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Abstract—Mobile crowd sensing (MCS) takes advantage of
pervasive mobile devices that are equipped with multi-sensors
to collect rich data of a certain geographic area. Because of the
importance of incentivizing users to participate, auction-based
open MCS markets have been proposed in past literature. Note
that their focus is to achieve critical economic properties but fail
to protect bid privacy. Although there are limited schemes dealing
with this issue, they are designed only for single-side auctions
and are unsuitable for double-side auctions whose properties are
quite different. In this paper, inspired by uniform pricing and ex-
ponential mechanism, we propose a differentially private double
auction (DPDA) scheme for MCS to protect bid privacy for both
auction sides. In addition, the traditional economic properties,
such as γ-truthfulness, individual rationality and budget balance,
are guaranteed as well. Besides, we derive closed forms over the
computation complexity and the approximate optimal platform
revenue achieved by the scheme. Extensive simulations have been
conducted on real-world datasets to validate the efficiency and
effectiveness of DPDA.

I. INTRODUCTION

The exploding growth of mobile devices with diverse
embed sensors (e.g., camera, gyroscope, 3D accelerometer
and GPS) has triggered the thriving of human-centric mobile
crowd sensing (MCS) which has been gradually recognized as
a compelling paradigm for sharing and utilizing resources of
personal hardwares to collect enormous data from surrounding
environment. Typically, a MCS system is held by the cloud
platform, accepting sensing tasks from requestors and collect-
ing sensing data provided by mobile devices, namely sensing
workers. Open markets like Crowdsignals [1] have emerged
to facilitate interactions among requestors and workers for
different task purposes.

Executing sensing tasks is resource-consuming for individ-
ual workers. Therefore, to elicit them to participate, auctions
naturally serve as ideal means to provide suitable incentives
to workers and to distribute sensing tasks among them. There
have been some research efforts modeling MCS markets as
reverse single-side auctions, where the platform plays as the
auctioneer and workers are sellers to compete for sensing
opportunities [2]–[6]. Realizing the competition also exists
among task requestors, recent works [7]–[9] alternatively
model MCS markets as double-side auctions, or called double
auctions for short, where requestors play as buyers to purchase
sensing efforts from workers. However, the main focus of
these works is to achieve some economic properties, such
as truthfulness and individual rationality, so as to guarantee
robustness and sustainability of MCS markets. For instance,

in a truthful auction, a player’s best strategy is to bid honestly;
in the case of a double auction, a worker’s (requestor’s) ask
(bid) is exactly his cost (value) toward a task.

Even with all these promising properties, as pointed out
by [11], [12], an auction is vulnerable to inference attacks.
A viable strategy for an adversary to perform such attacks
is, for example, to try a different bid/ask at each auction
round and then analyze the corresponding auction outcomes.
In such a way, bids/asks from other victims can be revealed
by differencing multiple rounds of outcomes. In addition, if
the auction is truthful, disclosed bids/asks are exactly true
costs/values from their owners. Leveraging these data, the
adversary is able to infer his opponents’ financial conditions,
so as to bid strategically for beneficial gain. To address this
issue in MCS, only a handful research [11], [12] has been
conducted. The notion of differential privacy has been applied.
However, they merely focus on tackling inference attacks in
single-side auction scenarios, while how to resist these attacks
in double-side markets in MCS has been neglected so far. Note
that interactions among requestors, workers and the auctioneer
in double auctions are much more complicated than single-side
auctions, due to the involvement of requestors. Besides, in
addition to determining winning workers and their payments,
a double auction should also find out winning requestors and
their charges. Moreover, additional economic properties, such
as budget balance, should satisfy in double auctions. All these
uniquenesses impose great challenges in designing double
auction schemes for MCS that resist inference attacks.

In this paper, we develop a practical differentially private
double auction (DPDA) scheme to combat inference attacks in
MCS. Task requestors and workers participate in the market
as buyers and sellers, respectively. In order to generate high
revenue, the platform, who is the auctioneer, formulates a
platform revenue maximization (PRM) problem. It takes into
account various constraints from both sides and proves as NP-
hard. To solve it efficiently, we propose a heuristic winner de-
termination algorithm. A score function is carefully designed
for matching requestors and their tasks to suitable workers so
as to achieve the approximate optimal platform revenue. Then,
uniform pricing is adopted to calculate payments to winning
workers and charges to winning requestors, to guarantee eco-
nomic properties, including truthfulness, individual rationality
and budget balance. Moreover, as the most critical component,
inspired by the exponential mechanism [13], we convert the
winner selection and pricing into a probabilistic fashion for the
effect that the change of one player’s bid/ask only has limited
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impact to an auction outcome. Hence, it thwarts the adversary
from analyzing different outcomes for inference attacks. Our
contributions in this paper are summarized as follows.

• We discuss how to achieve differential privacy for
double-side markets in MCS, which has never been
discussed before.

• Through rigid theoretical analysis, we prove that
DPDA guarantees differential privacy, γ-truthfulness,
individual rationality and budget balance. We also
give closed forms over the computation complexity
and approximate optimal platform revenue realized
via our scheme.

• We extensively evaluate DPDA over real-world
datasets.

The remainder of the paper is organized as follows. We
review some relevant works and their deficiencies in Section
II. Section III presents the system model and problem for-
mulation. Design details of the proposed DPDA scheme are
described in Section IV. Its theoretical analysis is provided in
Section V, followed by evaluation in Section VI. Section VII
concludes the entire paper.

