Design and Analysis of Algorithms

CSE 5311

Lecture 10 Balanced Search Trees

Song Jiang, Ph.D.
Department of Computer Science and Engineering
Balanced search trees

Balanced search tree: A search-tree data structure for which a height of $O(\lg n)$ is guaranteed when implementing a dynamic set of n items.

Examples:
- AVL trees
- 2-3 trees
- 2-3-4 trees
- B-trees
- Red-black trees
Red-black trees

This data structure requires an extra one-bit color field in each node.

Red-black properties:

1. Every node is either red or black.
2. The root and leaves (NIL’s) are black.
3. If a node is red, then its parent is black.
4. All simple paths from any node \(x \) to a descendant leaf have the same number of black nodes \(= \) black-height(\(x \)).
Example of a red-black tree

```
    7
   / \
  3   18
 / \  /  \
NIL NIL 10 22
     /   /  \
    8   11 26
   / \  /   /  \
NIL NIL NIL NIL
```

$h = 4$
Example of a red-black tree

1. Every node is either red or black.
Example of a red-black tree

2. The root and leaves (NIL’s) are black.
Example of a red-black tree

3. If a node is red, then its parent is black.
4. All simple paths from any node x to a descendant leaf have the same number of black nodes = \textit{black-height}(x).
Height of a red-black tree

Theorem. A red-black tree with n keys has height
\[h \leq 2 \lg(n + 1). \]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with \(n \) keys has height

\[
h \leq 2 \lg(n + 1).
\]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with \(n \) keys has height

\[h \leq 2 \log(n + 1). \]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with n keys has height

$$h \leq 2 \lg(n + 1).$$

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with n keys has height

\[h \leq 2 \log(n + 1). \]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Theorem. A red-black tree with \(n \) keys has height
\[
h \leq 2 \log(n + 1).
\]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
- This process produces a tree in which each node has 2, 3, or 4 children.
- The 2-3-4 tree has uniform depth \(h' \) of leaves.
Proof (continued)

- We have $h' \geq h/2$, since at most half the leaves on any path are red.

- The number of leaves in each tree is $n + 1$
 \[\Rightarrow n + 1 \geq 2^{h'} \]
 \[\Rightarrow \lg(n + 1) \geq h' \geq h/2 \]
 \[\Rightarrow h \leq 2 \lg(n + 1). \]
Query operations

Corollary. The queries `SEARCH`, `MIN`, `MAX`, `SUCCESSOR`, and `PREDECESSOR` all run in $O(lg n)$ time on a red-black tree with n nodes.
Modifying operations

The operations \texttt{INSERT} and \texttt{DELETE} cause modifications to the red-black tree:

- the operation itself,
- color changes,
- restructuring the links of the tree via \texttt{“rotations”}.
Rotations

Rotations maintain the inorder ordering of keys:
- $a \in \alpha$, $b \in \beta$, $c \in \gamma \implies a \leq A \leq b \leq B \leq c$.

A rotation can be performed in $O(1)$ time.
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

```
    7
   / \
  3   18
 /     / \
8 10   11 22
   /    /   \
  26   21   20
```
Insertion into a red-black tree

IDEA: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
Insertion into a red-black tree

IDEA: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- **Right-Rotate(18).**
- **Left-Rotate(7) and recolor.**
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- **Right-Rotate(18).**
- **Left-Rotate(7) and recolor.**
Pseudocode

RB-INSERT(T, x)
 TREE-INSERT(T, x)
 $color[x] \leftarrow $ RED \quad \triangleright \text{only RB property 3 can be violated}$

while $x \neq \text{root}[T]$ and $color[p[x]] = \text{RED}$
 do if $p[x] = \text{left}[p[p[x]]]$
 then $y \leftarrow \text{right}[p[p[x]]]$ \quad \triangleright y = \text{aunt/uncle of } x$
 if $color[y] = \text{RED}$
 then ⟨Case 1⟩
 else if $x = \text{right}[p[x]]$
 then ⟨Case 2⟩ \quad \triangleright \text{Case 2 falls into Case 3}
 ⟨Case 3⟩
 else ⟨“then” clause with “left” and “right” swapped⟩

$color[\text{root}[T]] \leftarrow $ BLACK
Graphical notation

Let \(\text{\textcircled{\textbullet}} \) denote a subtree with a black root.

All \(\text{\textcircled{\textbullet}} \)'s have the same black-height.
Case 1

(Or, children of A are swapped.)

Push C’s black onto A and D, and recurse, since C’s parent may be red.
Case 2

\textbf{LEFT-ROTATE}(A)

Transform to Case 3.
Case 3

RIGHT-ROTATE(C)

Done! No more violations of RB property 3 are possible.
Analysis

• Go up the tree performing Case 1, which only recolors nodes.

• If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate.

Running time: \(O(\log n) \) with \(O(1) \) rotations.

RB-DELETE — same asymptotic running time and number of rotations as **RB-INSERT** (see textbook).