
Crowd-Empowered Privacy-Preserving Data Aggregation for
Mobile Crowdsensing

Lei Yang
CSE Department at UNR

leiy@unr.edu

Mengyuan Zhang
State Key Laboratory of Industrial

Control Technology at ZJU

zhang418@zju.edu.cn

Shibo He
State Key Laboratory of Industrial

Control Technology at ZJU

shibohe.cn@gmail.com

Ming Li
CSE Department at UNR

mingli@unr.edu

Junshan Zhang
School of ECEE at ASU

Junshan.Zhang@asu.edu

ABSTRACT

We develop an auction framework for privacy-preserving data ag-

gregation in mobile crowdsensing, where the platform plays the

role as an auctioneer to recruit workers for a sensing task. In this

framework, the workers are allowed to report privacy-preserving

versions of their data to protect their data privacy; and the platform

selects workers based on their sensing capabilities, which aims

to address the drawbacks of game-theoretic models that cannot

ensure the accuracy level of the aggregated result, due to the ex-

istence of multiple Nash Equilibria. Observe that in this auction

based framework, there exists externalities among workers’ data

privacy, because the data privacy of each worker depends on both

her injected noise and the total noise in the aggregated result that

is intimately related to which workers are selected to fulfill the task.

To achieve a desirable accuracy level of the data aggregation in a

cost-effective manner, we explicitly characterize the externalities,

i.e., the impact of the noise added by each worker on both the data

privacy and the accuracy of the aggregated result. Further, we ex-

plore the problem structure, characterize the hidden monotonicity

property of the problem, and determine the critical bid of workers,

which makes it possible to design a truthful, individually rational

and computationally efficient incentive mechanism. The proposed

incentive mechanism can recruit a set of workers to approximately

minimize the cost of purchasing private sensing data from workers

subject to the accuracy requirement of the aggregated result. We

validate the proposed scheme through theoretical analysis as well

as extensive simulations.
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1 INTRODUCTION

1.1 Motivation

Mobile crowdsensing arises as a promising sensing paradigm that

leverages the sensing capability of human-carried mobile devices

to perform various sensing tasks (e.g., healthcare, environment

monitoring, indoor localization, and smart transportation) [22]. By

outsourcing the sensing task to the public crowd, mobile crowd-

sensing systems can collect fine-grained information effectively

and efficiently. However, any individual involved in a sensing task

inevitably authorizes the task agent a certain level of privilege to

access her sensing data which can be sensitive, thereby giving rise

to privacy concerns when being released to an untrusted party.

This becomes a key challenge hindering individuals (workers) from

participation, more than the consumption of the limited system

resources (e.g., battery and computing power) of their mobile de-

vices. Therefore, the success of mobile crowdsensing hinges upon

the design of efficient incentive mechanisms to stimulate workers’

participation.

Many incentive mechanisms have been developed for mobile

crowdsensing systems (e.g., [1, 4, 7, 10–12, 14, 15, 21, 25–30]). Most

of the existing works take into account only workers’ sensing costs,

and only a few recent works consider workers’ privacy costs. How-

ever, in these works considering workers’ privacy costs, either

workers have no control of their data privacy (e.g., the platform

is assumed to be trustworthy and fully responsible for protecting

workers’ private data in [15]), or the platform interacts with work-

ers via game-theoretic models (e.g., [24]), which may end up with

an inefficient equilibrium, i.e., the platform may not achieve a de-

sirable accuracy level of the aggregated result. To address these

issues, novel data aggregation for mobile crowdsensing is needed

to allow not only each worker to protect their data privacy by them-

selves but also the platform to choose workers selectively based on

their sensing quality to achieve a desirable accuracy level of the

aggregated result. One possible solution to these issues is to allow

workers to protect their data privacy by reporting noisy data [24].

Clearly, this approach would negatively impact the reliability of the



sensing results.1 To ensure the accuracy of the aggregated results,

the platform needs to devise more efficient incentive mechanisms

that take into account workers’ privacy protecting behaviors, in

order to achieve a good balance between workers’ data privacy and

the accuracy of the aggregated results.

One key question is how to achieve a desirable accuracy level of

the data aggregation in a cost effective manner when the workers

report noisy data. As game-theoretic models cannot guarantee a de-

sirable accuracy level of the data aggregation due to the existence of

multiple Nash Equilibria (e.g., [24]), this paper employs an auction

approach that takes into account the accuracy requirement when

designing the incentive mechanism. However, allowing workers to

add noise into their sensing results renders three major challenges

for the incentive mechanism design:

• Strategic Behavior. When workers report noisy data, the platform

does not know the true sensing data and the added noise. Thus, it

is possible that workers could play strategically by adding more

noise into their sensing data to enhance their data privacy during

the data aggregation stage. Therefore, a new data aggregation

scheme is required to allow the platform to control the noise

level of workers’ data without knowing their true sensing data.

Moreover, workers may manipulate their bids to maximize their

own benefits, which may lead to high costs of achieving a desir-

able accuracy level of the data aggregation. Therefore, a truthful

incentive mechanism is required.

• Externalities.Compared with the existing works (e.g., [15]), where

the platform adds noise into workers’ sensing data and work-

ers’ data privacy depends on the noise added by the platform

only, the data privacy of each worker in our paper depends on

not only the noise added by herself but also the total noise in

the aggregated result (see Section 2.3). In other words, the data

privacy of each worker depends on which workers are selected

to fulfill the task and how much noise the selected workers gen-

erate, which introduces externalities. This makes the design of

incentive mechanism in this paper more challenging.

• Computational Complexity. To achieve a desirable accuracy level

of the aggregated result in a cost-effective manner, the platform

needs to find an optimal subset of workers to fulfill the sensing

task. Because different workers have different valuations of their

data privacy and workers’ data privacy is interdependent due

to externalities, it is of combinatorial nature to find an optimal

subset of workers to minimize the system cost while achieving the

desirable accuracy level. Therefore, a computationally efficient

mechanism is needed.