II. RELATED WORK

Only a handful schemes have been proposed to protect bid
privacy in MCS. Dimitriou and Krontiris [14] studied how
to protect workers’ bids from the platform. They leveraged
some crypto primitives to guarantee bidders’ anonymity and
design a rewarding mechanism that enables winners to claim
their reward without being linked to the data they contributed.
However, this scheme does not discuss how to protect bid
privacy from other bidders. Besides, inference attacks have
also been ignored. Realizing this issue, Jin et al. [12] proposed
a differentially private incentive mechanism that preserves the
privacy of one’s bid against other honest-but-curious workers,
where they modeled the MCS market as the reverse com-
binatorial auction and targeted at minimizing the platform’s
total payment. In the same line of research, Lin et al. [11]
also adopted the concept of differential privacy. Alternatively,
they aimed to minimize the overall social cost. Note that all
these works focus on single-side auctions in MCS, where the
effect from the demand side, i.e., requestors, have not been
taken into account. In this work, we consider a more practical
yet complicated market for MCS; double-side auctions are
applied to model the interactions among requestors, workers
and the platform. Hence, how to resist inference attacks therein
becomes a more challenging task that deserves a thorough
investigation.

Bid privacy protection has also been studied in generic
auctions. For example, Parkes et al. [15] presented a privacy-
preserving and verifiable auction based on homomorphic
cryptography. No party, including the auctioneer, receives any
information about bids, and no bidder is able to change or
repudiate any bid. Another privacy-preserving and verifiable
auction scheme [16] is developed for online Ad exchanges.
However, partial bid information is revealed once an auction
closes in these schemes. Realizing that bids in previous
auctions can be used in the future auctions, Nojoumian and

Stinson [17] leveraged the verifiable secret sharing technique
to make sure that bids, especially the losing ones, are kept
private through the entire process of an auction. Note that
the above schemes [15]–[17] do not consider bid privacy
leakage caused by other players’ inference attacks. McSherry
et al. [18] are among the first to design differentially private
auction mechanisms to defend against such attacks, followed
by research [13], [19], [20]. However, these mechanisms are
designed for generic auctions, which fail to take into ac-
count unique properties in MCS, such as sensing capabilities,
preferences, travel budgets at workers and sensing quality
requirements at requestors. With the involvement of these
factors, the differentially private auction mechanism design
for MCS will be significantly different.

It is also worth mentioning some other efforts on protecting
worker privacy in MCS. For example, the work [21]–[23]
target at hiding worker locations from the platform, while the
work [24], [25] discuss how to preserve workers’ identity and
data privacy when submitting sensing results. Apparently, we
are dealing with a totally different privacy concern from them.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a general open market for MCS which con-
sists of a set of task requesters R = {R1, · · · , Ri, · · ·RN}
who purchase sensing data for their tasks, a cloud platform
who acts as the auctioneer, and a set of participatory workers
W = {W1, · · · ,Wj , · · · ,WM} who compete for sensing
opportunities. Typically, requestors have various sensing tasks,
each with its own quality requirement and workers bear differ-
ent sensing capabilities and preferences. Workers have to travel
for a distance to perform tasks that are located in different
geographical areas. In order to wisely assign requestors and
their tasks to workers, a typical auction workflow can be
summarized as follows.

• Each requestor Ri ∈ R submits his bid profile

FRi =< Ti, Li, bi >

where Ti stands for the set of tasks to be completed
at location Li. bi represents the maximal per-task
payment he is willing to spend according to his own
per-task valuation vi for obtaining the sensing data.
Following [26]–[28], we adopt normalized bi and vi,
i.e., they take values from (0, 1]. Denote by FR all
requestors’ bid profiles.

• Meanwhile, each worker Wj ∈ W submits his ask
profile

FWj =< τj , lj , sj >

where τj indicates the set of tasks that he is willing
to perform, lj stands for his current location, and sj
represents the minimum per-task payment he accepts
based on his per-task cost cj . Similarly, sj and cj
take values from (0, 1]. Denote by FW all workers’
ask profiles.

• Once collecting bid and ask profiles from players, the
platform selects the winning requestors and workers,
and determines the task assignment policy. Besides,
it calculates a per-task payment pj for each winning
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worker Wj and a per-task charge ai to each winning
requestor Ri. Finally, the platform announces auction
results.

A. Problem Formulation

The outcome of an auction heavily relies on its objective
properties. In this work, as [7], [29], we intend to maximize
the platform’s revenue. Thus, the following platform revenue
maximization (PRM) problem is formulated

max
N∑
i=1

M∑
j=1

(ai − pj)xi,j

s.t.
M∑
j=1

xi,j ≥ |Ti|, ∀i ∈ [1, N ] (1)⋃
j:xi,j 6=0

τj ⊇ Ti, ∀i ∈ [1, N ] (2)

ρ(rj) ≤ Dj , ∀j ∈ [1,M ] (3)
xi,j ∈ Z, ai, pj ∈ Γ, ∀i ∈ [1, N ],∀j ∈ [1,M ].

Denote by rj the set of tasks that the platform pair to worker
Wj . ρ(rj) represents the shortest accumulated path for com-
pleting all tasks in rj . Also, it is practical to assume that each
worker Wj has his travel budget Dj . The decision variables
of PRM include xi,j’s, ai’s and pj’s, among which xi,j is
an integer, denoting the number of tasks Wj executes for Ri.
In the above problem, constraints (1) and (2) require that a
winning requestor’s sensing tasks should be fully completed.
Constraint (3) states that a worker’s accumulated traveling
distance should not surpass it travel budget. Besides, we define
a finite price set Γ that contains all feasible values of payments
pj’s and charges ai’s.

B. Objectives and Assumptions

The primary goal of this work is to defend against
inference attacks in MCS auction markets. As mentioned
above, in an inference attack, one player (i.e., a requestor or
worker) can infer others’ bids/asks by changing its own bid/ask
in multiple auction rounds and analyzing the corresponding
auction outputs. With others’ bid/ask information, one can use
it as auxiliary knowledge to further infer opponents’ financial
conditions and business strategies so as to play with favorable
actions for beneficial gain. Therefore, we aim to design a
differentially private mechanism to address this issue. The
formal definition of differential privacy is given below.

Definition 1. Differential Privacy (revised from [18], [30]).
We denote the proposed auction mechanism as a function
M(·) that maps input bids (b) and asks (s) to charges (a)
and payments (p). Then M(·) guarantees ε-differential privacy
for its inputs, if and only if for any possible set of payments
and charges {a,p}, and any two bid and ask sets {b, s} and
{b′, s} (or {b, s′}) that only differ in one element, we have

Pr[M({b, s}) ∈ {a,p}] ≤ exp(ε) Pr[M({b′, s}) ∈ {a,p}]

or

Pr[M({b, s}) ∈ {a,p}] ≤ exp(ε) Pr[M({b, s′}) ∈ {a,p}]

where ε is a constant usually referred as privacy budget.

Definition 1 means that changing a player’s bid/ask does
not result in significant changes of the final payment and
charge profile. Thus, any player alone cannot successfully
launch an inference attack through manipulating his bid/ask
and analyzing the differences of auction outputs.

In this work, we aim to protect one’s bid privacy from other
players who are semi-honest. Namely, they behave honestly
but are curious in acquiring others’ bid information. Besides,
like existing differential privacy mechanism design [11], [12],
we assume that the central controller, i.e., platform here, is
trustworthy; it does not leverage its knowledge over players’
inputs and manipulate auction outcomes. Thus, we do not
intend to protect bid privacy from it.

In addition to protecting players’ bid privacy, we don’t
want to sacrifice some critical economic properties, such as
truthfulness, individual rationality and budget balance. We first
present the formal definition of a player’s utility.

Definition 2. A Player’s Utility. A requestor Ri’s utility uRi
(Ri ∈ R) is the difference between his valuation and charge
toward tasks,

uRi =

{ ∑
j∈[1,M ]

xi,j(vi − ai), if Ri is a winner

0. Otherwise

Also, a worker Wj’s utility uWj (Wi ∈ W) is the difference
between his payment and cost toward tasks,

uWj =

{ ∑
i∈[1,N ]

xi,j(pj − cj), if Wj is a winner

0. Otherwise

Typically, auction players are strategical in a sense that
they manipulate their bids/asks to win an auction. Truthfulness
ensures players bid strictly following their values/costs. Under
the framework of differential privacy, following [31], we adopt
a notion of relaxed truthfulness. It guarantees no player can
gain more than γ utility by bidding untruthfully.

Definition 3. γ-Truthfulness. An auction is γ-truthfulness for
requestors, if and only if, for each requestor Ri ∈ R, we have

E[uRi (vi, b−i)] ≥ E[uRi (bi, b−i)]− γ,

where bi 6= vi and b−i denotes other requestors’ bids. And
for each worker Wj ∈ W , we have

E[uWj (cj , s−j)] ≥ E[uWj (sj , s−j)]− γ,

where si 6= ci and s−j denotes other workers’ asks.

Moreover, the utility received by an individual player
should be nonnegative, which is defined as individual ratio-
nality.

Definition 4. Individual Rationality. Our auction mechanism
is individual rationality, if and only if, for each requestor Ri ∈
R and worker Wj ∈ W , we have

uRi ≥ 0 and uWj ≥ 0.
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The platform revenue should be nonnegative to ensure the
market sustainability, which is referred as budget balance.

Definition 5. Budget Balance. An auction is budget-balanced,
if and only if, the auctioneer’s revenue is nonnegative, i.e.,

N∑
i=1

M∑
j=1

(ai − pj)xi,j ≥ 0.

For time-sensitive MCS, it is critical to solve PRM effi-
ciently. Unfortunately, it turns out to be NP-hard.

Theorem 1. The PRM problem is NP-hard.

Proof: For the analysis, we first degenerate the problem
to a special case in which there is only one worker in the
system and it can perform all requestors’ tasks. Under this
setting, the PRM problem is transferred into an orienteering
problem, in which tasks can be modeled as vertices V of a
graph G(V,E). Each vertex is assigned with a reward, which
is the revenue for completing the corresponding task. There is
an edge connecting arbitrary two vertices of V . The weight for
each edge is directly the distance between two task locations.
For the orienteering problem, it tries to find a path in the graph
that originates at the beginning vertex with the total length
no larger than a certain threshold, such that the accumulated
reward for arriving each vertex along the path is maximized.
In our problem it is equivalent to identify the worker’s best
task set and the travel path such that the platform revenue is
maximized. According to [32], [33], an orienteering problem
is NP-hard. Since a simplified version of PRM is already NP-
hard, the PRM is NP-hard as well.

