

Continuous Authentication Using Human-Induced Electric Potential

Srinivasan Murali, Wenqiang Jin, Vighnesh Sivaraman, Huadi Zhu, Tianxi Ji, Pan Li, Ming Li

ACSAC 2023

Motivation

- Shared workspaces:
 - Same room/individual cubic
- Terminals:
 - Store sensitive information
 - Security issue

Motivation

- Shared workspaces:
 - Same room/individual cubic
- Terminals:
 - Store sensitive information
 - Security

•

• Conventio • Lim

One-time authentication is not enough!

رز

Continuous authentication

Continuously confirm user identity

Related works

Physiological-based approaches:

ECG/PPG

Eye-based

Gait

Touch Gesture

Keystroke

Related works

Other approaches:

Proximity

Sub-meter accuracy issues

Timeout

Not entirely risk-free

Background

Leverage human-induced electric potential for continuous authentication

Feasibility study

- Experimental setup:
 - nRF52 MCU board-based wearable and Android tablet (Terminal)

Wearable

Feasibility study

only for legitimate user

Feasibility study

Adversarial model

Adversarial model

Malicious adversary : Deliberately access other terminals Camera controlled by attacker Attacker imitates victim interactions ************** 0 Shared workspace

Handling the innocent adversary

Basic scheme:

Signal acquisition:

Acquire signal using wearable prototype

Compare two source sequences of press/release

Handling the malicious adversary

• Terminal fingerprinting

• Leverage terminal's fingerprint as an additional layer of defense

Handling the malicious adversary

Basic pipeline

- Utilize set of GFCC features to test for hypothesis:
 - λ_{hyp} = features from original terminal
 - $\lambda_{\overline{hyp}}$ = features not from original terminal

$$\log p(X|\lambda) = \sum_{t=1}^{T} \frac{1}{T} \log p(x_t|\lambda)$$
$$\Gamma(x) = (\sum_{t=1}^{T} \frac{1}{T} \log p(x_t|\lambda))$$

 $\log \frac{p(x|\lambda_{hyp})}{p(x|\lambda_{\overline{hyp}})} \begin{cases} \geq \theta, accept \ \lambda_{hyp} \\ < \theta, reject \ \lambda_{hyp} \end{cases}$

Decision threshold: θ

Evaluations

- Experimental setup:
 - Prototype wearable
 - Android tablet
- System Performance
- System Parameters
- Comparison to prior works
- User perception

✓ Security

✓ Usability

System performance

Robustness against adversaries:

- Practical performance against innocent adversary
- Attack success rate decreases with distance for malicious adversary

Ablation study

• Terminal fingerprinting has significant impact on performance

Comparison to prior works

- BEIBER Aerthantalite-warablappidation to wrearablapahistors tate-of-the-art
 - Disadvantages

*Mare et al., ZEBRA: Zero-effort bilateral recurring authentication. In 2014 IEEE Symposium on Security and Privacy

Comparison to prior works

Detection efficiency:

Schemes	Eberz	Our	ZEBRA	Zhang	Segundo
	et al. [12]	scneme	[29]	et al. [63]	et al. [40]
Time (s)	≈ 40	4.3	≈ 8	≈125	1

• Practically considerable performance

Different scenarios

• Body locations

• Skin condition

- Similar performance across different body locations
- Practical performance with varying skin conditions

Evaluations

System parameters:

• Synchronization tolerance

User study

Closed questionnaire:

- Q1 :I would like to adopt the proposed continuous authentication scheme for daily usage.
- Q2 :The proposed scheme requires no effort from me.
- Q3 : The system is easy to use.
- Q4 : The system performance is consistent.
- Q5 : I would not be less worried about temporarily leaving my working terminal unattended with the proposed scheme implemented.
- Q6 : The proposed scheme is more secure compared to the current session timeout approach.
- Q7 : The operation is easy to learn.
- Q8 : The scheme would not disrupt my regular activities on the terminal.
- Q9 : The scheme is more convenient than the session timeout approach.
- Q10: The system is reasonably fast and unobtrusive.

User study

Survey Results:

Conclusion

- ✓ We investigate the feasibility of leveraging a new form of signal, humaninduced electric potential, for two-factor continuous authentication.
- ✓ We developed a wearable prototype for the two-factor continuous authentication scheme to handle various adversaries.
- ✓ We prove via extensive experiments that our scheme outperforms state-ofthe-art methods and is well received among users.

Thank You!

Check out our research/group:

