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ABSTRACT
Wearable devices that capture users’ rich information regarding

their daily activities have unmet authentication needs. Today’s solu-

tions, which primarily rely on indirect authentication mechanisms

via users’ smartphones, thus cumbersome and susceptible to adver-

sary intrusions. Even though there have been some efforts trying to

fill this gap, they either rely on some superior sensors, such as cam-

eras and electrocardiogram (ECG) pads, or are awkward to use, e.g.,

users are asked to perform some pre-defined movement/gesture for

authentication. Therefore, an authentication mechanism for wear-

able devices that is accurate, robust, light-weight and convenient is

in dire need.

In this paper, we present the design, implementation and evalu-

ation of a user authentication mechanism, Beat-PIN, for wearable
devices that are equipped with touch sensors. A user’s password is

a set of recorded beats when he/she taps the device. We call this

rhythm-based password as a beat-PIN, which is represented by the

timing of its beats. To achieve high authentication accuracy with

short training overhead, we propose a novel classification method.

Through extensive experimental evaluation with 124 participants,

we show that our mechanism can achieve the average EER of 7.2%

with only 7 training samples. Besides, its login time is as low as 1.7s.

We also show that its average power consumption for training and

login is 337.2mW and 181.4mW, separately, which is lower than that

for most common operations on smartwatches. More importantly,

we provide a theoretical analysis over the beat-PIN’s raw space

size and show that it is much larger than that of digit-PINs and

traditional passwords.
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1 INTRODUCTION
Recently, we are witnessing a new trend in the mobile device mar-

ket. Users are showing an increasing interest in wearing mobile

devices to enhance the quality of life in a way that smartphones

alone cannot deliver. These devices, which include smartwatches,

wrist bands, smartglasses, and so on, can sense, collect, and upload

physiological data in a 24×7 manner. Besides, they can also help

users performmany tasks, such as checking incoming text messages

and viewing urgent information, in a much more convenient way.

According to recent market reports [2, 5], it is forecasted that the

yearly shipment of wearable devices will reach 200 million in the

year 2019. Moreover, the wearable technology market is expected

to reach a value of $57,653 million by 2022, which is almost 3 times

of that in 2016 ($19,633 million) [10].

With the high penetration to people’s daily life, wearable de-

vices read and store rich information regarding their owners. For

example, in the domain of smart health, the current key application

of wearable devices focuses on tracking activities or vital signals

from the wearers, whose sensitive data, such as heartbeats, weight,

blood pressure, are collected by wearable devices. Similarly, another

wearable application in the area of tracking is child monitoring.

A simple device, e.g., smartwatch, is worn by a kid, broadcasting

his/her location to a parent or guardian. While the objective is

clearly to increase the safety of the child, the data itself represents

highly sensitive information that attackers could seek to compro-

mise. In either case above, wearers are unwilling to disclose the

information stored in their wearables to others without permission.

Therefore, user authentication are of critical needs for wearable

devices.

Before we explore existing authentication methods for wearable

devices, we’d like to first briefly cover existing solutions for gen-

eral mobile devices, especially smartphones and tablets. Generally,
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the most commonly used authentication methods on mobile de-

vices are password/PIN/pattern-basedmethods and biometric-based

methods. However, none of them is really suitable for wearables.

Typing passwords or drawing patterns on wearable devices can be

rather cumbersome due to their small input/output units. Collect-

ing and recognizing physiological biometrics, such as fingerprint,

facial characteristics, hand/finger geometry, iris and retina, requires

specialized sensing hardware and dedicated processing resources

which are always missing in wearables. Due to the fact that many of

these sensors are even larger than the size of wearables themselves,

it is also impractical to equip them in wearables.

Due to the above reasons, authentication on current wearable

devices relies on a so-called “indirect mechanism”, where users can

log in to their wearables through smartphones. For this purpose, the

wearable device has to be registered and paired to the mobile device.

Besides, both devices should be carried by the user, which can

be highly inconvenient in practice. The security of this approach

is also in question. Password is only required for the first time

during the paring process and the device will automatically be

paired for later use without checking the user’s identity. Such one-

time authentication is over optimistic by assuming that there is

no misbonding between the device and the user. Some devices

including Google Glass [4] and FitBit’s health tracker [1] allow

linking the device to online accounts instead of a mobile device,

which, however, bears security vulnerabilities as well; once the

account is compromised, so is the authentication. Nonetheless,

indirect authentication remains a dominant paradigm for wearables

despite these fundamental shortcomings because such devices are

extremely resource-constrained.

In this work, we develop a user authentication scheme, called

Beat-PIN, for wearable devices that are equipped with touch sen-

sors, e.g., a touch screen, a sensed surface, or a single button whose

output signals can be stamped. It is a new passcode-style authenti-

cation. However, rather than numbers, letters, or characters, users

choose different beats/rhythms when tapping on the touch sensor,

e.g., screen for a smartwatch. Thus, the rhythm of tapping serves as

the secret only known by the legitimate user. We call this rhythm-

based password as the beat-PIN
1
. Basically, a beat-PIN can be easily

created by the user, for example, extracting some beats from his/her

favorite songs or jingles. A beat-PIN is characterized by the timing

of its beats, which can be recorded by the device system clock.

Beat-PIN can serve as an ideal authentication method for wear-

able devices. First, unlike regular passwords or digit-PINs, which

have to be entered either on a physical or virtual keyboard, or

fingerprint and facial recognition based authentication methods,

which require superior sensors, Beat-PIN can work on any wearable

device with a simple touch sensor. Second, unlike the pattern-based

passwords, which require a large-size screen to draw on, beat-PINs

can be performed on a much smaller spot. Besides, it is resilient

to infrared attacks and smudge attacks, as a user does not leave

such kind of information on the screen when entering a beat-PIN.

Note that traditional passwords/digit-PINs and pattern based au-

thentications are reported vulnerable to these two types of attacks

1
In this paper, we utilize the Italian font Beat-PIN to represent the authentication

scheme, while the regular font beat-PIN as the password itself.

[11, 14], respectively. Moreover, it is also worth mentioning that

our mechanism is friendly to sight impaired users.

Figure 1: The prototype of Beat-PIN that we develop for the
smartwatch. A beat-PIN is characterized by the timing of its
beats.

Our mechanism is composed of two stages. In the enrollment

stage, each user is asked to create his/her own beat-PIN and en-

ter them multiple times for training purposes. During the login

stage, the user simply enters the previously chosen beat-PIN to

access the device. If it matches with the training samples, the user

is authorized; otherwise, it is blocked. In order to achieve high

authentication accuracy with low training overhead, we also pro-

pose a novel classification method, called vector comparison. To

investigate the performance of Beat-PIN, we run two user studies.

In phase-I, we recruit 124 volunteers and collect their beat-PINs via

our data collection app on smartwatches. With the dataset, we de-

rive their statistics, which are then used for the security analysis of

our mechanism. Besides, its authentication accuracy is studied with

respect to different parameter settings. In phase-II, we implement

the prototype, setting the parameters as the ones that produce the

best performance in the phase-I study. Another 49 volunteers are

recruited. Multiple in-field experiments are conducted, evaluating

performances in terms of time consumption, energy consumption,

impact of user motions, and memorability. Notably, this work gives

a formal security analysis over a proposed Beat-PIN authentica-

tion, which is missing from the existing works on wearable device

authentication [16, 19, 26, 27, 34, 36, 38] and rhythm-based authen-

tication [22, 28, 35].