Theorem 1 tells that it is time consuming to optimally solve
PRM. Therefore, it is desirable to design a heuristic algorithm
to solve it efficiently.

In conclusion, our design goal in this work is to achieve
differential privacy, γ-truthfulness and individual rationality,
and budget balance in MCS auctions. Besides, we also aim to
derive approximate optimal platform revenue with computa-
tion efficiency via the heuristic algorithm.

IV. DPDA SCHEME DESIGN

Our proposed scheme consists of two procedures, winner
determination and pricing. In the following, we elaborate them
with details.

A. Winner Determination

Recall that Γ stands for the finite set including all possible
charges from requestors and payments to workers. We first
present the following definition which is critical in our scheme
design.

Definition 6. Given the pricing pair (a, p) ∈ Γ2 (a ≥ p),
R(a) ⊂ R is a set of requestors whose bids are no smaller
than a; W(p) ⊂ W is a set of workers whose asks are no
larger than p.

Once receiving bid/ask profiles from all players, the plat-
form derives R(a) and W(p) for each pair (a, p) ∈ Γ2. We

Algorithm 1 Winner Determination
Input: Γ2, R, W , FR, FW

Output: R(a)
, W(p)

, xap, ∆a
p, ∀(a, p) ∈ Γ2

1: for all (a, p) ∈ Γ2 do
2: Derive R(a) and W(p);
3: Sort R(a) according to |Ti|;
4: for all Ri ∈ R(a) do
5: while Ti 6= ∅ and

⋃
j:Wj∈W(p)

τj ⊇ Ti and

max
j:Wj∈W(p)

{Dj − di,j} ≥ 0 do

6: for all Wj ∈ W(p) do
7: Calculate score(i, j) following (4);
8: end for
9: s = arg min

j:score(i,j)≥0

score(i, j);

10: xi,s ← xi,s + |Ti ∩ τs|, Ti ← Ti \ Ti ∩ τs;
11: Ds ← Ds − di,s, ls ← Li;
12: R(a) ← R(a) ∪Ri, W

(p) ←W(p) ∪Ws;
13: end while
14: end for
15: ∆a

p =
∑

i:Ri∈R
(a)

|Ti|, xap = {xi,j};

16: end for

now discuss how to determine the corresponding winning
requestors R(a) ⊂ R(a) and workers W(p) ⊂ W(p). In
order to admit more tasks so as to potentially bring in higher
revenue for the platform, our heuristic algorithm tends to
select winning requestors that have more tasks to execute;
among R(a), the requestor with the largest amount of tasks
is processed in the first round, then the one with the second
largest amount of tasks is processed next, etc. This iteration
continues until all requestors in R(a) have been examined. For
each selected requestor Ri ∈ R(a), the next step is to assign
workers to execute its tasks. For this purpose, we design a
function score(i, j) that evaluates the fitness of assigning any
worker Wj to requestor Ri

score(i, j) =
|Ti| − |Ti ∩ τj |
Dj − di,j

, (4)

where di,j represents the distance for Wj to travel to execute
Ri’s tasks. Generally, the smaller value score(i, j) is, the
more tasks Wj can accomplish for Ri within a shorter travel
distance. Besides, we set di,j = ∞ if Ti ∩ τj = ∅. Hence, if
score(i, j) is calculated negative, it indicates that Wj cannot
accomplish Ri’s tasks within his travel budget Dj , or Wj is
unwilling to execute Ri’s tasks. Ri’s tasks are assigned in
an iterative manner. In each iteration, a winning worker Ws

is selected in a way that its non-negative score(i, s) is the
minimum among all workers. Thereafter, the corresponding
parameters are updated, including Ws’s task assignment xi,s,
remaining travel budget Ds, its current location ls, Ri’s
remaining task set Ti, and winning worker set W(b)

. This
worker assignment process for Ri continues until all its tasks
have been distributed, or they cannot be satisfied. For the
former case, Ri is a winning requestor belonging to R(a)

;
otherwise, it loses. We further denote by ∆a

p the total number
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of admitted tasks from all winning requestors. It is calculated
as ∆a

p =
∑
i:Ri∈R

(a) |Ti|. ∆a
p plays a critical role in the

pricing procedure, which will be clear soon. Besides, we
denote by xap the requestor-worker assignment vector under
(a, p), xap = {xi,j |i ∈ [1, N ], j ∈ [1,M ]}. Up to now,

the winner set R(a)
and W(p)

, and the requestor-worker
assignment policy xap have been determined for (a, p). The
same computation is conducted for the rest (a′, p′) ∈ Γ2.
Algorithm 1 gives an overview of our winner determination
procedure.

From the description above, this procedure identifies the
potential winners and their assignment policy under each pair
(a, p) ∈ Γ2. The remaining task is to determine which pair of
(a, p) to adopt. As once it is fixed, so do the winners. As this
part is related to the pricing procedure, we leave its discussion
therein.

