Design and Analysis of Algorithms

CSE 5311
Lecture 2 Asymptotic Notation and Solving Recurrences

Song Jiang, Ph.D.
Department of Computer Science and Engineering
Asymptotic notation

O-notation (upper bounds):

We write $f(n) = O(g(n))$ if there exist constants $c > 0$, $n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.
Asymptotic notation

O-notation (upper bounds):

We write $f(n) = O(g(n))$ if there exist constants $c > 0$, $n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.

Example: $2n^2 = O(n^3)$ \quad (c = 1, \; n_0 = 2)$
Asymptotic notation

O-notation (upper bounds):

We write $f(n) = O(g(n))$ if there exist constants $c > 0$, $n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.

Example: $2n^2 = O(n^3)$ \hspace{1cm} ($c = 1$, $n_0 = 2$)

functions, not values
Asymptotic notation

O-notation (upper bounds):

We write $f(n) = O(g(n))$ if there exist constants $c > 0$, $n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.

Example: $2n^2 = O(n^3)$
$c = 1$, $n_0 = 2$

functions, not values

funny, “one-way” equality
Set definition of O-notation

\[O(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]
Set definition of O-notation

$$O(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \}$$

Example: $2n^2 \in O(n^3)$
Macro substitution

Convention: A set in a formula represents an anonymous function in the set.
Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Example: \(f(n) = n^3 + O(n^2) \)

means

\[f(n) = n^3 + h(n) \]

for some \(h(n) \in O(n^2) \).
Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Example:

\[n^2 + O(n) = O(n^2) \]

means

for any \(f(n) \in O(n) \):

\[n^2 + f(n) = h(n) \]

for some \(h(n) \in O(n^2) \).
Ω-notation (lower bounds)

\(O\)-notation is an upper-bound notation. It makes no sense to say \(f(n)\) is at least \(O(n^2)\).
Ω-notation (lower bounds)

\(O\)-notation is an upper-bound notation. It makes no sense to say \(f(n)\) is at least \(O(n^2)\).

\[
\Omega(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}
\]
Ω-notation (lower bounds)

O-notation is an upper-bound notation. It makes no sense to say \(f(n) \) is at least \(O(n^2) \).

\[
\Omega(g(n)) = \{ f(n) : \text{there exist constants } c > 0, \ n_0 > 0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}
\]

Example: \(\sqrt{n} = \Omega(\log n) \) \((c = 1, \ n_0 = 16)\)
\(\Theta(g(n)) = O(g(n)) \cap \Omega(g(n)) \)
Θ-notation (tight bounds)

\[Θ(g(n)) = O(g(n)) \cap Ω(g(n)) \]

Example: \(\frac{1}{2} n^2 - 2n = Θ(n^2) \)
\(o \)-notation and \(\omega \)-notation

\(O \)-notation and \(\Omega \)-notation are like \(\leq \) and \(\geq \).
\(o \)-notation and \(\omega \)-notation are like \(< \) and \(> \).

\(o(g(n)) = \{ f(n) : \text{for any constant } c > 0, \text{ there is a constant } n_0 > 0 \text{ such that } 0 \leq f(n) < cg(n) \text{ for all } n \geq n_0 \} \)

Example: \(2n^2 = o(n^3) \) \((n_0 = 2/c)\)
\(o \)-notation and \(\omega \)-notation

\(O \)-notation and \(\Omega \)-notation are like \(\leq \) and \(\geq \).
\(o \)-notation and \(\omega \)-notation are like \(< \) and \(> \).

\(\omega(g(n)) = \{ f(n) : \text{for any constant } c > 0, \text{there is a constant } n_0 > 0 \text{ such that } 0 \leq cg(n) < f(n) \text{ for all } n \geq n_0 \} \)
Solving recurrences

• The analysis of merge sort from Lecture 1 required us to solve a recurrence.

• Recurrences are like solving integrals, differential equations, etc.
 ○ Learn a few tricks.

• Lecture 3: Applications of recurrences to divide-and-conquer algorithms.
Substitution method

The most general method:

1. **Guess** the form of the solution.
2. **Verify** by induction.
3. **Solve** for constants.
Substitution method

The most general method:

1. **Guess** the form of the solution.
2. **Verify** by induction.
3. **Solve** for constants.

Example: \(T(n) = 4T(n/2) + n \)

- [Assume that \(T(1) = \Theta(1) \).]
- Guess \(O(n^3) \). (Prove \(O \) and \(\Omega \) separately.)
- Assume that \(T(k) \leq ck^3 \) for \(k < n \).
- Prove \(T(n) \leq cn^3 \) by induction.
Example of substitution

\[T(n) = 4T(n/2) + n \]
\[\leq 4c(n/2)^3 + n \]
\[= (c/2)n^3 + n \]
\[= cn^3 - ((c/2)n^3 - n) \quad \text{desired} \quad \text{– residual} \]
\[\leq cn^3 \quad \text{desired} \]

whenever \((c/2)n^3 - n \geq 0\), for example, if \(c \geq 2\) and \(n \geq 1\).
Example (continued)

• We must also handle the initial conditions, that is, ground the induction with base cases.