2 RELATEDWORK
2.1 User Authentication on Wearable Devices
There have been a few existing user authentication schemes for

wearable devices. Recent development in glass-based devices has

spurred work on iris recognition [26]. The basic idea is that users

glance into a headmounted camera in order to authenticate. In order

to address imitation attacks,Wang et al. [34] presented an algorithm

that checks pupil size consistency in varying light conditions. Touch

and movement based inputs have also been explored. Chauhan et al.

[16], for instance, classified among a set of users based on gestures

performed on the built-in touchpad on the side of Google Glass.

Along this line, Li et al.’s Headbanger [27] authenticates users



by monitoring their head movement patterns in response to an

external audio stimulus. Note that all the above schemes [16, 26, 27,

34] are designed specifically for glass-based devices. Besides, the

authentication of [26, 34] can only be performed with the assistance

of cameras. Thus, they cannot be easily adopted by other wearables.

Yang et al.’s MotionAuth [36] collects movement data from a wrist-

worn device during gesture performance and uses this to verify user

identity. Their scheme, however, requires users to make awkward

movements, such as drawing a circle in the air, which is impractical

especially in public scenarios. Zeng et al. [38] proposed to use

ambulatory activities (e.g. walking, running) as unique markers of

the user to design an implicit authentication method. However, the

accuracy performance under some activity modes is unsatisfactory.

For instance, the accuracy rate is as low as 32% under user’s jumping

mode. Besides, as it is a continuous authentication scheme, it needs

to run at the background, which can deplete a wearable device’s

battery quickly. Chun et al. [19] developed an electrocardiogram

(ECG) biometric based user authentication. However, it is designed

just for wearable ECG sensors that are capable of acquiring accurate

ECG signals, and thus inapplicable to other general wearables.

2.2 Rhythm-Based Authentication
There are some existing rhythm-based authentication schemes.

Wobbrock’s TapSongs [35] enables user authentication on a single

binary sensor by matching the rhythm of tap down/up events to a

jingle timing model created by the user. However, its authentica-

tion accuracy is not perfect, with the false rejection rate as high

as 16.8%. Lin et al. [28] developed a rhythm-based pairing scheme,

called RhythmLink. It allows users to securely pair a peripheral

with a host device via rhythmic taps. Notice that RhythmLink is

not for user authentication. Marques et al. [13] transformed the

timing information of taps into a sequence and leveraged Hamming

distance to compare two tap patterns. However, performance accu-

racy is not evaluated. Chen et al. [12] developed a rhythm-based

two-factor authentication, called RhyAuth, for multi-touch mobile

devices. The two factors include a user-chosen rhythm and the

behavioral metrics for inputting the rhythm. Recently, Das et al.

[22] developed a group authentication scheme, called Thumprint,

with a shared secret knock. All group members share one secret,

but individual expressions of the secret are discernible. First of all,

these schemes are not particularly designed for wearable devices.

Thus, most of them are not readily applicable to our problem. For

example, the input device for taps of TapSong [35] is the button

on the earbuds’ cord, which is unavailable in most wearables. Be-

sides, a comprehensive study over the system utility to examine its

practicality, in terms of, for example, enrollment/login time, energy

consumption and impact of user motions, has been missing so far.

More importantly, none of them provides a formal security analysis

of rhythm-based authentication.

2.3 Keystroke Dynamics based Authentication
Keystroke authentication schemes leverage keystroke biometrics to

characterize users. Extensive efforts have been devoted to this line

of research. The preliminary work [20] conducts a feasible study of

applying keystroke dynamics on mobile devices. It is extended in

[21] where different neural networks, like the feed-forward multi-

layered perceptron network, the radial basis function network

and the generalized regression neural network, have been used.

It achieves the EER at 13.3% and 12.8% for 4-digit PINs and 11-digit

telephone numbers, respectively. New features are then explored

to enhance the performance of keystroke authentication. For exam-

ple, KenSens [23] passively authenticates users via examining the

specific location touched on each key, the drift from finger down to

finger up, the force of touch, the area of press. Zheng et al. [39] then

proposed to rely on more sensors (e.g., accelerometers) other than

purely touchscreen. Their approach reduces an average EER down

to 3.65%. Frank et al. [24] later introduced the notion of continuous

authentication by analyzing users’ keystroke dynamics.

Note that keystroke authentication explores the biometric in-

formation inherent in people’s typing behaviors, which relies on

“something you are”; while in our case, a beat-PIN is a rhythm-based

password, which can be viewed as “something you know”. Besides,

the adoption of keystroke authentication to wearable devices is

largely hindered by their hardware constraints, as keystroke authen-

tication must be performed on regular keyboards, either physical

or soft ones, which are usually unavailable for wearables.

3 BEAT-PIN CHARACTERIZATION AND
FEATURES

3.1 Definition of Beat-PINs
A beat-PIN is simply a set of time instances recored by the system

clock when a user taps the device. Take a smartwatch as an example.

A beat-PIN is generated when the user taps the screen. Figure 2

gives the example of two beat-PINs. Tapping onset (or action-down)

and tapping offset (or action-up) mean that the screen is pressed

and released, respectively. The time duration between two adjacent

tapping onset and offset stands for one “beat”. Similarly, the time

duration between two adjacent tapping offset and onset stands for

one “space”. The length of a beat-PIN is considered as how many

beats it contains. For example, the length of both beat-PINs shown in

Figure 2 is 8. Essentially, beat-PINs could be interpreted as “rhythm

passcode”. A well-known existing rhythm passcode is the Morse

code. It encodes letters and numbers as standardized sequences

of short and long signals called “dots” and “dashes”. The dash and

dot are represented by some fixed time durations. However, Morse

code falls short in user authentication due to its memorability issue,

as there is a complicated mapping rule between a letter/number

and its corresponding Morse code.

Time (ms)

0

Tapping onset Tapping offset

Tapping interval

0

Beat-PIN 1

Beat Space

Beat-PIN 2

Figure 2: Two beat-PIN examples.



3.2 Features in Beat-PINs
Apparently, if two beat-PINs have different lengths, they are not

the same. To distinguish between beat-PINs of the same length,

we further explore their following features, tapping time instance,
tapping interval, and relative interval.

Tapping time instance. Each beat-PIN can be uniquely identi-

fied by a set of tapping onsets and tapping offsets, indexed by their

time instances, i.e., α = {α1,α2, · · · ,αn } and β = {β1,β2, · · · ,βn },
where n is the beta-PIN length. Besides, we index the time instance

when the screen is first tapped as 0, indicating its start point. Thus,

α1 is always 0. Since a beat-PIN is uniquely identified by its set of

tapping time instances, they naturally serve as one of the features.

Tapping interval (Euclidean interval). We further extract

inter-onset intervals of a beat-PIN. It is defined as the time du-

ration between two adjacent tapping onsets (shown in Figure 2),

γ = {γ1,γ2, · · · ,γn−1}, where γi = αi+1 − αi . Tapping intervals can

effectively capture a beat-PIN’s rhythm or tempo.

Relative interval. It is possible that the taping speed may vary

under different scenarios, even when a user enters the same beat-

PIN. For example, when a user is running for class, he/she is more

likely to enter the beat-PIN faster. In order to tolerate this variance,

we introduce another feature called relative interval. It is calculated

by η = {η1,η2, · · · ,ηn−2}, where ηi =
γi+1
γi (i ∈ [1,n − 2]). Specif-

ically, ηi measures the relative difference between two adjacent

tapping intervals. Therefore, even a beat-PIN is entered faster or

slower, as long as its pattern is the same with the original one, its

relative interval set does not change.

The entire feature set is then written as f = {α ,β ,γ ,η}. In all,

to character a beat-PIN, we jointly consider its length and feature

set f .