B. Pricing

Our pricing scheme is motivated by both the uniform
pricing in auctions [34] and the exponential mechanism [18]
in achieving differential privacy. For a (a, p), each winning
requestor in R(a)

pays a uniform price a per task; each
winning worker in W(p)

gets paid with a uniform price p
per task. To determine which (a, p) serves as the final pricing
pair, we calculate the selection probability

Pr[(a, p)] =
exp[ ε

2K (a− p)∆a
p]∑

(ã,p̃)∈Γ2

exp[ ε
2K (ã− p̃)∆ã

p̃]
, (5)

where K =
∑
i:Ri∈R |Ti|, i.e., the total number of tasks in the

market. Recall that ε is the privacy budget we aim to achieve.
Apparently, this selection probability is proportional to the
exponential value exp[ ε

2K (a− p)∆a
p]. It can be interpreted

in this way: (a, p) is more likely to be selected if winning
requestors pay more and winning workers get paid less per
task (i.e., a larger (a− p)), and it results in larger amount of
tasks to be executed (i.e., a larger ∆a

p).

Finally, once (a, p) is fixed following the probability (5),
the winners R(a)

and W(p)
, and their assignment policy xap

will be fixed as well. For each winning requestor Ri ∈ R
(a)

,
it pays

∑
j∈[1,M ] a · xi,j in total; for each winning worker

Wj ∈ W
(p)

, it gets paid at
∑
i∈[1,N ] p · xi,j in total.

V. ANALYSIS

In this section, we provide formal theoretical analysis on
desirable properties of our proposed DPDA scheme.

Theorem 2. The DPDA scheme is ε-differentially private.

Proof: This property should be examined for both re-
questors and workers.

For requestors, denote by b and b′ two bid sets from
requestors that only differ in one requestor’s bid. Besides, let

∆′
a
p be the number of assigned tasks under b′ for a given

pricing pair (a, p) ∈ Γ2. We have

Pr[M(b, s) = (a, p)]

Pr[M(b′, s) = (a, p)]

=
exp[ ε

2K (a− p)∆a
p]∑

(ã,p̃)∈Γ2

exp[ ε
2K (ã− p̃)∆a

p]
/

exp[ ε
2K (a− p)∆′ap]∑

(ã,p̃)∈Γ2

exp[ ε
2K (ã− p̃)∆′ap]

= exp[
ε(∆a

p −∆′
a
p)

2K
(a− p)] ·

∑
(ã,p̃)∈Γ2

exp[ ε
2K (ã− p̃)∆′ap]∑

(ã,p̃)∈Γ2

exp[ ε
2K (ã− p̃)∆a

p]

1©
≤ exp[

ε

2
(a− p)]

∑
(ã,p̃)∈Γ2

exp[ ε
2K (ã− p̃)(∆a

p +K)]∑
(ã,p̃)∈Γ2

exp[ ε
2K (ã− p̃)∆a

p]

= exp[
ε

2
(a− p)]

∑
(ã,p̃)∈Γ2

exp[ ε
2K (ã− p̃)∆a

p] · exp[ ε2 (ã− p̃)]∑
(ã,p̃)∈Γ2

exp[ ε
2K (ã− p̃)∆a

p]

2©
≤ exp[

ε

2
(a− p)] · exp(

ε

2
) ≤ exp(

ε

2
) · exp(

ε

2
) = exp(ε)

where 1© comes from ∆a
p − ∆′

a
p ≤ K, and 2© is due to

exp[ ε2 (ã − p̃)] ≤ exp( ε2 ) as ã − p̃ ≤ 1. From the above
expression, we have

Pr[M(b, s) = (a, p)] ≤ exp(ε) · Pr[M(b′, s) = (a, p)].

According to Definition 1, we can infer that DPDA is ε-
differentially private to requestors.

Following the similar idea above, denote by s and s′ two
ask sets from workers that only differ in one worker’s ask. We
have

Pr[M(b, s) = (a, p)] ≤ exp(ε) · Pr[M(b, s′) = (a, p)],

i.e., DPDA is ε-differentially private to workers.

To sum up, DPDA is ε-differentially private to both re-
questors and workers.

To evaluate the γ-truthfulness, we first give following
lemmas.

Lemma 1. For each requestor Ri ∈ R, given a pricing pair
(a, p) ∈ Γ2, we always have uRi (vi, b−i) ≥ uRi (bi, b−i) via
our DPDA scheme.

Proof: We first consider the scenario where vi > bi.

• Case 1: Ri wins with both vi and bi. First of all,
we can infer that R(a)

(vi, b−i) = R(a)
(bi, b−i)

according to the winner determination rule (Algorithm
1), and thus xap(vi, b−i) = xap(bi, b−i). Hence, we
have

uRi (vi, b−i) =
∑

j:Wj∈W
xi,j(vi − a) = uRi (bi, b−i).

• Case 2: Ri wins with vi but loses with bi. Therefore,

uRi (vi, b−i) > uRi (bi, b−i) = 0.
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• Case 3: Ri loses with vi but wins with bi.
There are two sub-cases to consider. Sub-case I:
Ri(vi), Ri(bi) ∈ R(a)

. We have xap(vi, b−i) =
xap(bi, b−i) according to Algorithm 1. Hence, it is
impossible to have “Ri loses with vi but wins with bi”
under this sub-case. Sub-case II: Ri(vi) 6∈ R

(a)
and

Ri(bi) ∈ R
(a)

. According to how R(a)
is formed, we

have vi < a ≤ bi, which contradicts with the scenario
vi > bi. Based on the discussion over these two sub-
cases, we can infer that the statement of Case 3 does
not exist.