• **Base:** \(T(n) = \Theta(1) \) for all \(n < n_0 \), where \(n_0 \) is a suitable constant.

• For \(1 \leq n < n_0 \), we have “\(\Theta(1) \)” \(\leq cn^3 \), if we pick \(c \) big enough.
Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.

- **Base:** \(T(n) = \Theta(1) \) for all \(n < n_0 \), where \(n_0 \) is a suitable constant.

- For \(1 \leq n < n_0 \), we have “\(\Theta(1) \)” \(\leq cn^3 \), if we pick \(c \) big enough.

This bound is not tight!
A tighter upper bound?

We shall prove that \(T(n) = O(n^2) \).
A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \leq ck^2$ for $k < n$:

\[
T(n) = 4T(n/2) + n \\
\leq 4c(n/2)^2 + n \\
= cn^2 + n \\
= O(n^2)
\]
A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \leq ck^2$ for $k < n$:

$$T(n) = 4T(n/2) + n$$
$$\leq 4c(n/2)^2 + n$$
$$= cn^2 + n$$

Correct

Wrong! We must prove the I.H.
A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \leq ck^2$ for $k < n$:

$T(n) = 4T(n/2) + n$
$\leq 4c(n/2)^2 + n$
$= cn^2 + n$
$= O(n^2)$ \textbf{Wrong!} We must prove the I.H.
$= cn^2 - (-n)$ \textbf{[desired – residual]}$\leq cn^2$ for \textbf{no} choice of $c > 0$. Lose!
A tighter upper bound!

Idea: Strengthen the inductive hypothesis.
- **Subtract** a low-order term.

Inductive hypothesis: $T(k) \leq c_1 k^2 - c_2 k$ for $k < n$.
A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.

- Subtract a low-order term.

Inductive hypothesis: \(T(k) \leq c_1 k^2 - c_2 k \) for \(k < n \).

\[
T(n) = 4T(n/2) + n \\
= 4(c_1 (n/2)^2 - c_2 (n/2)) + n \\
= c_1 n^2 - 2c_2 n + n \\
= c_1 n^2 - c_2 n - (c_2 n - n) \\
\leq c_1 n^2 - c_2 n \quad \text{if } c_2 \geq 1.
\]
A tighter upper bound!

Idea: Strengthen the inductive hypothesis.

- **Subtract** a low-order term.

Inductive hypothesis: \(T(k) \leq c_1 k^2 - c_2 k \) for \(k < n \).

\[
T(n) = 4T(n/2) + n
= 4(c_1(n/2)^2 - c_2(n/2)) + n
= c_1 n^2 - 2c_2 n + n
= c_1 n^2 - c_2 n - (c_2 n - n)
\leq c_1 n^2 - c_2 n \quad \text{if } c_2 \geq 1.
\]

Pick \(c_1 \) big enough to handle the initial conditions.
Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- The recursion-tree method promotes intuition, however.
- The recursion tree method is good for generating guesses for the substitution method.
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

$$
\begin{array}{c}
\text{n}^2 \\
\text{(n/4)}^2 & (n/2)^2 \\
\text{T(n/16)} & \text{T(n/8)} & \text{T(n/8)} & \text{T(n/4)}
\end{array}
$$
Example of recursion tree

Solve \(T(n) = T(n/4) + T(n/2) + n^2 \):
Example of recursion tree

Solve \(T(n) = T(n/4) + T(n/2) + n^2: \)

\[
\begin{align*}
T(n) & = n^2 \\
& \quad \quad + (n/4)^2 \\
& \quad \quad \quad \quad + (n/16)^2 \\
& \quad \quad \quad \quad \quad \quad \quad \quad + \ldots \\
& \quad + \Theta(1)
\end{align*}
\]
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

$\Theta(1)$
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

\[
\begin{align*}
\Theta(1) & \quad \vdots \quad \vdots \\
\frac{25}{256} n^2 & \quad \frac{5}{16} n^2 \\
\frac{1}{4} n^2 & \quad \frac{1}{2} n^2 \\
\frac{1}{16} n^2 & \quad \frac{1}{8} n^2 \\
\frac{1}{64} n^2 & \quad \frac{1}{32} n^2 \\
\end{align*}
\]
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

$$
\begin{align*}
T(n) &= \Theta(1) \\
&= n^2 \left(1 + \frac{5}{16} + \left(\frac{5}{16}\right)^2 + \left(\frac{5}{16}\right)^3 + \cdots \right) \\
&= \Theta(n^2) \quad \text{geometric series}
\end{align*}
$$
The master method applies to recurrences of the form

\[T(n) = a \, T\left(\frac{n}{b}\right) + f(n) , \]

where \(a \geq 1, \ b > 1, \) and \(f \) is asymptotically positive.
Three common cases

Compare $f(n)$ with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$.
 - $f(n)$ grows polynomially slower than $n^{\log_b a}$
 (by an n^{ϵ} factor).

 Solution: $T(n) = \Theta(n^{\log_b a})$.

Three common cases

Compare $f(n)$ with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.
 - $f(n)$ grows polynomially slower than $n^{\log_b a}$ (by an n^ε factor).

