Design and Analysis of Algorithms

CSE 5311

Lecture 9 Randomly Built Binary Search Trees.

Song Jiang, Ph.D.
Department of Computer Science and Engineering
Binary-search-tree sort

\[T \leftarrow \emptyset \quad \triangleright \text{Create an empty BST} \]

for \(i = 1 \) **to** \(n \)

do \textsc{Tree-Insert}(\(T, A[i] \))

Perform an inorder tree walk of \(T \).

Example:

\[A = [3 \, 1 \, 8 \, 2 \, 6 \, 7 \, 5] \]

Tree-walk time = \(O(n) \),

but how long does it take to build the BST?
Analysis of BST sort

BST sort performs the same comparisons as quicksort, but in a different order!

The expected time to build the tree is asymptotically the same as the running time of quicksort.
Node depth

The depth of a node = the number of comparisons made during TREE-INSERT. Assuming all input permutations are equally likely, we have

Average node depth

\[
= \frac{1}{n} E \left[\sum_{i=1}^{n} \# \text{comparisons to insert node } i \right]
\]

\[
= \frac{1}{n} O(n \lg n) \quad \text{(quicksort analysis)}
\]

\[
= O(\lg n) .
\]
Expected tree height

But, average node depth of a randomly built BST = \(O(\lg n) \) does not necessarily mean that its expected height is also \(O(\lg n) \) (although it is).

Example.

\[
\text{Ave. depth} \leq \frac{1}{n} \left(n \cdot \lg n + \frac{\sqrt{n} \cdot \sqrt{n}}{2} \right) = O(\lg n)
\]
Height of a randomly built binary search tree

Outline of the analysis:

- Prove *Jensen’s inequality*, which says that
 \[f(E[X]) \leq E[f(X)] \]
 for any convex function \(f \) and random variable \(X \).

- Analyze the *exponential height* of a randomly built BST on \(n \) nodes, which is the random variable \(Y_n = 2^{X_n} \), where \(X_n \) is the random variable denoting the height of the BST.

- Prove that
 \[2^{E[X_n]} \leq E[2^{X_n}] = E[Y_n] = O(n^3) \]
 and hence that
 \[E[X_n] = O(\lg n) \]
Convex functions

A function \(f : \mathbb{R} \rightarrow \mathbb{R} \) is **convex** if for all \(\alpha, \beta \geq 0 \) such that \(\alpha + \beta = 1 \), we have

\[
f(\alpha x + \beta y) \leq \alpha f(x) + \beta f(y)
\]

for all \(x, y \in \mathbb{R} \).
Convexity lemma

Lemma. Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function, and let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be nonnegative real numbers such that $\sum_k \alpha_k = 1$. Then, for any real numbers x_1, x_2, \ldots, x_n, we have

$$f \left(\sum_{k=1}^{n} \alpha_k x_k \right) \leq \sum_{k=1}^{n} \alpha_k f(x_k).$$

Proof. By induction on n. For $n = 1$, we have $\alpha_1 = 1$, and hence $f(\alpha_1 x_1) \leq \alpha_1 f(x_1)$ trivially.
Proof (continued)

Inductive step:

$$f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = f\left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)$$

Algebra.
Proof (continued)

Inductive step:

\[
f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = f\left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)
\]

\[
\leq \alpha_n f(x_n) + (1 - \alpha_n) f\left(\sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)
\]

Convexity.
Proof (continued)

Inductive step:

\[
\begin{align*}
f\left(\sum_{k=1}^{n} \alpha_k x_k\right) &= f\left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right) \\
&\leq \alpha_n f(x_n) + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} \left(1 + f\left(\sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)\right) \\
&\leq \alpha_n f(x_n) + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} f(x_k)
\end{align*}
\]

Induction.
Proof (continued)

Inductive step:

\[
f \left(\sum_{k=1}^{n} \alpha_k x_k \right) = f \left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k \right)
\]

\[
\leq \alpha_n f(x_n) + (1 - \alpha_n) \left(\sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} \right) f(x_k)
\]

\[
\leq \alpha_n f(x_n) + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} f(x_k)
\]

\[
= \sum_{k=1}^{n} \alpha_k f(x_k).
\]