1.2 Summary of Main Contributions

In this paper, we develop an auction framework for privacy-preserving

data aggregation in mobile crowdsensing, where the workers sub-

mit their bids to the platform and the platform plays the role as an

auctioneer to recruit workers for a sensing task. When aggregating

noisy data from workers, the platform aims to minimize the cost

of purchasing the private sensing data from the workers, while

achieving a desirable accuracy level of the aggregated result. Our

main contributions are summarized as follows:

1The reliability of the sensing results depends on the total noise added by the workers
and the sensor quality of their mobile devices [15].

• Differentially Private Data Aggregation. To tackle the challenge

due to workers’ strategic behaviors, we propose a differentially

private data aggregation scheme by leveraging the celebrated

concept of differential privacy. The key idea is to carefully design

the noise distribution for each worker based on the divisible

property of Laplace distribution, such that each worker can report

a privacy-preserving version of their data based on the designed

noise distribution and the platform can guarantee the differential

privacy of each worker’s data. By using this scheme, the platform

can prevent workers from strategically adding large noise into

workers’ sensing data and control the noise level of their data

without knowing their true sensing data.

• Externalities. Under the proposed differentially private data ag-

gregation scheme, for different sets of workers, different noise

distributions will be designed for the workers. In other words,

the privacy of a worker would change if the platform chooses

different workers, which introduces externalities. For the Laplace

noise distribution, we explicitly characterize the externalities

among workers and the impact of each worker’s participation

on the privacy of other workers, which is accounted for in the

incentive mechanism design.

• Privacy-Accuracy Tradeoff. To maintain the accuracy of the ag-

gregated result, the platform would reward workers more if the

reported data is of higher accuracy (i.e., less noise is added).

Clearly, there is a tradeoff between the (privacy) cost and the

accuracy. We characterize the tradeoff between workers’ data

privacy and the accuracy of the aggregated result based on the

concept of differential privacy. The accuracy of the aggregated

result is characterized in terms of the distortion, due to the noise

added by workers.

• Differentially Private Data Auction. Based on the proposed dif-

ferentially private data aggregation, the design of the incentive

mechanism boils down to solving a privacy auction of allocating

the sensing task to a set of workers that can minimize the total

payment to the workers, subject to the accuracy constraint of the

aggregated result. We show that it is NP-hard to find the optimal

solution to this problem. By exploring the problem structure, we

discover the hidden monotonicity property of the problem and

determine the critical bid of workers. Based on these findings,

we propose a computationally efficient differentially private data

auction scheme despite the combinatorial nature of the problem.

Moreover, we show that the proposed differentially private data

auction scheme is truthful, individually rational and close to the

optimal solution. The performance of the proposed scheme is

evaluated via extensive simulations.

1.3 Related Work

Incentive mechanism design for mobile crowdsensing systems has

recently garnered much attention (e.g., [1, 4, 7, 11, 12, 14, 15, 21, 25–

30]). Different models (e.g., auction [7, 14, 15, 25–30] and game-

theoretic models [1, 4, 11, 12, 21]) have been utilized to design

incentive mechanisms with different objectives, including social

welfare maximization (e.g., [1, 8, 14]), cost or payment minimization

(e.g., [7, 15]), and platform’s profit maximization (e.g., [11, 27]). Most

of the existing works (e.g., [7, 14, 25, 26, 28–30]) consider only the

sensing costs of the participants.



Recently, there has been much attention paid to data privacy (e.g.,

[2, 3, 9, 10, 15, 24, 27]). Most of these works (e.g., [2, 3, 9, 15, 27])

consider the case that the platform (i.e., the data collector) is trust-

worthy and the true data is reported to the platform, where workers

have no control of their data privacy. Very recent works [23, 24]

allow the workers to protect their data privacy by reporting noisy

data and study how to trade private data in game-theoretic models,

which, however, may end up with an inefficient equilibrium, i.e., the

accuracy of the aggregated result cannot be guaranteed. To address

these issues, this paper proposes a novel auction framework for

mobile crowdsensing, where the workers can protect their data pri-

vacy by adding noise based on the noise distributions determined

through the proposed data aggregation scheme and the platform

can select the workers to minimize the cost of achieving a desir-

able accuracy level of the data aggregation. This differentiates our

approach from the existing works on data aggregation in mobile

crowdsensing.

The rest of the paper is organized as follows. In Section 2, we

describe the crowd-empowered privacy-preserving data aggrega-

tion for mobile crowdsensing systems. In Section 3, we propose the

incentive mechanism and analyze its properties. In Section 4, we

evaluate the performance of the proposed incentive mechanism.

The paper is concluded in Section 5.

2 PRIVACY-PRESERVING DATA

AGGREGATION FOR MOBILE

CROWDSENSING

2.1 System Overview

Consider a mobile crowdsensing system consisting of a central-

ized platform A, a task agent T and a set of participating workers

N � {1, · · · ,N }, as illustrated in Fig. 1. The task requires work-

ers to report to the platform their local sensing data of a specific

object or phenomenon (e.g., spectrum sensing and environmental

monitoring). To enhance the reliability of the result, the platform

will aggregate the sensing data, as the reliability of each worker’s

sensing data may be different due to different sensor qualities [15].

Different from the existing works on auctions in mobile crowdsensing

systems (e.g., [1, 4, 7, 10–12, 14, 15, 21, 25–30]), we allow each indi-

vidual to report a privacy-preserving version of her data to protect

her own data privacy [24].

Figure 1: Framework of crowd-empowered privacy-

preserving data aggregation.

Specifically, the workflow (see Fig. 1) of the proposed crowd-

empowered privacy-preserving data aggregation is as follows:

• First, the task agent posts a task in the crowdsensing platform,

which then announces the task to a set of N workers, denoted as

N (step 1).

• Incentive Mechanism. Then, the workers submit their bids

to the platform (step 2), where the bids reflect the valuation of

privacy loss of each worker (see Section 2.2.1). Based on the

incentive mechanism, the platform determines the winners, i.e.,

the workers to fulfill the task, and the corresponding payments

to the winners (steps 3 and 4).

• Data Aggregation. Next, the platform sends the data reporting

requirements to the winners and allows the winners to report a

privacy-preserving version of their sensing data (steps 5 and 6).

• Finally, the platform releases the aggregated result to the task

agent (step 7).

2.2 Crowdsensing Auction Model

In the crowdsensing system, the platform plays the role as an auc-

tioneer who recruits workers to complete the sensing task and then

aggregates the sensing data.

First, the platform (auctioneer) would elicit bids for unit privacy

cost from the workers. The privacy cost of the workers is quantified

using differential privacy (see Section 2.2.1). Let b = (b1, · · · ,bN )

denote the vector of bids submitted by the workers and b−i denote

the bid vector without worker i’s bid. Without loss of generality,

we assume that workers’ bids are ordered in the increasing order,

i.e., b1 ≤ b2 ≤ · · · ≤ bN . To prevent manipulations of bids that

may lead to system performance degradation (e.g., high costs), a

truthful incentive mechanism is required, which is discussed in

Section 3. Moreover, as the platform does not know the noise added

by workers, workers can play strategically by adding more noise

into their sensing data to enhance their data privacy during the

data aggregation stage. Therefore, a novel data aggregation scheme

is required, which is discussed in Section 2.3.

Then, the auction outputs an allocation result (x, p), in which

x = (x1, · · · ,xN ) indicates the participants and p = (p1, · · · ,pN )

indicates the amount of payments to the participants. Specifically,

xi ∈ {0, 1} denotes if worker i is selected to execute the task: xi = 1

means that worker i is selected (i.e., winner) and xi = 0, otherwise.

Accordingly, we define S as the winner set with S workers. For

each worker, the platform will pay pi amount of reward to worker

i ∈ N to collect the private data from worker i , and use the data

in a differentially private manner after the data aggregation (see

Section 2.3).

2.2.1 Privacy Cost. According to the utility theoretic character-

ization of differential privacy [9], the privacy cost can be modeled

as the difference between the utility with true data vector and the

utility with perturbed data vector, which is a linear function of

worker’s privacy ϵi . Let vi > 0 denote worker i’s intrinsic valua-

tion of unit privacy cost. The privacy cost of worker i can be given

by

ci = viϵi (x). (1)

Intuitively, a larger value of vi indicates that worker i has a higher

valuation of privacy loss by revealing her sensing data. We assume

that all unit privacy costs vi are unknown to the platform or to the



other workers. Note that this cost function has been used in many

existing works (e.g., [3, 9, 15, 27]). However, the worker’s privacy ϵi in
(1) in this paper is a function of x and depends on not only the noise

added by herself but also the total noise in the aggregated result, which

introduces externalities (see Section 2.3). This is one major difference

between this work and other related works in mobile crowdsensing

(e.g., [15]), where the privacy cost of a worker purely depends on her

own participation.

2.2.2 Worker’s Utility. In the crowdsensing system, workers are

assumed to be selfish and strategic, in order to maximize their own

utilities. Based on the privacy cost (1), the utility ui of worker i can

be given as,

ui (bi , b−i ) = pi (bi , b−i ) − ci = pi (bi , b−i ) −viϵi (x), (2)

whereui and pi are functions of b, given ϵi and x. Here it holds that

for a non-participant i ∈ N (i.e., xi = ϵi = pi = 0), her utility turns

out to be zero. Notice that we do not explicitly include the sensing

cost of carrying out the task into the utility function (2) in order

to ease the presentation. Meanwhile, our results in this paper can

be easily extended to incorporate the sensing cost as in [5, 12]. For

example, similar to [12], letting si denote the sensing cost of user i ,
we can modify the individual utility of user i as ui = pi − si − ϵivi ,
and define p′i = pi −si to incorporate the sensing cost in the reward.

Therefore, our results can be extended to this case.

2.2.3 Design Objectives. We aim to design an auction based

allocation mechanism that minimizes the total payment to the

workers with satisfactory data aggregation accuracy, by designing

an incentive mechanism (see Section 3) with the following desirable

properties:

• Truthfulness: Each worker i can maximize her utility by truth-

fully bidding her privacy valuation, i.e., ui (vi , b−i ) ≥ ui (bi , b−i )
for any b.

• IndividualRationality: Each worker i can obtain a non-negative

utility, i.e., ui = pi − ci ≥ 0.

• Cost Minimization: The mechanism can minimize the total

payment to the workers.

• Computational Efficiency: The solution (x, p) can be com-

puted in polynomial time.

2.3 Differentially Private Data Aggregation
When aggregating the data, each winner i will report a privacy-

preserving version d̂i of her data di by adding random noise ni .
Without loss of generality, we assume that all the sensing datadi are

normalized values within the range [0, 1]. In this paper, we consider

a weighted aggregation operation f to calculate the aggregated

result r based on workers’ data. Let d be the vector of workers’ data.

The aggregated result r can be written as

r = f (d) =
∑
i ∈N wi (di + ni )xi =

∑
i ∈S wi (di + ni ), (3)

wherewi > 0 is the normalized weight of worker i such that the sum

of these weights is equal to 1. Similar to [15, 17, 19], the weighted

aggregation is to capture the effect of workers’ diverse skill levels

on the calculation of the aggregated results. Intuitively, higher

weights will be assigned to workers whose sensing data are more

likely to be close to the ground truths. This makes the aggregated

results closer to the data provided by more reliable workers, which

have been used by many state-of-the-art data aggregation methods

[15, 17, 19]. The choice of weights can be based on workers’ skill

levels as in [15], which is a priori known to the platform and the

workers.

In this paper, we quantify the privacy loss incurred in data aggre-

gation based on the celebrated concept of differential privacy [6],

and the proposed differentially private data aggregation is defined

as follows.

Definition 1 (Differentially Private Data Aggregation).

An aggregation operation f : [0, 1]S → R is ϵi -differentially private

with respect to worker i , if for any pair of neighboring vectors d and

d(i) differing only in the ith worker’s data and any set of aggregation

results O ⊆ Ranдe(f ), the following inequality holds:

Pr [f (d) ∈ O] ≤ exp(ϵi )Pr [f (d(i)) ∈ O], (4)

with ϵi being a positive parameter.

It follows that worker i’s data is used in an ϵi -differentially

private manner under operation f . This definition differs slightly

from the definition in [6], which is stated in terms of the worst case

privacy (i.e., ϵ-differentially private, where ϵ = supi ϵi ).
Given the aggregation operation f , a well-known method to

provide differential privacy is to add random noise drawn from a

Laplace distribution to this function [6]. As we allow each worker

to add noise by themselves, we need to carefully design the noise

distribution for each worker such that the sum of these noise is

equivalent to the random noise drawn from a Laplace distribu-

tion, i.e., the aggregated noise n =
∑
i ∈S wini follows the Laplace

distribution.

Proposition 1. For the aggregation operation f in (3), define

ϵi = si (f )/σ , where si (f ) = maxd,d(i ) ∈[0,1]S | f (d) − f (d(i))| is the

sensitivity of f to the ith entry di and σ is the parameter of the

Laplace distribution. The aggregation operation f is ϵi -differentially
private with respect to worker i , if ni = G1(S,σ/wi ) −G2(S,σ/wi )

for all i ∈ S are independent, where G1(S,σ/wi ) and G2(S,σ/wi )

are i.i.d. random variables following gamma distribution with pdf

д(x ; S,σ/wi ) =
1

Γ(1/S ) (
wi

σ )
1
S x

1
S
−1e

wi x

σ .

Proof. To show Proposition 1, it suffices to show that the ag-

gregated noise follows the Laplace distribution. Based on the di-

visible property of Laplace distribution [16], the Laplace distribu-

tion is divisible and can be constructed as the sum of i.i.d. gamma

distributions. Based on the scaling law of gamma distribution,

wini = G1(S,σ ) −G2(S,σ ). Therefore, we have∑
i ∈S wini =

∑
i ∈S(G1(S,σ ) −G2(S,σ )) = L(σ ), (5)

where the second equality follows from the divisible property of

Laplace distribution [16], which concludes the proof. �

Based on Proposition 1, if the noise distribution of each worker is

carefully designed, the aggregation operation f in (3) is ϵi -differentially

private with respect to worker i . Therefore, we propose the data

aggregation mechanism in Algorithm 1. In Algorithm 1, the plat-

form needs to inform the workers only the values of S and σ/wi ,

based on which each worker generates a random noise and reports

d̂i back to the platform.

Remarks:



Algorithm 1 Differentially Private Data Aggregation

1: Input: Worker set S, Number of workers S , weight of each

workerwi ,∀i ∈ S, Laplace distribution parameter σ
2: Output: Aggregated result r .
3: For each worker i ∈ S, the platform informs the values of

parameters S and σ
wi

.

4: Each worker generates a random noise ni based on the distribu-

tion ofG1(S,σ/wi )−G2(S,σ/wi ), and then reports d̂i = di +ni
to the platform.

5: The platform aggregates the data from the workers using (3)

and releases the aggregated result r to the task agent.

• Note that in the proposed data aggregation algorithm, the plat-

form does not know the true value of worker’s data, but a privacy-

preserving version of her data, which is generated using the noise

distributions that the workers agree with in the proposed auction

framework. By doing so, the proposed algorithm can not only

allow the workers to report noisy data to protect their privacy

but also prevent workers from strategically adding large noise

into their sensing data, as it is easy to check if the distribution of

each worker’s reports follows the assigned noise distribution.

• Note that for different sets of winners, different noise distribu-

tions will be assigned to the winners. In other words, the privacy

of each winner depends on the selection of the winner set, which

introduces the externalities. This makes the design of incentive

mechanism in this paper different from the existing works on

auctions in mobile crowdsensing systems.

2.4 Privacy versus Accuracy

When allowing workers to report noisy data, the noise added into

the aggregated result would inevitably reduce the accuracy of the

result. From Proposition 1, we observe that ϵi depends on the value

of σ . The higher the value of σ , the smaller ϵi , and hence, the

better the privacy guarantee. However, the higher the value of σ ,

the lower the accuracy of the aggregated result. Clearly, there is a

natural trade-off between workers’ data privacy and the accuracy of

the aggregated result.

To characterize the accuracy, we introduce the notion of distor-

tion between two aggregation functions: one using all the workers’

data with no noise and the other using the selected workers’ data

with noise (i.e., the aggregated result r in (3)). As the platform needs

to pay for the workers’ data, it would be costly to get all workers’

data and workers would also add noise to protect their data privacy.

Therefore, we can treat the aggregation of all the workers’ data

with no noise as the benchmark.

Definition 2 (Distortion). Given the vector x, the distortion

δ (x) is defined as

δ (x) = max
d∈[0,1]N

E[(
∑
i ∈N

widi −
∑
i ∈N

wi (di + ni )xi )
2]. (6)

In Definition 2, the distortion is defined as the maximum of ex-

pected deviation from the true result for any sensing data reported

by the workers. It is clear that the distortion depends on the set of

workers fulfilling the task and the noise added into the data. Their

dependence is quantified by the following proposition.

Proposition 2 (Privacy versus Distortion). Given xi andwi

for all the workers, under the aggregation function (3), the privacy of

each worker and the distortion of the aggregated result can be given

as

ϵi =
wixi
σ ,∀i ∈ N (7)

δ (x) = (
∑
i ∈N wi (1 − xi ))

2 + 2σ 2. (8)

Proof. Given xi andwi under the aggregation function (3), we

have

si (f ) = max
d,d(i ) ∈[0,1]S

|wi (di − d ′i )xi | = wixi .