 Solution: $T(n) = \Theta(n^{\log_b a})$.

2. $f(n) = \Theta(n^{\log_b a \lg^k n})$ for some constant $k \geq 0$.
 - $f(n)$ and $n^{\log_b a}$ grow at similar rates.

 Solution: $T(n) = \Theta(n^{\log_b a \lg^{k+1} n})$.
Three common cases (cont.)

Compare \(f(n) \) with \(n^{\log_b a} \):

3. \(f(n) = \Omega(n^{\log_b a} + \varepsilon) \) for some constant \(\varepsilon > 0 \).
 - \(f(n) \) grows polynomially faster than \(n^{\log_b a} \) (by an \(n^\varepsilon \) factor),
 - and \(f(n) \) satisfies the regularity condition that \(af(n/b) \leq cf(n) \) for some constant \(c < 1 \).

Solution: \(T(n) = \Theta(f(n)) \).

Examples

Ex. \[T(n) = 4T(n/2) + n \]
\[a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n. \]

Case 1: \[f(n) = O(n^2 - \varepsilon) \] for \(\varepsilon = 1. \)
\[\therefore T(n) = \Theta(n^2). \]
Examples

Ex. \(T(n) = 4T(n/2) + n \)
\[a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n. \]

Case 1: \(f(n) = O(n^2 - \varepsilon) \) for \(\varepsilon = 1. \)
\[\therefore T(n) = \Theta(n^2). \]

Ex. \(T(n) = 4T(n/2) + n^2 \)
\[a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n^2. \]

Case 2: \(f(n) = \Theta(n^2 \lg^0 n) \), that is, \(k = 0. \)
\[\therefore T(n) = \Theta(n^2 \lg n). \]
Examples

Ex. \(T(n) = 4T(n/2) + n^3 \)
\[a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n^3. \]

Case 3: \(f(n) = \Omega(n^2 + \varepsilon) \) for \(\varepsilon = 1 \)
and \(4(n/2)^3 \leq cn^3 \) (reg. cond.) for \(c = 1/2. \)
\[\therefore T(n) = \Theta(n^3). \]
Examples

Ex. \(T(n) = 4T(n/2) + n^3 \)
\[a = 4, \quad b = 2 \Rightarrow n^{\log_b a} = n^2; \quad f(n) = n^3. \]

Case 3: \(f(n) = \Omega(n^2 + \varepsilon) \) for \(\varepsilon = 1 \)
and \(4(n/2)^3 \leq cn^3 \) (reg. cond.) for \(c = 1/2. \)

\[\therefore \quad T(n) = \Theta(n^3). \]

Ex. \(T(n) = 4T(n/2) + n^2/\lg n \)
\[a = 4, \quad b = 2 \Rightarrow n^{\log_b a} = n^2; \quad f(n) = n^2/\lg n. \]
Master method does not apply. In particular, for every constant \(\varepsilon > 0, \) we have \(n^\varepsilon = \omega(\lg n). \)
Idea of master theorem

Recursion tree:

\[
T(n) = \begin{cases}
 f(n), & n \leq b \\
 a T(n/b) + f(n), & n > b
\end{cases}
\]
Idea of master theorem

Recursion tree:

\[f(n) \quad a \quad f(n) \]
\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad af(n/b) \]
\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]
\[\vdots \]
\[T(1) \]
Idea of master theorem

Recursion tree:

\[f(n) \]
\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad af(n/b) \]
\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2f(n/b^2) \]
\[\vdots \]
\[T(1) \]

\[h = \log_b n \]
Idea of master theorem

Recursion tree:

\[f(n) \quad f(n) \]
\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad af(n/b) \]
\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]

\[h = \log_b n \]

\[\text{#leaves} = a^h \]
\[= a^{\log_b n} \]
\[= n^{\log_b a} \]

\[n^{\log_b a} T(1) \]
Idea of master theorem

Recursion tree:

\[f(n) \quad \frac{a}{2} \quad f(n) \]

\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad a f(n/b) \]

\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]

\[h = \log_b n \]

\[T(1) \]

CASE 1: The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight.

\[\Theta(n^{\log_b a} \cdot T(1)) \]
Idea of master theorem

Recursion tree:

\[f(n) \quad a \quad f(n) \]
\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad af(n/b) \]
\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]

\[T(1) \quad \cdots \quad n^{\log_b a} \quad T(1) \]

\[\Theta(n^{\log_b a} \log n) \]

CASE 2: \(k = 0 \) The weight is approximately the same on each of the \(\log_b n \) levels.
Idea of master theorem

Recursion tree:

\[f(n) \quad a \quad f(n) \]
\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad a f(n/b) \]
\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]
\[\vdots \]
\[T(1) \]

CASE 3: The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight.

\[n^{\log_b a} T(1) \]
\[\Theta(f(n)) \]
Appendix: geometric series

\[1 + x + x^2 + \cdots + x^n = \frac{1-x^{n+1}}{1-x} \quad \text{for } x \neq 1 \]

\[1 + x + x^2 + \cdots = \frac{1}{1-x} \quad \text{for } |x| < 1 \]