Algebra.
Convexity lemma: infinite case

Lemma. Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function, and let $\alpha_1, \alpha_2, \ldots$, be nonnegative real numbers such that $\sum_k \alpha_k = 1$. Then, for any real numbers x_1, x_2, \ldots, we have

$$f \left(\sum_{k=1}^{\infty} \alpha_k x_k \right) \leq \sum_{k=1}^{\infty} \alpha_k f(x_k),$$

assuming that these summations exist.
Convexity lemma: infinite case

Proof. By the convexity lemma, for any $n \geq 1$,

$$f \left(\sum_{k=1}^{n} \frac{\alpha_k}{\sum_{i=1}^{n} \alpha_i} x_k \right) \leq \sum_{k=1}^{n} \frac{\alpha_k}{\sum_{i=1}^{n} \alpha_i} f(x_k) .$$
Convexity lemma: infinite case

Proof. By the convexity lemma, for any \(n \geq 1 \),

\[
f\left(\sum_{k=1}^{n} \frac{\alpha_k}{\sum_{i=1}^{n} \alpha_i} x_k \right) \leq \sum_{k=1}^{n} \frac{\alpha_k}{\sum_{i=1}^{n} \alpha_i} f(x_k).
\]

Taking the limit of both sides (and because the inequality is not strict):

\[
\lim_{n \to \infty} f\left(\frac{\sum_{i=1}^{n} \alpha_i}{\sum_{i=1}^{\infty} \alpha_i} \sum_{k=1}^{\infty} \alpha_k x_k \right) \leq \lim_{n \to \infty} \frac{\sum_{i=1}^{n} \alpha_i}{\sum_{i=1}^{\infty} \alpha_i} \sum_{k=1}^{\infty} \alpha_k f(x_k).
\]
Jensen’s inequality

Lemma. Let f be a convex function, and let X be a random variable. Then, $f(E[X]) \leq E[f(X)]$.

Proof.

$$f(E[X]) = f\left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\} \right)$$

Definition of expectation.
Jensen’s inequality

Lemma. Let f be a convex function, and let X be a random variable. Then, $f(E[X]) \leq E[f(X)]$.

Proof.

\[
f(E[X]) = f\left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\} \right)
\]

\[
\leq \sum_{k=-\infty}^{\infty} f(k) \cdot \Pr\{X = k\}
\]

Convexity lemma (infinite case).
Jensen’s inequality

Lemma. Let \(f \) be a convex function, and let \(X \) be a random variable. Then, \(f(E[X]) \leq E[f(X)] \).

Proof.

\[
f(E[X]) = f\left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\} \right)
\]

\[
\leq \sum_{k=-\infty}^{\infty} f(k) \cdot \Pr\{X = k\}
\]

\[
= E[f(X)].
\]

Tricky step, but true—think about it.
Analysis of BST height

Let X_n be the random variable denoting the height of a randomly built binary search tree on n nodes, and let $Y_n = 2^{X_n}$ be its exponential height.

If the root of the tree has rank k, then

$$X_n = 1 + \max\{X_{k-1}, X_{n-k}\},$$

since each of the left and right subtrees of the root are randomly built. Hence, we have

$$Y_n = 2 \cdot \max\{Y_{k-1}, Y_{n-k}\}.$$
Analysis (continued)

Define the indicator random variable Z_{nk} as

$$Z_{nk} = \begin{cases} 1 & \text{if the root has rank } k, \\ 0 & \text{otherwise}. \end{cases}$$

Thus, $\Pr\{Z_{nk} = 1\} = E[Z_{nk}] = 1/n$, and

$$Y_n = \sum_{k=1}^{n} Z_{nk} \left(2 \cdot \max\{Y_{k-1}, Y_{n-k}\}\right).$$
Exponential height recurrence

\[E[Y_n] = E \left[\sum_{k=1}^{n} Z_{nk} \left(2 \cdot \max \{ Y_{k-1}, Y_{n-k} \} \right) \right] \]

Take expectation of both sides.
Exponential height recurrence

\[E[Y_n] = E\left[\sum_{k=1}^{n} Z_{nk} \left(2 \cdot \max\{Y_{k-1}, Y_{n-k}\} \right) \right] \]

\[= \sum_{k=1}^{n} E[Z_{nk} \left(2 \cdot \max\{Y_{k-1}, Y_{n-k}\} \right)] \]

Linearity of expectation.
Exponential height recurrence

\[
E[Y_n] = E \left[\sum_{k=1}^{n} Z_{nk} \left(2 \cdot \max \{Y_{k-1}, Y_{n-k}\} \right) \right]
\]

\[
= \sum_{k=1}^{n} E[Z_{nk} \left(2 \cdot \max \{Y_{k-1}, Y_{n-k}\} \right)]
\]

\[
= 2 \sum_{k=1}^{n} E[Z_{nk}] \cdot E[\max \{Y_{k-1}, Y_{n-k}\}]
\]

Independence of the rank of the root from the ranks of subtree roots.
Exponential height recurrence

\[
E[Y_n] = E \left[\sum_{k=1}^{n} Z_{nk} (2 \cdot \max \{Y_{k-1}, Y_{n-k}\}) \right]
\]

\[
= \sum_{k=1}^{n} E[Z_{nk} \cdot (2 \cdot \max \{Y_{k-1}, Y_{n-k}\})]
\]

\[
= 2 \sum_{k=1}^{n} E[Z_{nk}] \cdot E[\max \{Y_{k-1}, Y_{n-k}\}]
\]

\[
\leq \frac{2}{n} \sum_{k=1}^{n} E[Y_{k-1} + Y_{n-k}]
\]

The max of two nonnegative numbers is at most their sum, and \(E[Z_{nk}] = 1/n \).
Exponential height recurrence

\[
E[Y_n] = E \left[\sum_{k=1}^{n} Z_{nk} \left(2 \cdot \max \{ Y_{k-1}, Y_{n-k} \} \right) \right]
\]

\[
= \sum_{k=1}^{n} E[Z_{nk} \left(2 \cdot \max \{ Y_{k-1}, Y_{n-k} \} \right)]
\]

\[
= 2 \sum_{k=1}^{n} E[Z_{nk}] \cdot E[\max \{ Y_{k-1}, Y_{n-k} \}]
\]

\[
\leq 2 \sum_{k=1}^{n} E[Y_{k-1} + Y_{n-k}]
\]

\[
= \frac{4}{n} \sum_{k=0}^{n-1} E[Y_k]
\]

Each term appears twice, and reindex.
Solving the recurrence

Use substitution to show that $E[Y_n] \leq cn^3$ for some positive constant c, which we can pick sufficiently large to handle the initial conditions.

$$E[Y_n] = 4 \sum_{k=0}^{n-1} E[Y_k]$$
Solving the recurrence

Use substitution to show that $E[Y_n] \leq cn^3$ for some positive constant c, which we can pick sufficiently large to handle the initial conditions.

$$E[Y_n] = 4 \sum_{k=0}^{n-1} E[Y_k] \leq 4 \sum_{k=0}^{n-1} ck^3$$

Substitution.
Solving the recurrence

Use substitution to show that $E[Y_n] \leq cn^3$ for some positive constant c, which we can pick sufficiently large to handle the initial conditions.

$$E[Y_n] = \frac{4}{n} \sum_{k=0}^{n-1} E[Y_k] \leq \frac{4}{n} \sum_{k=0}^{n-1} ck^3 \leq \frac{4c}{n} \int_{0}^{n} x^3 \, dx$$

Integral method.
Solving the recurrence

Use substitution to show that $E[Y_n] \leq cn^3$ for some positive constant c, which we can pick sufficiently large to handle the initial conditions.

$$E[Y_n] = 4 \sum_{k=0}^{n-1} E[Y_k]$$
$$\leq 4 \sum_{k=0}^{n-1} ck^3$$
$$\leq \frac{4c}{n} \int_0^n x^3 \, dx$$
$$= \frac{4c}{n} \left(\frac{n^4}{4} \right)$$

Solve the integral.
Solving the recurrence

Use substitution to show that \(E[Y_n] \leq cn^3 \) for some positive constant \(c \), which we can pick sufficiently large to handle the initial conditions.

\[
E[Y_n] = 4 \sum_{k=0}^{n-1} E[Y_k] \\
\leq 4 \sum_{k=0}^{n-1} ck^3 \\
\leq \frac{4c}{n} \int_{0}^{n} x^3 \, dx \\
= \frac{4c}{n} \left(\frac{n^4}{4} \right) \\
= cn^3. \quad \text{Algebra.}
\]
The grand finale

Putting it all together, we have

$$2^{E[X_n]} \leq E[2^{X_n}]$$

Jensen’s inequality, since

$$f(x) = 2^x$$ is convex.
The grand finale

Putting it all together, we have

\[2^{E[X_n]} \leq E[2^{X_n}] \]
\[= E[Y_n] \]

Definition.
The grand finale

Putting it all together, we have

\[2^{E[X_n]} \leq E[2^{X_n}] \]
\[= E[Y_n] \leq cn^3. \]

What we just showed.
The grand finale

Putting it all together, we have

\[2^{E[X_n]} \leq E[2^{X_n}] \]
\[= E[Y_n] \]
\[\leq cn^3. \]

Taking the \(\lg \) of both sides yields

\[E[X_n] \leq 3 \lg n + O(1). \]