Therefore, we have ϵi =
si (f )
σ =

wixi
σ . For the distortion, we have

δ (x) = max
d∈[0,1]N

E[(
∑
i ∈N

widi −
∑
i ∈N

wi (di + ni )xi )
2]

(a)
= max

d∈[0,1]N
E[(

∑
i ∈N

widi (1 − xi ) −
∑
i ∈S

wini )
2]

(b)
= max

d∈[0,1]N
(
∑
i ∈N

widi (1 − xi ))
2 + 2σ 2

= (
∑
i ∈N

wi (1 − xi ))
2 + 2σ 2,

where (a) follows from equation (3) that
∑
i ∈N winixi =

∑
i ∈S wini ,

and (b) follows from Proposition 1 that
∑
i ∈S wini is a Laplace

random variable with zero mean and 2σ 2 variance. �

From Proposition 2, it is clear that given σ , the more workers

fulfilling the task, the less the distortion; given the set of selected

workers S, the higher the value of σ , the smaller ϵi (i.e., better

privacy) and the worse the distortion. Following [3], we call the

aggregated operation f in (3) canonical if the Laplace noise added

by workers has a parameter of the following form

σ = σ (x) =
∑
i ∈N wi (1 − xi ). (9)

Based on (9), the privacy of each worker and the distortion of the

aggregated result can be given as

ϵi (x) =
wixi∑

i∈N wi (1−xi )
,∀i ∈ N (10)

δ (x) = 3(
∑
i ∈N wi (1 − xi ))

2. (11)

Eqs. (10) and (11) introduce externalities among the workers such

that the data privacy of worker i depends on other workers’ partic-

ipations. Specifically, the more participants, the less the distortion

but the larger ϵi (i.e., worse privacy). Intuitively, as the same sens-

ing task is fulfilled by all the workers, the more participants, the

more easily the true data can be figured out (i.e., the more privacy

loss). Moreover, we need to carefully choose the workers as they

have different skill levels (i.e.,wi ) that may contribute differently

to the distortion. Further, the costs of choosing different workers

are different. Therefore, it is a challenging task to find a suitable

set of workers to fulfill the sensing task.

3 INCENTIVE MECHANISM

3.1 Mathematical Formulation

The goal of crowdsensing auction is to minimize the total payment

to the workers such that the accuracy of the aggregated result is

above certain predetermined threshold (in other words, the dis-

tortion is below a threshold Δ). Specifically, this problem can be



formulated as

minimize
∑
i ∈N pi

subject to pi ≥ biϵi (x), ∀i ∈ N , (Individual rationality)

δ (x) ≤ Δ, (Accuracy requirement)

xi ∈ {0, 1},∀i ∈ N .

(12)

In problem (12), the constraints of individual rationality ensure

that each worker can obtain non-negative utility. For the accuracy

requirement constraint, the threshold will generally determine the

total payment and the privacy protection levels of the workers.

With a low threshold (i.e., high accuracy), the platform would pay

more to the workers to obtain less noisy data (i.e., worse privacy for

the workers). Note that different from most works on crowdsensing,

problem (12) considers the externalities among workers such that

workers’ data privacy depends on each other, which has been dis-

cussed in Sections 2.3 and 2.4. Due to the externalities, designing an

incentive mechanism to solve (12) is a challenging task. Theorem 1

shows that problem (12) is NP-hard.

Theorem 1. The crowdsensing auction problem (12) is NP-hard.

To show Theorem 1, we first establish the equivalence between

problem (12) and the following problem:

minimize
∑
i ∈N biϵi (x)

subject to
∑
i ∈N wixi ≥W ,

xi ∈ {0, 1},∀i ∈ N ,
(13)

whereW =
∑
i ∈N wi − (Δ/3)1/2.

Lemma 1. The optimal allocation x∗ for problem (12) is the same

as that for problem (13).

Proof. Observe that to minimize (12), pi is always equal to

biϵi (x
∗). Therefore, the inequalities for individual rationality are

tight. In other words, minimizing
∑
i ∈N pi is equivalent to minimiz-

ing
∑
i ∈N biϵi (x). Next, we can rewrite the constraint δ (x) ≤ Δ as∑

i ∈N wixi ≥W after some algebra, which concludes the proof. �

It is easy to show that problem (13) is reducible to a reverse

binary knapsack problem, which is NP-hard. Based on Lemma 1,

Theorem 1 follows.

3.2 Mechanism Design

From Theorem 1, problem (12) is computationally hard when the

cardinality ofN is large. To tackle this challenge, we propose a com-

putationally efficient mechanism (see Algorithms 2 and 3), namely

differentially private data auction (DPDA), which is truthful and

individually rational and can find the set of winners close to the

optimal allocation x∗ for problem (12), as discussed in Section 3.3.

In Algorithm 2, the idea is to first find the solution C of the

fractional relaxation of problem (13), i.e.,

minimize
∑
i ∈N biϵi (x)

subject to
∑
i ∈N wixi ≥W ,

0 ≤ xi ≤ 1,∀i ∈ N ,
(14)

which is chosen as the target cost. Based on the target cost C , the

set of winners can be determined by choosing the smallest set of

workers with the total cost greater than or equal to C , because

problem (14) is less constrained than problem (13) and thus C is

a lower bound of the solution to problem (13). To find this small-

est set of workers, we explore the solution structure of problem

(14). Based on the relationship between problem (14) and problem

(13), we discover the property of monotonicity (see the proof of

Theorem 4 in Appendix), based on which the set of winners can

be found by gradually adding the workers into the winner set un-

til the total cost is greater than or equal to the target cost (see

the main loop (line 6-10) in Algorithm 2). Essentially, we want

to find the smallest k such that
∑
i≤k biwi/(

∑
i≥k+1wi ) ≥ C , i.e.,

k = min{j :
∑
i≤j biwi/(

∑
i≥j+1wi ) ≥ C, ∀j ∈ N}, and all the

workers with i ≤ k are in the winner set. Note that due to the

externalities, this monotonicity property is hidden in problem (13),

which makes our problem more technically challenging than the

existing auction works on mobile crowdsensing.

In Algorithm 3, we leverage the critical value approach in auction

theory [20]. The idea is to determine the critical bid bc such that a

worker will not be selected if her bid is larger than or equal to bc .
Specifically, we first remove worker i from the worker set N and

determine the smallest bid that makes a worker not a winner, which

is done for each worker (line 5 in Algorithm 3). Note that the bids are

ordered in the increasing order. The critical bid is determined based

on the supremum of all these bids (line 6 in Algorithm 3). Using

this critical bid, we determines the payment for each winner based

on their weights (line 8 in Algorithm 3). From the analysis of DPDA

in Section 3.3, we can see that the solution given by Algorithms 2

and 3 is feasible and close to the optimal solution to problem (12).

For the complexity of Algorithm 2, we need to solve C for prob-

lem (14), which is a linear fractional program. To efficiently solve

C , we can transform problem (14) into a linear program based on

the following lemma.

Lemma 2. Problem (14) is equivalent to the following linear pro-

gram:

minimize
∑
i ∈N biwiyi

subject to
∑
i ∈N wiyi ≥Wz,

0 ≤ yi ≤ z,∀i ∈ N ,∑
i ∈N wiz −

∑
i ∈N wiyi = 1.

(15)

Proof. To show the equivalence, we will show that any fea-

sible point in problem (14) is also feasible in problem (15) with

the same objective value and vice versa. We note that if x is fea-

sible in problem (14), then yi =
xi∑

i∈N wi (1−xi )
, ∀i ∈ N and z =

1∑
i∈N wi (1−xi )

are feasible in problem (15), with the same objec-

tive value
∑
i ∈N biwiyi =

∑
i ∈N biϵi (x). It follows that the optimal

value of problem (14) is greater than or equal to the optimal value of

problem (15). Conversely, note that z > 0 in problem (15). If yi and

z are feasible in problem (15), then xi = yi/z is feasible in problem

(14) with the same objective value
∑
i ∈N biϵi (x) =

∑
i ∈N biwiyi .

Therefore, the optimal value of problem (14) is less than or equal

to the optimal value of problem (15). Therefore, problem (14) is

equivalent to problem (15). �

Based on Lemma 2, we can solve C by solving a linear program

(15). Note that the computational complexity of Algorithm 2 con-

sists of two parts: solving a linear program (15) (line 3) and finding

the set of winners (line 6-10). To solve (15) efficiently, we can use

many solvers for linear programs, e.g., CPLEX [13], which can solve



the linear program (15) in polynomial time [18]. To find the set of

winners, it takes at most O(N ) time in the worst case. Therefore,

Algorithm 2 can determine the winner set for problem (12) in poly-

nomial time. For Algorithm 3, it needs to run Algorithm 2 for each

winner, and the worst case is to run N times, which means that it

is also solvable in polynomial time.

Algorithm 2 Differentially Private Data Auction: Winner Deter-

mination

1: Input: worker set N , weight of each worker wi ,∀i ∈ N , bid

of each worker bi ,∀i ∈ N .

2: Output: winner set S.

3: Find the target cost C by solving problem (15).

4: Let k = 1, x1 = 1 and xi = 0, ∀i = 2, . . . ,N .

5: Set S = {1} and compute C ′ = b1ϵ1(x).
6: while C ′ < C do \\ Find the set of winners

7: k = k + 1.

8: Set xk = 1 and S = S ∪ {k}.

9: C ′ =
∑k
i=1 biϵi (x).

10: end while

11: return S.

Algorithm 3 Differentially Private Data Auction: Payment Deter-

mination

1: Input: worker set N , weight of each worker wi ,∀i ∈ N , bid

of each worker bi ,∀i ∈ N , winner set S.

2: Output: payments p.

3: Set p = (0, . . . , 0) and bc = bk+1, where k is the worker’s index

in S with the largest bid.

4: for each i ∈ S do \\ Find the critical bid

5: Run Algorithm 2 on N \ {i} to get the winner set S′ with

k ′ being the worker’s index in S′ with the largest bid.

6: bc = min{bc ,bk ′+1}.
7: end for

8: For each i ∈ S, pi =
bcwi∑
i∈N\S wi

.

9: return p.

3.3 Analysis of DPDA

In this section, we will prove that DPDA is truthful, individually

rational, and α-approximation with respect to the optimal cost.

First, we analyze the truthfulness of DPDA.

Theorem 2. DPDA is truthful.

Proof. To show DPDA is truthful, it is sufficient to show that

users cannot improve their utilities by deviating their bids from

their true valuations. Note that in DPDA, the winner is determined

by the ranking of her bid in the set N and the higher the ranking,

the lower the chance of being selected. Moreover, the critical bid

determined by Algorithm 3 does not depend on the value of winners’

bids. In what follows, we discuss the cases with an untruthful bid

b̃i of worker i .

• Overbidding b̃i > vi . In this case, the ranking of worker i may

move backward. If she could win the auction by truthfully bidding

vi and she remains in the winner set by overbidding, then her

utility will remain the same because the critical bidbc determined

by Algorithm 3 will remain the same; if she loses the auction

by overbidding, her utility will be zero. If she loses the auction

by truthfully bidding, then she will still lose by overbidding. In

either cases, worker i cannot improve her utility.

• Underbidding b̃i < vi . In this case, the ranking of worker i
may move forward in the group. If she could win the auction

by truthfully bidding vi , then her utility cannot be improved

since she must still remains in the winner set and the critical bid

remains the same. If she loses the auction by truthfully bidding

but underbidding helps her become a winner, her utility would

be ui =
(bc−vi )wi∑
i∈N\S wi

. Since she is not originally in the winner set,

it means that vi ≥ bc , which leads to her utility ui ≤ 0.

Therefore, DPDA is truthful. �

Next, we analyze the individual rationality of DPDA.

Theorem 3. DPDA is individually rational.

Proof. For each worker in the winner set, we have

pi =
bcwi∑

i ∈N\S wi
≥

biwi∑
i ∈N\S wi

= ci ,

sincebc ≥ bi , ∀i ∈ S. For all workers who lose the auction,pi−ci =
0. Therefore, we have pi − ci ≥ 0 for all the workers, i.e., DPDA is

individually rational. �

Then, we analyze the approximation ratio of DPDA. The idea

is to first characterize the optimal solution to problem (14), which,

however, is still challenging, due to the externalities. To tackle this

challenge, we explore the structure of problem (14) and discover the

hidden monotonicity property after transforming problem (14) into

an equivalent problem. Based on this finding, we show that DPDA

satisfies the accuracy requirement of problem (12) and derive the

approximation ratio of DPDA by using the relationship between

the outputs of DPDA and the optimal solution to problem (12). The

results are summarized in the following theorem.

Theorem 4. DPDA satisfies the accuracy requirement (i.e., δ (x) ≤
Δ) and is α-approximation with respect to the optimal cost, where

α = (bk+C)wk

C
∑
i≥k wi−

∑
i≤k−1 biwi

≥ 1.

The proof of Theorem 4 is given in Appendix.