• Case 4: Ri loses with both vi and bi. Hence,

uRi (vi, b−i) = uRi (bi, b−i) = 0.

From the discussion above, we conclude that uRi (vi, b−i) ≥
uRi (bi, b−i) when vi > bi. The proof is similar when vi < bi,
which is omitted due to space limit.

To sum up, uRi (vi, b−i) ≥ uRi (bi, b−i) always holds.

Lemma 2. For any worker Wi ∈ W , given a pricing pair
(a, p) ∈ Γ2, we always have uWi (ci, s−i) ≥ uWi (si, s−i) via
our DPDA scheme.

Proof: The proof is very similar to that for Lemma 1.
Due to the space limit, we omit its discussion here.

Theorem 3. The DPDA scheme is γ-truthful.

Proof: Denote by b and b′ two bid sets from requestors
that only differ in one requestor’s bid. For each requestor Ri ∈
R, we have

E[uRi (vi, b−i)] =
∑

(a,p)∈Γ2

uRi (vi, b−i) Pr[M(b, s) = (a, p)]

1©
≥ exp(ε)

∑
(a,p)∈Γ2

uRi (bi, b−i) Pr[M(b′, s) = (a, p)]

≥ exp(−ε)
∑

(a,p)∈Γ2

uRi (bi, b−i) Pr[M(b′, s) = (a, p)]

= exp(−ε)E[uRi (bi, b−i)]
2©
≥ (1− ε)E[uRi (bi, b−i)]

3©
≥ E[uRi (bi, b−i)]− ε · max

i∈[1,N ]
{|Ti|}

where 1© can be simply derived from Theorem 2 and Lemma
1. 2© is because exp(−ε) ≥ 1 − ε. Note that the maximal
possible utility for Ri should be no larger than max

i∈[1,N ]
{|Ti|} ·

(vi − a). Besides, max
i∈[1,N ]

{|Ti|} · (vi − a) ≤ max
i∈[1,N ]

{|Ti|} as

vi, a ∈ [0, 1). Thus, 3© holds. From the discussion above, we
conclude that requestors are ε · max

i∈[1,N ]
{|Ti|}-truthful in DPDA.

Similarly, based on Theorem 2 and Lemma 2, for each
worker Wj ∈ W

E[uWj (cj , s−j)] ≥ E[uWj (sj , s−j)]− ε · max
j∈[1,M ]

{τj}.

Hence, workers are ε · max
j∈[1,M ]

{τj}-truthful in DPDA.

By setting γ = max{ε · max
i∈[1,N ]

{|Ti|}, ε · max
j∈[1,M ]

{τj}},
DPDA guarantees γ-truthfulness for both requestors and work-
ers.

Theorem 3 states that no player can gain in his expected
utility with γ by bidding untruthfully. Therefore, it is reason-
ably to consider that they bid truthfully in our DPDA scheme,
i.e., bi = vi (i ∈ [1, N ]), sj = cj (j ∈ [1,M ]).

Theorem 4. The DPDA scheme is individual rational.

Proof: Regarding Ri ∈ R, for a given pricing pair (a, p),
its utility is calculated as

uRi =
∑

j∈[1,M ]

xi,j(vi − a)
1©
=

∑
j∈[1,M ]

xi,j(bi − a)
2©
≥ 0

where 1© is due to Theorem 3 and 2© can be directly derived
from our winner determination rule (Algorithm 1).

Similarly, regarding Wi ∈ W , for a given pricing pair
(a, p), is easy to deduce

uWj =
∑

i:Ri∈R
xi,j(pj − cj) ≥ 0.

According to Definition 4, the DPDA scheme is individual
rational.

Theorem 5. The DPDA scheme is budget-balanced.

Proof: The platform revenue produced by DPDA can be
calculated as

N∑
i=1

M∑
j=1

(a− p)xi,j ≥ 0.

The inequality directly comes from the condition a ≥ p.
According to Definition 5, the DPDA scheme is budget-
balanced.

Recall that another design goal is to achieve computation
efficiency, as the original PRM problem is NP-hard. The fol-
lowing theorem states that our DPDA scheme has polynomial-
time computation complexity that is related to the requestor
number N , worker number M , total task number K, and the
cardinality of the pricing set Γ.

Theorem 6. The computation complexity of our DPDA
scheme is upper bounded by O((max{NlogN,KM}) · |Γ2|).

Proof: The computation complexity of DPDA is dom-
inated by the winner determination process (Algorithm 1),
whose main loop includes |Γ2| iterations. For each itera-
tion, the computation complexity for sorting R(a) (line 3) is
O(NlogN) in general. From line 4 to line 14, the algorithm
assigns workers to tasks from each requestor in R(a). Specif-
ically, it involves M comparisons in line 9 with at most K
iterations for assigning all K tasks to corresponding workers.
Its computation cost is thus upper bounded by O(KM).
Therefore, the computation complexity of DPDA is upper
bounded by O(max{NlogN,KM} · |Γ2|).

In the following, we analyze the approximation ratio
of the platform revenue (denoted by PR), generated by the
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DPDA scheme, to the optimal platforms revenue (denoted by
OPT ), generated by directly solving PRM optimally. This
ratio indicates how much revenue our scheme sacrifices in
order to achieve all objective properties. To analyze this ratio,
we first give the following lemma.

