flow and congestion control of the wireless and wired link
- 4. Can optimize FH-MSR connection independently

Disadvantages of I - TCP

- 1. Violation of end-to-end semantics
- 2. MSR maintains state. MSR failure can cause connection loss. Hand-off latency increases due to state transfer
- 3. Unless optimized, extra copying of data at MSR

Conclusions

§ I -TCP is one of the early protocols to use the split-connection approach with standard TCP for its connection over wireless link

§ I -TCP improves performance for several scenarios

References

- A.Bakre and B.R.Badrinath, "I-TCP: Indirect TCP for Mobile Hosts", Proc. 15th Int'l Conf. on Distributed Computing Systems, May 1995
- 2. A.Bakre and B.R.Badrinath, "Implementation and Performance Evaluation of Indirect TCP", IEEE Transactions on Computers, March 1997