4 DATA COLLECTION AND STATISTICS
4.1 Data Collection
To investigate the performance of beat-PINs in wearable device

authentication, we perform two user studies. For phase-I, the objec-

tive is to collect different beat-PINs so as to derive their statistics.

Besides, we also aim to identify suitable parameters to construct

the classifier through testing over the dataset. For phase-II, a proto-

type of Beat-PIN is built. We then conduct another round of data

collection through a set of in-filed experiments, based on which

the security and utility of our system is evaluated. In this section,

we focus on phase-I user study.

To facilitate the data collection, a specialized app was developed

and implemented on Motorola Moto 360 smartwatches. Each runs

Android Wear OS, and is equipped with a Cortex A7 processor,

4GB storage, 512MB memory, 1.37-inch circular backlit IPS display,

Wi-Fi, Bluetooth, etc. A total of 124 volunteers were recruited to

participate the phase-I data collection. They are all bachelor stu-

dents aged from 18 to 33 from two introductory classes offered by

the department. Among them, there are 29 females and 95 males.

Before the data collection, they were explained how Beat-PIN works.

They were also informed that their grades and course credits have

no relation with their data. Our phase-I data collection consists of

two steps. In the first step, each user was asked to choose his/her

own beat-PIN independently and perform it for at least 25 times, all
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Figure 3: Feature distribution comparison between two beat-
PINs. (a) Tapping interval. (b) Relative interval.

of which were recorded by the data collection app. Besides, a super-

visor accompanied the user during the experiment in case there are

any questions. One week later, in the second step, each user was

asked to recall his/her previously chosen beat-PIN and re-enter it

into the app for 3 times. In total, we collected more than 2904 data

samples from 119 subjects after deleting erroneous samples.

4.2 Statistics of Beat-PINs
To test if tapping interval and relative interval can serve as promis-

ing features to distinguish different beat-PINs, we first analyze

their statistics. Without loss of generality, we randomly select two

beat-PINs from the dataset. Figure 3(a) plots the tapping interval

distributions of these two beat-PINs. The two distributions clearly

distinguish from each other. Specifically, the distribution of beat-

PIN 1 concentrates at the lower end, while that of the other one

is more dispersed. It indicates that user 1 enters his/her beat-PIN

faster than user 2. We have a similar observation over their relative

interval distributions, as shown in Figure 3(b). Clearly, different

beat-PINs demonstrate unique patterns in terms of tapping intervals

and relative intervals. Thus, together with tapping time instances,

we are able to explore them for user authentication.

5 SECURITY ANALYSIS OF BEAT-PIN
In this section, we first analyze the security of Beat-PIN in terms of

its raw space size, which is then compared with that of the digit-

PIN and traditional password. Besides, the comparison of their

occurance frequencies in practice is provided as well.

5.1 Raw Size of Beat-PIN Space
The raw size of beat-PIN space is its information content assuming

users equally pick different beat-PINs. It is an upper bound on the

information content of the distribution that users choose in practice.

Basically, the larger size the space has, the more robust beat-PIN
is against the brute-force attack. Take the digit-PIN as an example.

When it takes 6 digits as its size, as the case for iOS 10, its raw

space size is calculated by 10
6
, with the PIN chosen from “000000”

to “999999”. Similar to the digit-PIN, the size of beat-PIN pace is

closely related to the number of beats in a beat-PIN. And we set

this value as l . Besides, we assume that all beat-PINs of total length

greater than some fixed value Lmax have probability zero. That is,

all users’ chosen beat-PINs have a confined size no larger than Lmax.

We further assume that the time duration of all beat-PINs is limited



by Tmax. It is recorded once the screen is pressed for the first beat

and ends once the screen is released for the last beat. Lmax and

Tmax are assumptions for practice, as it is challenging for users to

remember the timing of a beat-PIN when its length, in terms of

either beat numbers or time duration, becomes too large.

...

0

...

Beat-duration Space-duration

Figure 4: Example of a slotted beat-PIN.

Besides, due to the precision level of the system clock in a wear-

able device, the time domain can be evenly divided into a set of time

slots, each with the size of the system clock unit. As a result, the

beat-duration and space-duration of a beat-PIN can be represented

by a set of time slots, as shown in Figure 4.

In addition, the finger tapping speed also influences the creation

of beat-PINs. Specifically, let τb and τs be the minimum value of a

beat-duration and that of a space-duration, respectively. The faster

users can tap, the smaller values τb and τs are. We are now ready

to analyze the raw size of beat-PIN space.

Theorem 5.1. The raw size of beat-PIN space is

|Π | =

Lmax∑
l=1

(Tmax

σ − ( τbσ − 1) × l − ( τsσ − 1) × (l − 1)

2l − 1

)
,

where Lmax, Tmax, σ , τb and τs stand for the maximum length, max-
imum time duration, the system clock unit, minimum value of a
beat-duration duration and minimum value of a space-duration, re-
spectively.

The formal proof is given in Appendix A.

To estimate the raw size of beat-PIN space following the result

of Theorem 5.1, values ofTmax, σ , τb and τs should be provided. For
an illustration purpose, we let σ = 0.83µs , which is the time unit

for Moto 360’s system clock. Appendix B provides detailed statistic

analysis of the rest parameters. According to the discussion therein,

we set Tmax =5s, τs =0.12s and τb =0.08s. As shown in Table 1,

when the beat-PIN length is upper bounded by 6, the correspond-

ing space size is about 10
42
. When the length is upper bounded by

10, the space size becomes 10
70

approximately. Table 1 also shows

the raw space size
2
of digit-PINs and traditional passwords. Appar-

ently, beat-PIN’s space size is significantly larger than the other

two. In particular, when Lmax = 6, |Π | = 10
42
, while that of digit-

PINs and traditional passwords is 10
6
and 10

13
, respectively. This

is because, unlike digit-PINs (composed of pure numbers) or tra-

ditional passwords (composed of 128 ASCII characters), beat-PINs

leverage more diverse “timing features”, such as tapping-intervals,

beat-durations, space-durations, etc. It indicates that users have a

2
This table shows the approximate raw space size. For example, when Lmax = 4,

digit-PIN’s raw space size is in fact calculated by 10
4 + 10

3 + 10
2 + 10

1 = 11, 110,
which we use 10

4
to approximate. This is the same case for the password.

Table 1: Raw space size comparison.

Lmax 4 5 6 7 8 9 10
Beat-PIN 10

28
10

35
10

42
10

49
10

56
10

63
10

70

Digit-PIN 10
4

10
5

10
6

10
7

10
8

10
9

10
10

Password 128
4

128
5

128
6

128
7

128
8

128
9

128
10

≈ 10
8

10
11

10
13

10
15

10
17

10
19

10
21

more ample choice over beat-PINs than the other two. Hence, our

mechanism is more robust against brute-force attacks.

5.2 Beat-PIN Frequency in Practice
While the result shown in Table 1 is encouraging, in practice, not all

beat-PINs are equally likely chosen by users, rendering a uniform

distribution overly optimistic. Therefore, we further evaluate the

distribution of beat-PINs based on our dataset. The comparison

with digit-PINs and traditional passwords is conducted as well.

As shown in Table 2, we list the top-16 most frequently used

beat-PINs by analyzing 119 valid beat-PINs in the dataset. Four of

them are the same, indexed as #1 beat-PIN, with their frequency

calculated as 3.3%. Besides, there are also duplicates for #2–#5 beat-

PINs, with their occurrence frequencies as 2.5%, 2.5%, 1.7% and 1.7%,

respectively. We further show the frequency of digit-PINs, which is

directly cited from a statistic study over 3.4 million 4-digit PINs [6].