Lemma 3. Define OPT ∗, the maximal revenue the platform
can obtain when adopting arbitrary uniform pricing (a, p) ∈
Γ2. Then

max
(a,p)∈Γ2

∆a
p(a− p)

K
OPT ≤ OPT ∗ ≤ OPT.

Proof: First of all, we know OPT ∗ serves as a lower
bound of OPT .

Recall that K stands for the total number of tasks in the
market. We have

OPT
1©
≤ K · max

(ã,p̃)∈Γ2
(ã− p̃)

2©
≤ K (6)

where 1© can be simply derived from the formulation of PRM
and 2© is due to ã, p̃ ∈ (0, 1]. Besides, from the definition of
OPT ∗, we have OPT ∗ ≥ max

(a,p)∈Γ2
∆a
p(a− p). Together with

(6), it derives

OPT ∗ · 1 ≥ max
(a,p)∈Γ2

∆a
p(a− p) · OPT

K

which ends the proof.

Lemma 3 not only serves as a critical step for deriving
Theorem 7, but also tells how much platform’s revenue the
uniform pricing trades for achieving truthfulness (regardless
of differential privacy). Generally speaking, when an auction
adopts uniform pricing, it can achieve the truthfulness prop-
erty. This statement can be examined via the proof of Lemma
1 and Theorem 3 for our DPDA scheme which is exactly
developed based on uniform pricing.

Theorem 7. Let E[PR] be the excepted platform’s revenue
achieved via our DPDA scheme. Then the relation between
E[PR] and OPT is given by

E[PR] ≥
max

(a,p)∈Γ2
∆a
p(a− p)

K
OPT − 6K

ε
ln(e+

εOPT |Γ2|
2K

).

Proof: For some constant t > 0, define St = {(a, p) :
PR > OPT ∗ − t} and S̄2t = {(a, p) : PR < OPT ∗ − 2t}.
We have

Pr(S̄2t)

Pr(St)

=

∑
(a,p)∈S̄2t

exp[ ε
2K (a− p)∆a

p]/
∑

(ã,p̃)∈Γ2

exp[ ε
2K (ã− p̃)∆ã

p̃]∑
(a,p)∈St

exp[ ε
2K (a− p)∆a

p]/
∑

(ã,p̃)∈Γ2

exp[ ε
2K (ã− p̃)∆ã

p̃]

=

∑
(a,p)∈S̄2t

exp[ ε
2K (a− p)∆a

p]∑
(a,p)∈St

exp[ ε
2K (a− p)∆a

p]
≤
|S̄2t| exp[ ε

2K (OPT ∗ − 2t)]

|St| exp[ ε
2K (OPT ∗ − t)]

= exp(− εt

2K
)
|S̄2t|
|St|

≤ exp(− εt

2K
)
|Γ2|
|St|

.

Together with the fact Pr(St) ≤ 1, it derives Pr(S2t) = 1 −
Pr(S̄2t) ≥ 1−exp(− εt

2K ) |Γ
2|
|St| . It implies that DPDA selects the

pricing pair (a, p) such that the corresponding PR achieves at
least OPT ∗−2t with a probability at least 1−exp(− εt

2K ) |Γ
2|
|St| .

In addition, if t satisfies t ≥ 2K
ε ln |Γ

2|OPT∗
t|St| , then Pr(S2t) ≥

1− t
OPT∗ , and

E[PR] ≥
∑

(a,p)∈S2t

(OPT ∗ − 2t) Pr[M(b, s) = (a, p)]

≥ (OPT ∗ − 2t)(1− t

OPT ∗
) = OPT ∗ − 3t+

t2

OPT ∗

≥ OPT ∗ − 3t. (7)

Setting t = 2K
ε ln(e+ εOPT∗|Γ2|

2K ), we have

2K

ε
ln
|Γ2|OPT ∗

t|St|
≤ 2K

ε
ln
|Γ2|OPT ∗

t

1©
≤ 2K

ε
ln(e+

ε|Γ2|OPT ∗

2K
) = t,

where 1© is due to 2K
ε ln(e+ εOPT∗|Γ2|

2K ) ≥ 2K/ε. Therefore,
we can simply let t = 2K

ε ln(e+ εOPT∗|Γ2|
2K ) and substitute t

in (7). Together with Lemma 3, (7) can be rewritten as

E[PR] ≥ OPT ∗ − 3t = OPT ∗ − 6K

ε
ln(e+

εOPT ∗|Γ2|
2K

)

≥
max

(a,p)∈Γ2
∆a
p(a− p)

K
OPT − 6K

ε
ln(e+

εOPT |Γ2|
2K

)

which ends the proof.

VI. EVALUATION

In this section, we provide numerical results on evaluating
the performance of our DPDA scheme. Real-world dataset
retrieved from Yelp [35] is adopted. The dataset is sampled
from 12 metropolitan areas across 4 countries. It includes
store locations, users’ information, reviews, and store check-
ins in the form of separate JSON files. We extract the data of
city Toronto which contains 15489 businesses and more than
20000 users. In the evaluation, we treat locations of these local
businesses and users as those for requestors and workers in
MCS, respectively. For the rest parameters, such as task sets
and workers’ travel budgets, they are randomly generated. By
default setting, we consider an MCS system consisting of 200
players and 80 tasks. All simulation results are the average
over 100 trials.

