Lattices

- **Lattice:**
 - Set augmented with a partial order relation \(\sqsubseteq\)
 - Each subset has a LUB and a GLB
 - Can define: meet \(\cap\), join \(\sqcup\), top \(T\), bottom \(\bot\)

- **Use lattice** in the compiler to express information about the program

- **To compute information:** build constraints which describe how the lattice information changes
 - Effect of instructions: transfer functions
 - Effect of control flow: meet operation

Transfer Functions

- Let \(L\) = dataflow information lattice

- **Transfer function** \(F_{I} : L \rightarrow L\) for each instruction \(I\)
 - Describes how \(I\) modifies the information in the lattice
 - If \(\text{in}[I]\) is info before \(I\) and \(\text{out}[I]\) is info after \(I\), then
 - **Forward analysis:** \(\text{out}[I] = F_{I}(\text{in}[I])\)
 - **Backward analysis:** \(\text{in}[I] = F_{I}(\text{out}[I])\)

- **Transfer function** \(F_{B} : L \rightarrow L\) for each basic block \(B\)
 - Is composition of transfer functions of instructions in \(B\)
 - If \(\text{in}[B]\) is info before \(B\) and \(\text{out}[B]\) is info after \(B\), then
 - **Forward analysis:** \(\text{out}[B] = F_{B}(\text{in}[B])\)
 - **Backward analysis:** \(\text{in}[B] = F_{B}(\text{out}[B])\)

Monotonicity and Distributivity

- Two important properties of transfer functions
 - **Monotonicity:** function \(F : L \rightarrow L\) is monotonic if \(x \sqsubseteq y\) implies \(F(x) \sqsubseteq F(y)\)
 - **Distributivity:** function \(F : L \rightarrow L\) is distributive if \(F(x \sqcap y) = F(x) \sqcap F(y)\)
 - **Property:** \(F\) is monotonic iff \(F(x \sqcap y) \sqsubseteq F(x) \sqcap F(y)\)
 - any distributive function is monotonic!

Proof of Property

- Prove that the following are equivalent:
 1. \(x \sqsubseteq y\) implies \(F(x) \sqsubseteq F(y)\), for all \(x, y\)
 2. \(F(x \sqcap y) \sqsubseteq F(x) \sqcap F(y)\), for all \(x, y\)

- **Proof for “1 implies 2”**
 - Need to prove that \(F(x \sqcap y) \sqsubseteq F(x) \sqcap F(y)\)
 - Use \(x \sqcap y \sqsubseteq x, x \sqcap y \sqsubseteq y\), and property 1

- **Proof of “2 implies 1”**
 - Let \(x, y\) such that \(x \sqsubseteq y\)
 - Then \(x \sqcap y = x\), so \(F(x \sqcap y) = F(x)\)
 - Use property 2 to get \(F(x) \sqsubseteq F(x) \sqcap F(y)\)
 - Hence \(F(x) \sqsubseteq F(y)\)

Control Flow

- **Meet operation** models how to combine information at split/join points in the control flow
 - If \(\text{in}[B]\) is info before \(B\) and \(\text{out}[B]\) is info after \(B\), then:
 - **Forward analysis:** \(\text{in}[B] = \sqcap \{\text{out}[B'] | B' \in \text{pred}(B)\}\)
 - **Backward analysis:** \(\text{out}[B] = \sqcap \{\text{in}[B'] | B' \in \text{succ}(B)\}\)

- Can alternatively use join operation \(\sqcup\) (equivalent to using the meet operation \(\sqcap\) in the reversed lattice)
Monotonicity of Meet

- Meet operation is also monotonic over \(L \times L \):
 \[
 x_1 \sqcap y_1 \sqsubseteq x_2 \sqsubseteq y_2 \quad \text{implies} \quad (x_1 \sqcap x_2) \sqsubseteq (y_1 \sqcap y_2)
 \]

- **Proof:**
 - Any lower bound of \(\langle x_1, x_2 \rangle \) is also a lower bound of \(\langle y_1, y_2 \rangle \), because \(x_1 \sqsubseteq y_1 \) and \(x_2 \sqsubseteq y_2 \)
 - \(x_1 \sqcap x_2 \) is a lower bound of \(\langle x_1, x_2 \rangle \)
 - So \(x_1 \sqcap x_2 \) is a lower bound of \(\langle y_1, y_2 \rangle \)
 - But \(y_1 \sqcap y_2 \) is the greatest lower bound of \(\langle y_1, y_2 \rangle \)
 - Hence \((x_1 \sqcap x_2) \sqsubseteq (y_1 \sqcap y_2) \)

Forward Dataflow Analysis

- **Control flow graph** \(G \) with entry (start) node \(B_s \)
- **Lattice** \((L, \sqsubseteq) \) represents information about program
 - Meet operator \(\sqcap \), top element \(\top \)
- **Monotonic transfer functions**
 - Transfer function \(F_I : L \rightarrow L \) for each instruction \(I \)
 - Can derive transfer functions \(F_B \) for basic blocks
- **Goal:** compute the information at each program point, given the information at entry of \(B_s \) is \(X_0 \)
- Require the \(\text{out}[B] = F_B(\text{in}[B]) \), for all \(B \)
 - Solve equations: use an iterative algorithm
 - Initialize \(\text{in}[B_s] = X_0 \)
 - Initialize everything else to \(\top \)
 - Repeat:
 - For each basic block \(B = B_s \)
 - \(\text{in}[B] = \sqcap \langle \text{out}[B'] | B' \sqsubseteq \text{pred}(B) \rangle \)
 - For each basic block \(B \)
 - \(\text{out}[B] = F_B(\text{in}[B]) \)
 - Stop when reach a fixed point

Backward Dataflow Analysis

- **Control flow graph** \(G \) with exit node \(B_e \)
- **Lattice** \((L, \sqsubseteq) \) represents information about program
 - Meet operator \(\sqcap \), top element \(\top \)
- **Monotonic transfer functions**
 - Transfer function \(F_I : L \rightarrow L \) for each instruction \(I \)
 - Can derive transfer functions \(F_B \) for basic blocks
- **Goal:** compute the information at each program point, given the information at exit of \(B_e \) is \(X_0 \)
- Require the \(\text{in}[B] = F_B(\text{out}[B]) \), for all \(B \)
 - Solve equations: use an iterative algorithm
 - Initialize \(\text{out}[B_s] = X_0 \)
 - Initialize everything else to \(\top \)
 - Repeat:
 - For each basic block \(B = B_s \)
 - \(\text{out}[B] = \sqcup \langle \text{in}[B'] | B' \sqsubseteq \text{succ}(B) \rangle \), for all \(B \)
 - For each basic block \(B \)
 - \(\text{in}[B] = F_B(\text{out}[B]) \)
 - Stop when reach a fixed point

Dataflow Equations

- The constraints are called **dataflow equations**:
 - \(\text{out}[B] = F_B(\text{in}[B]) \), for all \(B \)
 - \(\text{in}[B] = \sqcap \langle \text{out}[B'] | B' \sqsubseteq \text{pred}(B) \rangle \), for all \(B \)
 - \(\text{out}[B_s] = X_0 \)

Algorithm

- **in**[**B_s**] = \(X_0 \)
 - **out**[**B**] = \(\top \), for all \(B \)

Repeat

For each basic block \(B = B_s \)
 - \(\text{in}[B] = \sqcap \langle \text{out}[B'] | B' \sqsubseteq \text{pred}(B) \rangle \)
 - For each basic block \(B \)
 - \(\text{out}[B] = F_B(\text{in}[B]) \)

Until no change

Efficiency

- **Algorithm** is inefficient
 - Effects of basic blocks re-evaluated even if the input information has not changed
- **Better**: re-evaluate blocks only when necessary

Use a worklist algorithm

- Keep list of blocks to evaluate
 - Initialize list to the set of all basic blocks
 - If \(\text{out}[B] \) changes after evaluating \(\text{out}[B] = F_B(\text{in}[B]) \), then add all successors of \(B \) to the list
Worklist Algorithm

\textbf{in}[B]_0 = X_0
\textbf{out}[B] = T$, for all B
worklist = set of all basic blocks B
\Repeat
\begin{itemize}
 \item Remove a node B from the worklist
 \item $\textbf{in}[B] = \cap \textbf{out}[B'] | B' \in \text{pred}(B)$
 \item $\textbf{out}[B] = \mathcal{F}_{in}(B)$
 \item if out(B) has changed, then
 \item worklist = worklist \cup succ(B)
\EndRepeat
\Until worklist = \emptyset

Correctness

\begin{itemize}
 \item Initial algorithm is correct
 \begin{itemize}
 \item If dataflow information does not change in the last iteration, then it satisfies the equations
 \end{itemize}
 \item Worklist algorithm is correct
 \begin{itemize}
 \item Maintains the invariant that
 \begin{itemize}
 \item $\textbf{in}[B] = \cap \textbf{out}[B'] | B' \in \text{pred}(B)$
 \item $\textbf{out}[B] = \mathcal{F}_{in}(B)$
 \end{itemize}
 \item for all the blocks B not in the worklist
 \item At the end, worklist is empty
 \end{itemize}
\end{itemize}

Termination

\begin{itemize}
 \item Do these algorithms terminate?
 \item Key observation: at each iteration, information decreases in the lattice:
 \begin{itemize}
 \item $\textbf{in}_k[B] \subseteq \textbf{in}[B]$ and $\textbf{out}_k[B] \subseteq \textbf{out}[B]$
 \end{itemize}
 where $\textbf{in}[B]$ is info before B at iteration k and $\textbf{out}[B]$ is info after B at iteration k
 \item Proof by induction:
 \begin{itemize}
 \item Induction basis: true, because we start with top element, which is greater than everything
 \item Induction step: use monotonicity of transfer functions and meet operation
 \end{itemize}
 \item Information forms a chain: $\textbf{in}_1[B] \subseteq \textbf{in}_2[B] \subseteq \textbf{in}_3[B] ...$
\end{itemize}

Chains in Lattices

\begin{itemize}
 \item A chain in a lattice L is a totally ordered subset S of L:
 \begin{itemize}
 \item $x \subseteq y$ or $y \subseteq x$ for any $x, y \subseteq S$
 \end{itemize}
 \item In other words:
 \begin{itemize}
 \item Elements in a totally ordered subset S can be indexed to form an ascending sequence:
 \begin{itemize}
 \item $x_1 \subseteq x_2 \subseteq x_3 \subseteq ...$
 \end{itemize}
 \item or they can be indexed to form a descending sequence:
 \begin{itemize}
 \item $x_1 \supseteq x_2 \supseteq x_3 \supseteq ...$
 \end{itemize}
 \end{itemize}
 \item Height of a lattice = size of its largest chain
 \item Lattice with finite height: only has finite chains
\end{itemize}

Multiple Solutions

\begin{itemize}
 \item The iterative algorithm computes a solution of the system of dataflow equations
 \item ... is the solution unique?
 \item No, dataflow equations may have multiple solutions!
 \item Example: live variables
 \begin{itemize}
 \item $y = 1$
 \item $x = y$
 \end{itemize}
 \begin{itemize}
 \item Equations:
 \begin{itemize}
 \item $I_1 = I_2 - \{y\}$
 \item $I_3 = (I_4 - \{x\}) \cup \{y\}$
 \item $I_2 = I_1 \cup I_3$
 \item $I_4 = \{x\}$
 \end{itemize}
 \end{itemize}
 \begin{itemize}
 \item Solution 1: $I_1 = \{y\}, I_2 = \{y\}, I_3 = \{y\}, I_4 = \{x\}$
 \item Solution 2: $I_1 = \{x\}, I_2 = \{x\}, I_3 = \{y\}, I_4 = \{x\}$
 \end{itemize}
\end{itemize}
Safety

- Solution for live variable analysis:
 - Sets of live variables must include each variable whose values will further be used in some execution
 - ... may also include variables never used in any execution!
- The analysis is safe if it takes into account all possible executions of the program
 - ... may also characterize cases which never occur in any execution of the program
 - Say that the analysis is a conservative approximation of all executions
- In example
 - Solution 2 includes x in live set I_1, which is not used later
 - However, analysis is conservative

Safety and Precision

- Safety: dataflow equations guarantee a safe solution to the analysis problem
- Precision: a solution to an analysis problem is more precise if it is less conservative
- Live variables analysis problem:
 - Solution is more precise if the sets of live variables are smaller
 - Solution which reports that all variables are live at each point is safe, but is the least precise solution
- In the lattice framework: S_1 is less precise than S_2 if the result in S_1 at each program point is less than the corresponding result in S_2 at the same point
 - Use notation S_1 \preceq S_2 if solution S_1 is less precise than S_2

Maximal Fixed Point Solution

- Property: among all the solutions to the system of dataflow equations, the iterative solution is the most precise
- Intuition:
 - We start with the top element at each program point (i.e. most precise information)
 - Then refine the information at each iteration to satisfy the dataflow equations
 - Final result will be the closest to the top
- Iterative solution for dataflow equations is called Maximal Fixed Point solution (MFP)
- For any solution FP of the dataflow equations: FP \preceq MFP

Meet Over Paths Solution

- Is MFP the best solution to the analysis problem?
- Another approach: consider a lattice framework, but use a different way to compute the solution
 - Let G be the control flow graph with start block B_0
 - For each path p = [B_0, B_1, ..., B_n] from entry to block B_n:
 \text{in}[B_n] = \text{in}[B_0] \cap \{ \text{in}[p] | all paths p from B_0 to B_n \}
 - Compute solution as
 \text{in}[B_0] = \bigcap \{ \text{in}[p] | all paths p from B_0 to B_n \}
- This solution is the Meet Over Paths solution (MOP)

MFP versus MOP

- Precision: can prove that MOP solution is always more precise than MFP
 \text{MFP} \preceq \text{MOP}
- Why not use MOP?
 - MOP is intractable in practice
 1. Exponential number of paths: for a program consisting of a sequence of N if statement, there will 2^N paths in the control flow graph
 2. Infinite number of paths: for loops in the CFG

Importance of Distributivity

- Property: if transfer functions are distributive, then the solution to the dataflow equations is identical to the meet-over-paths solution
 \text{MFP} = \text{MOP}
- For distributive transfer functions, can compute the intractable MOP solution using the iterative fixed-point algorithm
Better Than MOP?

- Is MOP the best solution to the analysis problem?
- MOP computes solution for all path in the CFG
- There may be paths which will never occur in any execution
- So MOP is conservative
- \(\text{IDEAL} = \) solution which takes into account only paths which occur in some execution
- This is the best solution
- … but it is undecidable

\[
\begin{align*}
\text{if (c)} & \\
\quad x &= 1 & x &= 2 \\
\text{if (c)} & \\
\quad y &= y + 2 & y &= x + 1
\end{align*}
\]

Summary

- Dataflow analysis
 - sets up system of equations
 - iteratively computes MFP
 - Terminates because transfer functions are monotonic and lattice has finite height
- Other possible solutions: FP, MOP, IDEAL
- All are safe solutions, but some are more precise:
 \(\text{FP} \subseteq \text{MFP} \subseteq \text{MOP} \subseteq \text{IDEAL} \)
- MFP = MOP if distributive transfer functions
- MOP and IDEAL are intractable
- Compilers use dataflow analysis and MFP