4 PERFORMANCE EVALUATION

4.1 Simulation Setup

In our simulation, the bids are generated uniformly at random from

the interval [1, 20] and the weights are first generated uniformly at

random from the interval [1, 10] and then normalized. The number

of workersN varies from 200 to 400. The distortion is normalized by

some largest distortion Δmax such thatW is always positive under

different distortions. The optimal solutions to the problem (13)

are calculated based on the bisection algorithm using the CPLEX

optimization solver [13]. To the best of our knowledge, as there are

no auction mechanisms for mobile crowdsensing allowing workers

to report noisy data while considering the externalities, we examine
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only the performance of the DPDA algorithm analyzed in Section

3.

4.2 Results and Discussions

Payment versus Accuracy. In Fig. 2, we illustrate the payments

under different accuracy requirements with different total number

of workers. We observe that as the distortion level increases, the to-

tal payments decrease, simply becauseW decreases as Δ increases,

i.e., the platform does not need to purchase much privacy from

workers. Meanwhile, for the same level of distortion, the total pay-

ments increase with the number of workers, becauseW increases

with the number of workers for the same level of distortion based

on (13), which requires the platform to select more workers and

thereby the total payments increase.

Privacy versus Accuracy. In Fig. 3, we illustrate the relationship

between the data privacy and the accuracy. As the privacy of each

worker is different, we use the maximum of all the workers’ ϵi
(ϵ = maxi ∈S ϵi ) to denote the privacy protection level at the given

distortion level. As expected, as the distortion level increases, the

privacy protection level increases (the smaller ϵ , the higher the

privacy protection level), which agrees with our analysis in Section

2.4.

Externalities. In Fig. 4, we illustrate the effect of externalities. As

discussed in Section 3.1, the data privacy of each worker depends

on other workers’ participations, and when the number of workers

changes, it would change the privacy of each worker. As the number

of workers increases, the platform needs to hire more workers

to maintain the same distortion level. Therefore, we observe the

increase of total payments and the number of winners. Moreover,

the higher the distortion level, the lower the total payment and the

less the number of winners.

Approximation. In Table 1, we illustrate the performance of the

proposed DPDA algorithm by comparing the total payment by

DPDA with the optimal one. For each N , we run 100 experiments

and in each experiment, we randomly generate the parameters as

mentioned in Section 4.1. Under different settings, we observe that

the total payments generated by the DPDA algorithm is very close

to the optimal one and the maximal approximation ratio for each

case is around 2.

Table 1: Approximation ratio of the DPDA algorithm, where

we choose the normalized distortion equal to 0.2.

Number of workers N 200 300 400

Average approximation ratio 1.88 1.85 1.85

Minimal approximation ratio 1.71 1.69 1.70

Maximal approximation ratio 2.15 2.07 1.99

Truthfulness. In Fig. 5, we verify the truthfulness of the proposed

DPDA algorithm. We randomly select a winner and a loser in the

auction. We fix the bids of the other workers and manipulate the

selected worker’s bid to evaluate the utility. Fig. 5 illustrates how

the utility of the selected worker changes with her bid. As we can

see that no matter how the bid changes, a winner or a loser cannot

improve her utility and that the best bidding strategy for a worker

is to bid truthfully.
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Figure 5: Truthfulness of the DPDA algorithm.

Computational Complexity. In Fig. 6, we illustrate the computa-

tional complexity of the proposed DPDA algorithm. For each N , we

examine the average running time of the algorithm by running 100

experiments, in which the parameters are randomly generated as

mentioned in Section 4.1. These experiments are run on a PC with

a 2.7 GHz Intel Core i7 processor and 16 GB RAM. Under different

settings (i.e., different distortion levels, bids, and weights), we ob-

serve that the computation time of the proposed DPDA algorithm

is low and approximately linear with the problem size.
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5 CONCLUSION AND FUTUREWORK

We studied privacy-preserving data aggregation for mobile crowd-

sensing in an auction framework, where the platform plays the

role as an auctioneer to recruit workers to complete a sensing task.

Under this model, we designed a novel mobile crowdsensing system

by leveraging the concept of differential privacy. Specifically, we

designed a data aggregation that allows each worker to report a

noisy data and can guarantee the use of each worker’s data in a

differentially private manner. Then, we designed a truthful, indi-

vidual rational and computationally efficient incentive mechanism

that can find a set of workers to approximately minimize the cost

of purchasing the private sensing data from workers subject to the

accuracy requirement of the aggregated result. We validated the

proposed scheme through theoretical analysis as well as extensive

simulations.

We caution that although this work successfully tackled the issue

of untrustworthy platform by allowing workers to conduct data

perturbation locally, the workers still do not have full control of

their data privacy. In this model, each worker is willing to partici-

pate as long as the individual rationality requirement is satisfied

(her privacy loss got compensated). The noise parameter for each

worker is determined by the externalities induced from the work-

ers’ participation, thereby indirectly determined by the platform.

In practice, workers may refuse to participate if they are allowed

to add only a low level of noise into data, even if they can get large

enough monetary compensation in return.

In future work, we will tackle this issue by resorting to an al-

ternative model that grants workers more power to decide their

privacy-preserving levels. A possible choice could be an auction

model, where besides bidding the unit privacy cost, potential work-

ers would bid their desired privacy levels, based on which the

platform selects out the set of workers for the sensing task. And

we will need to evaluate workers’ strategic behaviors of reporting

their privacy levels and guarantee the truthfulness of the designed

mechanism.

6 ACKNOWLEDGMENTS

This work is supported in part by the U.S. National Science Founda-

tion under Grants CNS-1559696, IIA-1301726, CNS-1566634, ECCS-

1711991, ECCS-1408409 and SaTC-1618768, and in part by NSFC

under Grant 61731004 and Open Project of State Key Laboratory of

Industrial Control Technology under Grant ICT1800373.

APPENDIX: PROOF OF THEOREM 4

To show Theorem 4, we will first characterize the optimal allocation

xR∗ of problem (14), based on which we can establish the relation-

ship between the outputs of DPDA and the optimal solution to

problem (12).

First, we need to establish the equivalence between problem (14)

and the following problem:

minimize
∑N
i=1 biwixi −C

∑N
i=1wi (1 − xi )

subject to
∑
i ∈N wixi ≥W ,

0 ≤ xi ≤ 1,∀i ∈ N .