A. Platform Revenue

Fig. 1 compares the achievable platform revenue when our
DPDA scheme is implemented or not. For the latter case,
we adopt the uniform pricing auction for task assignment; all
(a, p) ∈ Γ2 are examined to find the maximal revenue. Fig.
1(a) shows the revenue under different numbers of players
when privacy budget ε = 80 and requestor-worker-ratio
N/M = 1/4. First of all, the revenue increases as more
requestors and workers participate in the MCS market, which
meets our expectation. Hence, it is desirable to design auction
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Fig. 1. Platform revenue comparison with and without our DPDA scheme
with respect to number of players.

schemes that can attract more participants in order to generate
higher revenue for the system. Second, we observe that the
revenue under our DPDA scheme is lower than that without
the scheme. This is because uniform pricing auction (without
differential privacy) selects the pricing pair that generates the
maximal revenue, while the pricing pair in DPDA is selected
following the probability (5). Apparently, the former is an
upper bound of the latter. The gap between these two can
be viewed as the tradeoff to protect bid privacy.

Fig. 1(b) further depicts the platform revenue when ε =
100. Compared with Fig. 1(a), we notice that a larger privacy
budget ε leads to a higher revenue. Specifically, the average
revenue is 8.3 under ε = 80 when there are 125 players, while
it becomes 12.5 under ε = 100. This is due to the property
of pricing pair selection; with a larger ε, (a, p) that produces
a larger a− p is more likely to be selected, which leads to a
higher platform revenue. Due to the same reason, the revenue
is more unevenly distributed under a larger ε. Fig. 1(c) depicts
the platform revenue when N/M = 1. Compared with Fig.
1(a), there are more requestors and thus more tasks, which
also explains why it experiences a revenue increase when the
ratio grows from 1/4 to 1. We have a similar observation over
Fig. 2, which compares platform revenue with and without
DPDA with respect to number of tasks. All four figures clearly
demonstrate that the revenue increases linearly in general as
the task number grows.

B. Privacy Protection

To resist inference attacks, our DPDA scheme is developed
based on differential privacy. Recall that its idea is to adopt
probabilistic pricing rule, such that changing in a player’s
bid/ask does not result in significant changes of the final
payment and charge profile. Thus, any player alone cannot
successfully launch an inference attack through manipulating
his bid/ask and analyzing the differences of the payment and

40 80 120 160 200 240

Number of tasks

0

20

40

60

P
la

tf
o
rm

 r
e
v
e
n
u
e

With DPDA scheme

Without DPDA scheme

(a) ε = 80, N/M = 1/4

40 80 120 160 200 240

Number of tasks

0

20

40

60

P
la

tf
o
rm

 r
e
v
e
n
u
e

With DPDA scheme

Without DPDA scheme

(b) ε = 100, N/M = 1/4

100 200 300 400 500 600

Number of tasks

0

20

40

60

80

100

120

P
la

tf
o
rm

 r
e
v
e
n
u
e

With DPDA scheme

Without DPDA scheme

(c) ε = 80, N/M = 1

100 200 300 400 500 600

Number of tasks

0

20

40

60

80

100

120

P
la

tf
o
rm

 r
e
v
e
n
u
e

With DPDA scheme

Without DPDA scheme

(d) ε = 100, N/M = 1

Fig. 2. Platform revenue comparison with and without our DPDA scheme
with respect to number of tasks.

charge profile. Therefore, a good privacy-preserving scheme
should keep changes in auction outputs as small as possible
under a minor change over the auction input. To evaluate this
change, we define the privacy leakage caused by our scheme.

Definition 7. Denote by ℘ and ℘′ pricing distributions over
the set Γ2 for differing only one element in the bid and
ask profile. The privacy leakage is defined as the sum over
absolute differences between the probabilities of these two
pricing distributions.

privacy leakage =
∑

pl∈℘,p′l∈℘′
|p′l − pl|.
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Fig. 3. Impact of privacy budget ε to platform budget and privacy leakage.

Fig. 3 shows the privacy leakage under different privacy
budget ε’s. We observe that the privacy leakage increases as ε
grows. Besides, privacy leakage keeps relatively stable when
ε ≤ 20, while it increases fast after that. This property is also
due to the pricing selection probability (5). Generally, with a
larger ε, the pricing pairs that produce large difference between
a and p are more likely to be selected, i.e., less diverse will
be introduced into pricing; it renders our scheme more alike a
pure uniform pricing auction without privacy. Meanwhile, the
platform revenue also increases as ε grows. Its reason has been
discussed in the previous section. Fig. 3 indicates that there
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is a tradeoff between the platform revenue and the privacy
leakage in our scheme. A larger revenue leads to a larger
privacy leakage, and vice versa. Hence, the system should
carefully select ε to strive a balance between these two.

VII. CONCLUSION

In this paper, we develop a scheme, called DPDA, to
protect bid privacy of both requestors and workers in double-
side markets for MCS. Our scheme is a novel combination
of uniform pricing and exponential mechanism. Hence, not
only can it achieve truthfulness, individual rationality and
budget balance, but also guarantee differential privacy so as to
resist inference attacks. Moreover, DPDA is computationally
efficient and generates approximate optimal platform revenue.
Both theoretical analysis and extensive simulations have been
conducted to validate its performances and properties.
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