Specifically, the most popular 4-digit PIN in use has its frequency at

10.7%. It implies that when someone picks up a phone that is locked

by 4-digit PIN, if trying this #1 digit-PIN, he/she has more than 10%

of chance to unlock it. We also show the frequency of traditional

passwords, which is obtained from [9]. The most popular password

has its frequency at 1.6%. Meanwhile, we notice that the frequency

ratio between #1 and #16 beat-PINs is 4.1, which is much smaller

than that of digit-PINs (35.7) and passwords (16.0), respectively.

It implies that the beat-PIN is the most evenly distributed among

these three. In another word, users are less likely to choose the

same beat-PIN than the other two. Hence, our mechanism will be

more robust against dictionary attacks.

We acknowledge that our dataset is limited in its size; only 119

beat-PINs are analyzed. Still, it provides a rough estimation of

the beat-PIN frequency in practice. Users are less likely to choose

the same beat-PIN than digit-PIN and password. This phenome-

non is not surprising: compared with digit-PIN (only consisting of

numbers) and password (consisting of numbers and characters), a

beat-PIN can be characterized by a more rich set of features, includ-

ing tapping time instances, tapping intervals, and relative intervals.

As a result, it makes the choice over beat-PINs more diverse.

6 CLASSIFICATION METHODS
Once features of a beat-PIN have been extracted following Section

3.2, the remaining task is to apply classification methods for user au-

thentication, i.e., to discriminate the legitimate user and imposters.

Ideally, the authentication should be performed in a time-efficient

manner. For this purpose, in this work we propose a classification

method, called vector comparison algorithm. To evaluate its perfor-

mance, we also apply the supervised machine learning (SVM) as a

benchmark. The performance comparison between these two will



Table 2: Frequency comparison among beat-PINs, digit-PINs and traditional passwords.

Index #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16
Beat-PIN 3.3% 2.5% 2.5% 1.7% 1.7% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8%

Digit-PIN 10.7% 6.0% 1.9% 1.2% 0.8% 0.6% 0.6% 0.5% 0.5% 0.5% 0.5% 0.4% 0.4% 0.4% 0.4% 0.3%

Password 1.6% 1.0% 0.6% 0.4% 0.2% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

be fully discussed in the next section. It is worth noting that for two

beat-PINs with different lengths, we simply treat them as different.

For example, if the legitimate beat-PIN has the length as 8, then any

testing input with a different length will be rejected immediately.

Hence, in the following we only focus on the classification over

beat-PINs of the same length.

6.1 Vector Comparison based Classification
Denote by f = [f1, f2, · · · , fN ] the feature vector of a beat-PIN,

where N stands for the feature size. Assume that users are asked

to input M training samples during acquisition. Then we derive

the average and standard deviation vectors over these training

samples as f = [f
1
, f

2
, · · · , f N ], where f i =

∑M
i=1 fi
M and σ =

[σf1 ,σf2 , · · · ,σfN ], where σfi = | fi − f i |, i ∈ [1,N ]. For a user with

an input test vector f ′, it is accepted as legitimate if
f
′
− f 2 ≤

α · ∥σ ∥
2
; otherwise, it is classified as an impostor. Here α represents

the tolerance parameter chosen by the system and is tunable. Ap-

parently, if we choose a large α , the detection rule is loose, which

may lead to a high false acceptance rate; otherwise, we have a strict

detection rule, which can result in a high false rejection rate. Hence,

α should be carefully chosen to strive a balance between these two.

The idea of the vector comparison algorithm is simple. We first

derive the “center” and “radius” of training samples as f and σ ,
respectively. Then, a “circle” is drawn based on this center and a

modified radius α ·
√
σ . If the testing data falls into this “circle”, it

is classified as legitimate; otherwise, it is classified as an imposter.

6.2 One-class SVM Classification
In order to evaluate the performance of our proposed vector com-

parison algorithm, we also consider the SVM classification. Its per-

formance will serve as a benchmark of our algorithm.

SVM generalizes the ideas of finding an optimal hyper-plane in a

high-dimensional space to perform a classification. In the training

phase, SVM builds models based on the training samples of the le-

gitimate user. In the testing phase, the testing samples are projected

onto the same high-dimensional space, and the distances between

the samples and the hyper-plane are computed as the classification

scores. If the classification score is over the threshold, we regard the

sample as a legitimate one. Since we only have training data from

legitimate users, we build a model based only on the legitimate

user’s data samples, and use that model to detect impostors. This

model is known as one-class classification or anomaly detection.

7 PERFORMANCE EVALUATION
The purpose for this section is twofolds, to further validate the

effectiveness of utilizing beat-PINs for user authentication and to

compare the authentication performances of our proposed vector

comparison algorithm with the one-class SVM. We leave the im-

plementation of Beat-PIN on a smartwatch and the analysis of its

system performances to the next section.

7.1 Evaluation Methodology and Metrics
To evaluate the authentication accuracy, we conduct a series of ex-

periments based on the dataset. For each experiment, we designate

one subject from the dataset as the legitimate user, and the rest as

impostors. For the samples from the same subject, we randomly

select a portion as training samples, while the rest serve as test-

ing samples. Since we use a random sampling method to divide

the data into training and testing sets, in order to account for the

effect of this randomness, we repeat the procedure 50 times for

each experiment, each time with independently selected samples

from the entire dataset. As we have 119 subjects in total, there

are 119 independent experiments accordingly. The performance

discussed in this section is the result of these 119 experiments. The

authentication accuracy is measured via the following metrics:

• False rejection rate (FRR). The probability that a legitimate

user is treated as an imposter. It is calculated as the ratio of

the number of a legitimate user’s incorrect authentications

to the total number of attempts.

• False acceptance rate (FAR). The probability that an imposter

is treated as a legitimate user.

• Equal Error Rate (EER). It is the point at which FRR and FAR

are equal.

Note that FRR reflects the user convenience in our system; a lower

FRR implies that a legitimate user can successfully unlock the wear-

able device at a higher probability. FAR reflects the security aspect;

a lower FAR implies that the imposter will be denied at a higher

probability.

7.2 Performances of One-class SVM
With the Python SciKitLearn library [8], we utilize the OneClass-

SVM package to test a variety of parameters to determine the best

possible performance with SVM. 15 training samples are used to

train the classifier. It is observed from Table 3 that the performance

are unsatisfactory even with 15 training samples. For example, the

achievable FRR and FAR is 14.8% and 22.3%, respectively, using the

linear kernel when ν=0.01. The parameter ν is an upper bound on

the fraction of margin errors and a lower bound of the fraction of

support vectors relative to the total number of training samples.

For example, ν=0.01 means that at most 1% of the training samples

are misclassified (at the cost of a small margin, though) and at least

1% of the training samples are support vectors. Although FAR can

be reduced by applying RBF as the kernel, it produces a very poor

FRR. When ν = 0.1, its FRR is as high as 46.3%.
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Figure 5: FAR and FRR achieved by one-class SVM under different parameter settings. (a) Training sample number. (b) σ . (c) ν .

Table 3: FRR and FAR with classic one-class SVM.

Kernel ν FRR FAR

Linear

0.01 14.8% 22.3%

0.025 15.2% 20.0%

0.05 17.1% 18.8%

0.1 18.1% 18.1%

RBF

0.01 14.2% 3.2%

0.025 15.2% 3.1%

0.05 29.1% 2.2%

0.1 46.3% 1.7%

A batch run is then performed, analyzing the authentication

performance of one-class SVM under more complex parameter

settings.

Figure 5(a) shows the impact of training sample size to the au-

thentication accuracy. When there are only 2 training samples, FRR

is as high as 38.4%; when there are 15 training samples, it drops to

9.6%. FAR keeps relatively stable when the training sample number

is increased from 4 to 15. Thus, in order to acquire an acceptable

FRR, say 9.6%, 15 training samples are needed for one-class SVM.

Still, its FAR performance is poor, with the value at 17.8%. Figure

5(b) shows the impact of σ to the authentication accuracy. Here, σ
is the standard deviation of the kernel function. It influences the

decision boundary qualitatively. As σ grows, FAR increases while

FRR decreases, which means both legitimate users and impostors

are more likely to get authenticated. In fact, for a larger σ , the deci-
sion criteria tends to be relaxed and avoids the hazard of overfitting.

For a smaller σ , the decision boundary tends to be strict and sharp.

In contrast to the former situation, it tends to overfit. Figure 5(c)

shows the impact of ν to the authentication accuracy. Opposite to

σ , a larger ν brings about a smaller FAR but a larger FRR.

To sum up, the one-class SVM produces unsatisfactory accuracy

performances when serving as the classifier for Beat-PIN. Therefore,
a different classification method should be used.

7.3 Performances of Vector Comparison based
Classification

We now evaluate the authentication accuracy with our proposed

vector comparison algorithm. We investigate the impact of training

sample size and the tolerance parameter α to FAR and FRR in Figure

6(a) and Figure 6(b), respectively. It shows that a larger training

(a)

(b)

Figure 6: FAR and FRRwith respect to training sample num-
ber and α . (a) FAR. (b) FRR.

sample size produces a smaller FRR but a slightly increased FAR. A

similar observation is obtained with a larger α . This is because a
larger α leads to a more loose detection rule, as discussed in Section



Table 4: FRR and FAR of vector comparison based classification

Training sample size 1 2 3 4 5 6 7 8 9 10 11 12 13 14
α 8 6 4.5 3.5 3.5 3 3 3 3 3 3 3 3 3
FRR 10.2% 9.3% 9.2% 9.1% 7.4% 7.4% 7.2% 7.0% 6.4% 6.3% 6.2% 6.1% 5.3% 5.1%

FAR 9.4% 8.4% 8.9% 8.1% 7.8% 7.4% 7.2% 7.2% 7.4% 7.4% 7.3% 7.3% 7.2% 7.1%

6.1. Thus, suitable values of training sample size and α are needed

to strive a balance between these two. For this purpose, based on

Figure 6(a) and Figure 6(b), we list FAR and FRR under different

combinations of training sample size and α in Table 4. We find that

FRR=FAR, when α =3 and training sample size is either 6 or 7. More

importantly, the lowest EER, i.e., 7.2%, is achieved when α =3 and
the training sample size is 7.

To sumup, our proposed vector comparison classification achieves

the lowest EER at 7.2% when α =3 and training sample size is 7.

Comparedwith the one-class SVM,whose lowest EER is about 16.7%

according to Figure 5, ours pertains a significantly higher authenti-

cation accuracy. More importantly, vector comparison classification

acquires much less training samples than the one-class SVM. Hence,

it can be expected that the former is more time-efficient than the lat-

ter, especially during the enrollment stage. Besides, our mechanism

also outperforms TapSongs [35] and Thumprint [22], two existing

rhythm-based authentication schemes, in terms of authentication

accuracy. For TapSongs, its FRR and FAR is about 16.8% and 19.4%,

respectively; for Thumprint, its FRR and FAR is around 9-15% and

13-19%, respectively. Both are significantly larger than ours.

8 BEAT-PIN IMPLEMENTATION AND
EXPERIMENT EVALUATION

As a proof-of-concept implementation, we develop the prototype of

Beat-PIN on the same Moto 360 smartwatch (as shown in Figure 1)

that was used for phase-I user study. As observed in Section 7, our

proposed vector comparison classification outperforms the classic

one-class SVM. Hence, we implement the former as the classifier

in the system. Since vector comparison classification demonstrates

the best accuracy performance when taking training sample size as

7 and α as 3, we adopt these values as our setting in the implemen-

tation.

To evaluate performances of Beat-PIN in real scenarios, we de-

sign a set of in-field experiments and conduct a phase-II user study.

Another 49 volunteers
3
are recruited. Screenshots for enrollment

and login are shown in Figure 7. During the enrollment stage, users

are asked to tap on the screen to enter their beat-PINs repeatedly

until 7 valid samples have been collected. Users have the choice

to either accept or drop any trial during this stage as shown in

Figure 7(a). All collected samples are then used to train/generate

the classifier, i.e., calculate f and σ . During the login phase, users

are prompted to enter their pre-defined beat-PINs (see Figure 7(b)).

If it is the correct one, the access will be granted ( see Figure 7(c));

otherwise, the access will be denied with error message shown on

the display (see Figure 7(d)).

3
They are part of the 124 volunteers from the phase-I user study.

(a) (b)

(c) (d)

Figure 7: Screenshots of Beat-PIN prototype in enrollment
(a) and login stage (b), (c) and (d).

8.1 Robustness Against Attacks
The adversary’s goal is to impersonate a legitimate user and suc-

cessfully authenticate to the device. In our case, it means that the ad-

versary has to correctly enter the exact legitimate beat-PIN. Hence,

we assume that the adversary has physical access to the device.

In practice, such physical access can be gained in ways such as a

thief stealing a device, finders finding a lost device, and a roommate

temporarily holding a device when the owner is taking a shower.

In experiments, we consider the following three common types of

attacks, zero-effort attacks, shoulder surfing attacks and statistical
attacks.

8.1.1 Zero-effort Attacks. Zero-effort attacks may be the most

common type of attacks against an authentication system where

the attacker guesses the secret or tries the authentication proce-

dure without much knowledge of the legitimate password. In our

case, each volunteer (attacker) is asked to randomly pick beat-PINs

without any prior knowledge of the legitimate one and tries to pass

the authentication by chance. Up to three authentication attempts

can be made. An attack is considered to succeed if any one of them

passes the authentication.

Table 5 shows the success rate of zero-effort attacks, which is

directly the FAR of our mechanism. According to the statistic results

shown in Figure 15, most of the beat-PINs, more than 95%, take

their lengths from 6 to 10. Hence, we conduct tests over beat-PINs



Table 5: FAR (Success rate) of zero-effort attacks under dif-
ferent beat-PIN lengths.

Beat-PIN length 6 7 8 9 10
FAR (Success rate) 8.2% 6.1% 2.0% 0.0% 0.0%
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Figure 8: FAR/FRR under type-I shoulder surfing attacks. (a)
Different distances between the legitimate user and the at-
tacker. (b) Beat-PIN length.

with their lengths falling within this range. Apparently, the beat-

PIN length plays a critical role in the attacker’s success rate. The

longer a beat-PIN, the stronger it is against zero-effort attacks.

Specifically, when the length is 6, the success rate is 8.2%. When

the length becomes 8, only 1 attacker succeeds. Moreover, with the

length even longer, the success rate becomes 0. Therefore, in the

practical implementation of Beat-PIN, the system can impose a hard

constraint over a valid beat-PIN’s minimum length, say 8, to defeat

zero-effort attacks.

8.1.2 Shoulder Surfing Attacks. Shoulder surfing [15, 25, 30, 33]
is a targeted attack leveraging the visual aspect of a certain spe-

cific user authentication method. There are two types of shoulder

surfing attack: direct observation attack, in which authentication

information is obtained by an attacker who is directly monitoring

the authentication sequence, and recording attack, in which the

authentication information is obtained by recording the authenti-

cation process for later analysis. In the experiment, we evaluate

the robustness of Beat-PIN against the above two types of shoulder

surfing attacks. We first consider the mild one, in which attackers

learn a beat-PIN via direct visual observation. We grouped 20 volun-

teers into 10 pairs. Each of them was told to replay his/her partner’s

beat-PIN. Firstly, one user of the pair acts as an attacker, the other

one as a legitimate user, and then the roles are exchanged. During

the experiment, the legitimate user repeats the same beat-PIN for

three times and there is a pause in between. Then, the attacker

watches the entire process, acquires its rhythm information, and

tries to reproduce it. Every attacker makes three access attempts.

The attacker is considered to success in a shoulder surfing if any

one of the three trials passes the authentication. In addition, we

also conduct a controlled experiment, to illustrate the errors and

bias in the experiment. Specifically, this is captured by the FRR, i.e.,

the percentage that legitimate users’ beat-PINs get denied.

Figure 8(a) plots the attacker’s performance with respect to its

distance to the legitimate user. Specifically, FAR represents the suc-

cess rate of shoulder surfing. As shown in the figure, the success

rate decreases as the distance gets longer. This is intuitive, as a

shorter distance enables the attacker to have a closer observation

over the legitimate user’s login. Thus, it has a better chance to

correctly replay the genuine beat-PIN. Luckily, when the distance

is longer than 2 meters, this advantage diminishes. The result im-

plies that the rhythm is difficult to mimic through vague visual

observation. As a control measurement, we further show the FRR

of legitimate users in shoulder surfing attack experiments. We ob-

serve that FRR keeps as low as 2.1% under all distance values, as the

distance does not effect the classification of legitimate beat-PINs.

More importantly, the result indicates that the experiment imposes

rather limited errors and bias toward the measurement over the

attacker’s performance. In particular, these errors and bias mainly

come from two factors, i.e., the error caused by our proposed vector

comparison based classification and the confusion caused by the

inconsistency when the legitimate user enters his/her beat-PIN in

different trials.

Figure 8(b) illustrates the impact of beat-PIN length to shoulder

surfing attack. We have a similar observation as in zero-effort at-

tacks; it is more difficult to compromise a beat-PIN with a larger

length. Besides, together with Table 5, it tells that the adversary can

indeed leverage visual observation to assist the attack. However,

the advantage is limited. The FRR is also given for the purpose of

control measurement. The value is low, ranging from 3.2% with

the beat-PIN length as 6 to 1.8% with the length as 10. First of all,

it complies with the observation from Figure 8(a) that errors and

bias in our experiments are well confined. Besides, FRR experiences

a slight decrease as the beat-PIN length grows. This is because a

longer beat-PIN bears richer features to distinguish from others. As

a result, the chance that it is wrongly classified decreases.

The resistance performance of Beat-PIN to type-II shoulder surf-

ing attack is discussed in Appendix C.
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Figure 9: FAR-FRR under statistic attacks.

8.1.3 Statistic Attacks. This type of attackers employ knowledge

obtained from the statistics of a group of users as hints to generate

authentication attempts. The basic approach is to estimate the

distribution of features from a group of users and then use the most

probable feature values to generate the forgery. In our case, we

use all samples from the 119 subjects collected from our phase-I

user study as the input. Hence, we estimate the worst situation

where the attacker has full knowledge about statistics of the whole
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Figure 10: Distribution of time involved in Beat-PIN. (a) En-
rollment time. (b) Login time.

population. A forgery beat-PIN under statistic attacks is produced

in the following way. First, the beat-PIN length is randomly chosen

following the distribution obtained in Figure 15. Second, for each

beat-duration and space-duration, the value is randomly chosen

following the distribution given by Figure 16(c) and Figure 16(b),

respectively. We generate 10000 forgery beat-PINs to attack all the

119 legitimate ones. Performances on against statistic attacks are

given in Figure 9 by tuning parameters of the vector comparison

classifier. The red dash line stands for the possible points where

FAR=FRR. The crossover of the red dash line and FAR-FRR curve is

exactly the location of the EER, which is 9.6%; when the attacker’s

success rate is 9.6%, the chance that a legitimate user is blocked is

9.6% as well. Although our system is slightly more vulnerable to

statistic attacks than zero-effort attacks, the attacker’s success rate

is still within an acceptable range. We’d like to point out that even

the recently proposed touch dynamics plus hand geometry based

authentication scheme [31] has its EER about 13%, which is higher

than ours.

From the above experiment results, we observe that Beat-PIN
is the most robust to zero-effort attacks. Besides, an adversary

does benefit from mimicking the legitimate user’s login patterns

via visual observation or fabricating a synthetic one via statistic

analysis. Nonetheless, the benefit is marginal.

8.2 Usability
Besides security, usability is another critical criteria in evaluating

the performance of a user authentication mechanism. We measure

the usability of Beat-PIN from aspects of time consumption, energy

consumption, impact of user motions, and memorability (Appen-

dix D). Moreover, we present a comprehensive survey result in

Appendix E based on volunteers’ feedbacks.

8.2.1 Enrollment Time and Login Time. We examine the enroll-

ment time and login time needed for Beat-PIN. Specifically, the
former is the total duration for the user to provide training sam-

ples and for the system to derive the classifier, while the latter is

the total duration for a user to enter a test beat-PIN and for the

system to make an authentication decision. These two parameters

directly determine Beat-PIN ’s usage convenience. We depict in Fig-

ure 10(a) and Figure 10(b) the distribution of enrollment time and

login time, separately, according to our dataset. We observe that

the enrollment time spans from 5.0s to 23.1s, with its average value

as 12.3s. Besides, 90% of collected beat-PINs have their enrollment

Table 6: Enrollment time and login time comparison among
different authentication schemes.

Method Enroll. time (s) Login time (s)
Beat-PIN 12.3 1.7
Pattern [18] 22.5 4.5

Gesture [37] 69.4 16.5

Graphical password [17] 42.3 15.1

Touch dynamics[32] 120.0 0.3

Touch dynamics 63.0 1.0

+hand geometry [31]

time shorter than 17.4s. The login time spans from 0.6s to 3.6s, with

its average value as 1.7s. 90% of collected beat-PINs have their login

time shorter than 2.6s. Hence, the most time-consuming part is the

enrollment stage. Still, it can be performed within a relatively short

time.

We further compare the time consumption of Beat-PIN with some

recently proposed authentication schemes, which leverage “pattern”

[18], “gesture” [37], “graphical password” [17], “touch dynamics”

[32], and “touch dynamics+hand geometry” [31], in Table 6. Among

them, Beat-PIN has the lowest average enrollment time, because it

only takes 7 training samples. Besides, it ranks as the third among

all these schemes in terms of login time and is much faster than

“pattern”, “gesture”, and “graphical password” based authentications.

This is because these schemes apply some computationally complex

algorithms as their classifiers, such as neural networks and random

forest, which are time-consuming in both training and testing.

In conclusion, Beat-PIN is time-efficient during both enrollment

and login stage.

Figure 11: Power measurement of an Moto 360 smartwatch.
A compatible battery interface circuit (as shown in the red
box) was carved out from the same smartwatch and used as
an adapter between the watch and the power monitor.

8.2.2 Energy Consumption. Typically, wearable devices have a
much shorter battery life compared with regular mobile devices.

As pointed out by [3], the battery life for Apple Watch Series 3

is about 18 hours after an overnight charge under normal use, in-

cluding 90 time checks, 90 notifications, 45 minutes of app use,

and a 30-minute workout with music playback from Apple Watch

via Bluetooth. Therefore, it is desirable to design energy-efficient



authentication for wearable devices, especially with the fact that

users may access their wearables dozens of times every day. In

the in-field experiments, we extensively test energy consumption

performances of Beat-PIN to validate its usability. Note that such

evaluation has been merely discussed in existing works on authen-

tication design for regular mobile devices, since their batteries can

easily last for a couple of days, rendering energy consumption a

less critical issue.

Due to the lack of software-based approaches for wearables

(although those for smartphones are available), such kind of study

has rarely been conducted so far [16, 19, 26, 27, 34, 36, 38]. To bridge

this gap, in this work we measure the precise power consumption

of our system using the dedicated hardware, the Monsoon power

monitor [7]. To facilitate the measurement, as shown in the red box

of Figure 11, we carved out a compatible battery interface circuit

from the same smartwatch, and then used the interface circuit as

an adapter between the watch and the power monitor. During the

measurement, we kept other components offline (e.g., Wi-Fi and

Bluetooth).

0 100 200 300 400 500 600

Sample index

0

200

400

600

800

P
o
w

er
 c

o
n
su

m
p
ti

o
n
 (

m
W

)

TrainingSample acquisition Login

Figure 12: Instant power reading via the power monitor.

Figure 12 shows the instant power reading via the power monitor

when executing one beat-PIN. We clearly specify the part dedicated

to sample acquisition, training and login in the figure. We can tell

that sample acquisition consumes the largest amount of power

among these three, which is about 341.5mW on average, while the

average power for training and login take 337.2mW and 181.4mW,

separately. Figure 13 further depicts the statistic result of power

consumption according to our dataset. We observe that the power

consumption during enrollment spans from 272.4mW to 374.1mW,

with 90% of samples lower than 367.0mW. The power consumption

during login spans from 165.8mW to 197.6mW, with 90% of the

samples lower than 191.4mW. Hence, in general, the enrollment

stage costs about twice the power than the login stage.

We also compare the average power consumption of Beat-PIN ’s

login process with some common smartwatch tasks in Table 7. We

notice that the power consumption of Beat-PIN login, 181.4mW, is

only slightly higher than that for screen on operation, 161.5mW. It

is much more energy-efficient than most of the operations, such

as voice assistant, map service, sending a text message, etc. For

instance, the average power for sending a voicemessage is 524.7mW,

which is about three times of our power consumption. Together

with the fact that Beat-PIN can be performed within a short period,
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Figure 13: Distribution of power consumption in executing
beat-PINs. (a) Enrollment. (b) Login.

Table 7: Power consumption by different operations at the
smartwatch.

Operation Power consumption (mW)
Beat-PIN login 181.4

Screen on 161.5

Voice assistant 585.0

Map service 508.7

Sending a text message 410.5

Sending a voice message 524.7

Web browsing 574.8

Measuring heartbeat 428.0

we conclude that our authentication mechanism only imposes mild

energy consumption overhead to the smartwatch. This is a desirable

property for the battery-constrained wearable devices.

8.2.3 Impact of User Motions. Ideally, Beat-PIN should be insen-

sitive to user motions because wearable devices are mainly used in

mobile environments and the user motion always introduces noises.

In this experiment, we test the impact of user motions to the au-

thentication accuracy. Three types of user motions are considered:

sitting, slow walk and fast walk. Results are shown in Figure 14.

We observe that the best authentication accuracy is realized when

a user is in the sitting status, with the corresponding FRR as 4.5%

and FAR as 8.0%. The lowest accuracy takes place when a user is in

the fast walk status, with the corresponding FRR as 9.0% and FAR

as 8.3%. It means that user motion does impact the authentication

performance. This meets our expectation because the faster motion

will increase vibration in one’s smartwatch and thus causing more

noise. On the other hand, we notice that FAR keeps relatively stable

under all three motion patterns, for example, FAR=8.2% under slow

walk while FAR=8.1% under fast walk. It implies that user motion

has more impact on usability, i.e., a legitimate user has a higher

chance to get denied when walking; while the impact on security is

limited, an imposter gets rejected at a stable rate regardless his/her

motion status.

9 CONCLUSIONS
As wearable devices are increasingly weaved into our everyday

life, providing security to the data acquired by or accessed through

these devices becomes critically important. In this study, we have

developed a user authentication mechanism, Beat-PIN, which relies
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Figure 14: Impact of user motions on authentication accu-
racy.

on timing of beat sequences for direct authentication to a wearable

device. Compared to existing authentication solutions, our solution

delivers accurate authentication, incurs low processing overhead,

and offers great convenience to users.

Through an extensive evaluation that involves 124 participants,

we observe that the average EER of our approach is 7.2% with

only 7 training samples. We have also implemented a prototype

on Moto 360 smartwatches, and measured its security, in terms of

robustness against various types of attackers, and its utility, from

aspects of time consumption, power consumption, impact of user

motions and memorability. As a conclusion, we believe Beat-PIN
is a realistic authentication mechanism applicable on resource-

constrained wearables.
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A PROOF OF THEOREM 5.1
We first write down Theorem 5.1 here again.

Theorem A.1. The raw size of beat-PIN space is

|Π | =

Lmax∑
l=1

(Tmax

σ − ( τbσ − 1) × l − ( τsσ − 1) × (l − 1)

2l − 1

)
,

where Lmax, Tmax, σ , τb and τs stand for the maximum length, max-
imum time duration, minimum unit of the system clock, minimum
value of a beat-duration duration and minimum value of a space-
duration, respectively.

Proof. Our objective is to find out howmany different beat-PINs

there are, when the beat-PIN’s length and time duration are limited

by Lmax, Tmax, respectively. Meanwhile, due to the constraint of

human tapping speed, we assume that the beat-duration and space-

duration are lower bounded by τb and τs , respectively.
First of all, with the minimum system clock unit σ , the corre-

sponding maximum number of time slots in a beat-PIN is calculated

by N = Tmax

σ . We now analyze the number of all possible beat-PINs

when their lengths, i.e., number of beats, are l (l ∈ [1,Lmax]).

By treating each beat-duration as a “white” bin, each space-

duration as a “black” bin, and the entire N time slots as N stars,

our problem is equivalent to find out the number of all possible

configurations to fit N stars into l “white” bins and l − 1 “black”

bins. Besides, there should be no less than
τb
σ stars in each “white”

bin and no less than
τs
σ stars in each “black” bin.

Instead of coping with the above problem directly, we first check

a simpler question. There are N stars and l + l − 1 = 2l − 1 bins,
including both the black ones and white ones. How many config-

urations are there to place at least one star into each bin? Note

that bins are distinguishable, while stars are not. In fact, this is a

standard “Stars and Bins” (or called “Stars and Bars”) problem [29].

Its solution is calculated by

( N
2l−1

)
.

We are now ready to solve our problem. The idea is to first place

τb
σ − 1 stars in each “white” bin and

τs
σ − 1 stars in each “black”

bin. Then there are N − ( τbσ − 1) × l − ( τsσ − 1) × (l − 1) stars left.
The remaining issue is to find out the number of configurations to

place N − ( τbσ − 1) × l − (
τs
σ − 1) × (l − 1) stars into 2l − 1 bins, such

that each of them contains at least one star. Following the solution

to the standard “Stars and Bins” problem discussed above, it gives

the result of our problem as

(N−( τbσ −1)×l−( τsσ −1)×(l−1)
2l−1

)
. Note that

this is the number of all possible beat-PINs of length l . When their

lengths range from 1 to Lmax, we have

|Π | =

Lmax∑
l=1

(
N − ( τbσ − 1) × l − ( τsσ − 1) × (l − 1)

2l − 1

)

=

Lmax∑
l=1

(Tmax

σ − ( τbσ − 1) × l − ( τsσ − 1) × (l − 1)

2l − 1

)
,

which ends the proof.

□

B STATISTIC ANALYSIS OVER Lmax, Tmax, τb
AND τs
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Figure 15: Statistics on lengths of beat-PINs, digit-PINs and
traditional passwords.

Figure 15 shows the distribution of beat-PIN length according

to our collected dataset. Besides, we also depict those of digit-PINs

(composed of pure numbers) and traditional passwords (composed

of ASC-II characters), according the result from [6, 9]. We can see

that the majority of beat-PINs have length ranging from 6 to 10,

which takes about 90% of all the samples. Interestingly, this result

matches well with the distribution of traditional password length,

whose major components also lie between 6 and 10. Regarding to

the length of digit-PINs. We notice that they mainly range between

4 and 8. Besides, the most existing ones are 4 and 6. This may due

to the fact that most smartphones require a PIN at length of 4 or 6.

Just like digit-PINs and traditional passwords, the length of beat-

PINs plays a significant role in its security. This is because as the

beat-PIN gets longer, the number of ways its constituent parts can

be shuffled into a new combination gets exponentially larger and

therefore, much harder to take wild guesses at.

Figure 16(a) shows time duration distribution of beat-PINs. We

can see that most of beat-PINs, about 95.2% of them, last between 1

to 5 seconds. It indicates that beat-PINs can be entered very fast. Fig-

ure 16(b) and Figure 16(c) illustrate the distribution of beat-duration

τb and space-duration τs , respectively. For τb , its value spreads from
0.08s to 2.91s; for τs , its value spreads from 0.12s to 3.23s. These
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Figure 16: Distribution of three characters of beat-PINs. (a)
Beat-PIN length. (b) τs . (c) τb .

statistic results show that users demonstrate sufficient diversity in

terms of overall time duration, beat-duration and space-duration

when generating beat-PINs, which can substantially enlarge the

beat-PIN space.

C SHOULDER SURFING ATTACK ASSISTED
WITH CAMERA

In addition to the type-I shoulder surfing attack discussed in Section

8.1.2, we further consider the stronger shoulder surfing attacks that

are powered by camera. We prepared a video that filmed legitimate

users entering 10 different beat-PINs. The video is recorded by an

iphone 7. We seated the camera about 0.5 meters away from the

legitimate user and had user’s finger movement fully captured. The

film is then shown in the same iphone 7 to 20 volunteers who play

as attackers. Attackers are allowed to replay the film arbitrary times

to recognize and remember the beat-PIN rhythms. As before, each

of them can make up to three access attempts. It is considered to

success if any one of the three trials passes the authentication.

Table 8 shows that the success rate of type-II shoulder surfing

attack drops quickly when legitimate users choose longer beat-PINs.

Specifically, when the length is 10, the attacker’s FAR is as low as

11.3%. This is because rhythms of a beat-PIN is more difficult to

Table 8: FAR comparison under type-II shoulder surfing at-
tacks

Length 6 7 8 9 10
Beat-PIN 39.3% 36.8% 17.6% 15.0% 11.3%

Digit-PIN 85.5% 82.1% 75.4% 72.7% 70.4%

Password 82.3% 79.6% 71.5% 68.2% 65.7%

Pattern lock 78.1% 71.2% 66.7% 54.5% 34.8%

Table 9: The impact of beat-PIN length to its memorability.

Beat-PIN Length 5 6 7 8 9 10 11 12 13
Total number 2 38 21 13 11 11 8 5 3

Fail number 0 2 0 1 1 0 0 0 0

mimic and recall as it becomes longer. However, we have to ad-

mit that the resistance performance for shorter beat-PINs is less

attractive. Therefore, users should be advised to choose longer beat-

PINs in order to resist type-II shoulder surfing attacks. Besides, we

further compare the attacker’s success rate of beat-PIN with other

commonly used “something you know” style authentication, such

as digit-PIN, password and patter lock. The shoulder surfing attack

over these authentication is conducted under a similar setting as

with Beat-PIN. Note that the length of a pattern lock passcode is con-
sidered as the number of “dots” the line passes by. We observe that

beat-PIN outperforms the other three. Specifically, when the length

is 10, the attacker’s success rate over beat-PIN, digit-PIN, password
and patter lock is 11.3%, 70.4%, 65.7% and 34.8%, respectively. Note

that we confine the comparison within “something you know” style

authentication. This is because the secret information involved

therein are observable by attackers, while that from “something

you are” or “something you have” style authentication is not, e.g.,

fingerprint, iris and hand geometry. Therefore, generally speaking,

“something you are” or “something you have” style authentication

will be more robust against shoulder surfing attack than “something

you know” style authentication, including beat-PIN.

D MEMORABILITY
In order to test the memorability performance of beat-PINs, we

design a recall test. It was conducted one week after the main

data collection session in phase-I user study. Specifically, all the

volunteers were asked to re-enter their previously chosen beat-PINs

three times. If any of the three trials passes the authentication, then

we consider the user can recall his/her beat-PIN correctly. The test

result is really promising, as only 4 out of all 112 fail, leading to

the overall recall fail ratio as low as 3.6%. We would also like to

mention that no user was exposed to the system during the week.

Thus, we can expect a higher success recall rate if users practice

beat-PINs multiple times every day. Moreover, we further illustrate

the impact of beat-PIN length to its memorability. There are 2 fails

among total 38 samples when the length is 6, and one fail for each

of the cases when the length is 8 and 9, leading to the fail ratio as

5.2%, 7.7%, 9.1%, respectively. Therefore, there experiences a light

increase in terms of recall fail ratio as the beat-PIN length grows.
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Figure 17: Average ratings for the four usability questions.

E SURVEY RESULTS
In addition to the experiments, we further analyze the usability of

Beat-PIN via the survey results. Specifically, at the end of phase-II

experiments, questionaries were distributed among all volunteers.

They were asked to rate Beat-PIN from the following 4 perspectives

and compare it to the commonly used methods on mobile devices,

including digit-PIN, pattern lock and fingerprint. 1) Is it easy to

memorize? 2) Is it fast to login in? 3) Is it convenient to perform?

4) Is it less error prone? For each question, we use 3 (1-3) levels

representing responses of disagree, neutral and agree. The average

ratings for different authentication methods calculated from the

resulted 49 questionnaires are shown in Figure 17.

Specifically, Figure 17(a) compares the memorization of Beat-PIN,
digit-PIN, pattern lock and fingerprint-based authentication. The

result shows that the average score regarding “easy for memoriza-

tion” of Beat-PIN is 2.92, which is slightly higher than that for

digit-PINs, i.e., 2.89, and significantly higher than that for pattern

lock, i.e., 2.68. Note that all these three belong to the “something you

know” style authentication, where users have to remember some

secret information and correctly “prove” it to get authenticated.

Beat-PIN has the best performance among these three. Meanwhile,

fingerprint authentication belongs to the “something you have”

style authentication and thus requires the least effort for memoriza-

tion. Figure 17(b) tells that beat-PINs are regarded as the second

fastest to log in, even faster than digit-PINs. According to Figure

17(c) and Figure 17(d), our scheme is generally regarded as con-

venient and less error prone. In particular, it is rated better than

pattern lock in these two aspects.
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