(16)

Lemma 3. The optimal allocation xR∗ of problem (14) is the same

as the optimal allocation of problem (16).

Proof. Since problem (14) and problem (16) have the same

feasible set, any feasible x for problem (14) must be feasible for

(16). Note that C is the optimal value of problem (14), i.e., C =∑N
i=1 biwix

R∗
i /

∑N
i=1wi (1 − xR∗i ). Therefore, for any feasible x, we

have C ≤
∑N
i=1 biwixi/

∑N
i=1wi (1 − xi ). By some algebra, we have∑N

i=1 biwixi −C
∑N
i=1wi (1 − xi ) ≥ 0, which holds with equality at

xR∗. In other words, xR∗ is the optimal solution to problem (16).

Therefore, the lemma holds. �

Based on Lemma 3, to characterize the optimal allocation xR∗, we

can characterize the optimal solution to problem (16) by leveraging

the monotonicity property, which is given by the following lemma.

Lemma 4. Define l = max{j :
∑j
i=1 biwi − C(

∑N
i=j+1wi ) ≤

0, ∀j = 1, . . . ,N }. The optimal solution xR∗ to problem (16) is given

as follows:

xR∗i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if i ≤ l
C
∑
N

i=l+1 wi−
∑
l

i=1 biwi

(bl+1+C)wl+1
, if i = l + 1

0, if i > l + 1

. (17)

Proof. First, we show the existence of l and xR∗i . Define p(k) =∑k
i=1 biwi −C(

∑N
i=k+1

wi ), where k = 0, 1, . . . ,N . If k = 0, p(0) =

−C
∑N
i=1wi < 0; if k = N , p(N ) =

∑N
i=1 biwi > 0. Note that

p(k) is strictly increasing with k . Therefore, there exists l such

that p(l) ≤ 0 and p(l + 1) > 0. Further, define q(xl+1) = p(l) +
(bl+1wl+1 +Cwl+1)xl+1 with 0 ≤ xl+1 ≤ 1, where q(0) = p(l) ≤ 0

and q(1) = p(l + 1) > 0. As q(xl+1) is continuous and strictly

increasing with xl+1, there exists a unique xR∗
l+1

∈ [0, 1] such that

q(xR∗
l+1

) = 0. Next, to verify the optimal solution xR∗ in (17), we

can leverage the KKT conditions for problem (16). Specifically, the

Lagrangian for problem (16) is

L(x, λ, μ,ν ) =
∑N
i=1 biwixi −C

∑N
i=1wi (1 − xi )

+λ(W −
∑N
i=1wixi ) +

∑N
i=1 μi (xi − 1) −

∑N
i=1 νixi

=
∑N
i=1(biwi +Cwi − λwi + μi − νi )xi

−C
∑N
i=1wi + λW −

∑N
i=1 μi ,

(18)

where λ, μ and ν are Lagrangian multipliers. From (18), we have

biwi +Cwi − λwi + μi − νi = 0 for all xi . It is easy to verify that

xR∗i given by Lemma 4 satisfies KKT conditions with λ∗ = bl+1 +C ,



μ∗i = 1{i≤l }(bl+1 − bi )wi , and ν∗i = 1{i>l+1}(bi − bl+1wi ), where

1condit ion denotes the indicator function, i.e., 1condit ion = 1 if

the condition holds and 1condit ion = 0, otherwise. Therefore, the

lemma holds. �

Based on Lemma 4, it is easy to show that DPDA chooses l + 1

workers and satisfies the accuracy requirement.

Lemma 5. Let l be as defined in Lemma 4 and k be the number of

winners chosen by DPDA. Then, we have k = l + 1 and DPDA satisfies

the accuracy requirement (i.e., δ (x) ≤ Δ).

Proof. By construction, DPDA will choose the smallest k such

that
∑k
i=1 biwi−C(

∑N
i=k+1

wi ) ≥ 0, which are workers 1, 2, . . . , l+1

from Lemma 4. Moreover,
∑l+1
i=1wi ≥

∑l
i=1wi + wl+1x

R∗
l+1

≥ W ,

since xR∗
l+1

∈ [0, 1], which concludes the proof. �

Now, we will show that DPDA is α-approximation with respect

to the optimal total payment, which is equivalent to showing that

DPDA is α-approximation with respect to the optimal value of prob-

lem (16), based on Lemma 1 and Lemma 3. Note that the objective

function in (16) contains a constant C
∑N
i=1wi and removing this

constant will not impact the result of the optimization problem

(16). In other words, we can focus on the approximation of DPDA

with respect to the function h(x) =
∑N
i=1(bi +C)wixi . Let xDPDA

be the allocation by DPDA and x∗ be the optimal allocation with

OPT = h(x∗) Since problem (16) is a relaxation of problem (13),

h(xR∗) ≤ OPT. In what follows, we will show h(xDPDA) ≤ αOPT.

Based on Lemma 5, we have

h(xDPDA) =
∑l+1
i=1(bi +C)wi

=
∑l
i=1(bi +C)wi + (bl+1 +C)wl+1x

R∗
l+1

+(bl+1 +C)wl+1(1 − xR∗
l+1

)

= h(xR∗) + (bl+1 +C)wl+1(1 − xR∗
l+1

),

(19)

where h(xR∗) =
∑l
i=1(bi +C)wi + (bl+1 +C)wl+1x

R∗
l+1

based on (17).

Then,

h(xR∗)+(bl+1+C)wl+1(1−x
R∗
l+1

)

h(xR∗)
= 1 +

(bl+1+C)wl+1(1−x
R∗
l+1

)

h(xR∗)
(a)
≤ 1 +

(bl+1+C)wl+1(1−x
R∗
l+1

)

(bl+1+C)wl+1x
R∗
l+1

= 1
xR∗
l+1

= α ,

(20)

where (a) follows from the fact that h(xR∗) ≥ (bl+1 +C)wl+1x
R∗
l+1

.

Since xR∗
l+1

≤ 1, we have α ≥ 1. Therefore, h(xDPDA) ≤ αh(xR∗) ≤
αOPT, which concludes the proof.
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