(1) Exercise 12.2-4 on Page 293 [10 points]

12.2-4
Professor Bunyan thinks he has discovered a remarkable property of binary search trees. Suppose that the search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left of the search path; B, the keys on the search path; and C, the keys to the right of the search path. Professor Bunyan claims that any three keys $a \in A$, $b \in B$, and $c \in C$ must satisfy $a \leq b \leq c$. Give a smallest possible counterexample to the professor’s claim.

Solution:

![Diagram of a binary search tree with sets A, B, and C labeled.]

Figure 1: Counter example to Professor Bunyan’s claim. The set A is empty. The search path, where search is performed for the key 3 is marked. The search proceeds from root 8 to the node 4 and then to node 3. So $B = \{8, 4, 3\}$. Set C is the only key to the right of the path, i.e., $C = \{6\}$.

The claim is wrong. A simple counter example is shown in figure 1. In the figure, the search is being done for leaf node 3, so the set $B = \{8, 4, 3\}$. There is nothing to the left of the path and so set $A = \{\phi\}$. Set C is all elements to the right of the path, so set $C = \{6\}$. For any element $a \in A$, and $b \in B$ the claim is true, since A is an empty set. But if set $b = 8$ and $c = 6$, the claim fails to hold.

(2) Exercise 12.2-8 on Page 294 [15 points]
12.2-8
Prove that no matter what node we start at in a height- \(h \) binary search tree, \(k \) successive calls to TREE-SUCCESSOR take \(O(k + h) \) time.

Suppose \(x \) is the starting node and \(y \) is the ending node. The distance between \(x \) and \(y \) is at most \(2h \), and all the edges connecting the \(k \) nodes are visited twice, therefore it takes \(O(k + h) \) time.

(3) Exercise 12.3-1 on Page 299 [10 points]

12.3-1
Give a recursive version of the TREE-INSERT procedure.

\[
\text{TREE-INSERT}(z, k) \\
\text{If } z = \text{NIL} \text{ then} \\
\quad \text{key}[z] \leftarrow k \\
\quad \text{left}[z] \leftarrow \text{NIL} \\
\quad \text{right}[z] \leftarrow \text{NIL} \\
\text{else} \\
\quad \text{if } k < \text{key}[z] \text{ then} \\
\quad \quad \text{TREE-INSERT}(\text{left}[z], k) \\
\text{else} \\
\quad \quad \text{TREE-INSERT}(\text{right}[z], k)
\]

(4) Problem 12-1 on Page 303 [30 points]

12-1 Binary search trees with equal keys
Equal keys pose a problem for the implementation of binary search trees.

\(a. \) What is the asymptotic performance of TREE-INSERT when used to insert \(n \) items with identical keys into an initially empty binary search tree?

We propose to improve TREE-INSERT by testing before line 5 to determine whether \(z.\text{key} = x.\text{key} \) and by testing before line 11 to determine whether \(z.\text{key} = y.\text{key} \).
If equality holds, we implement one of the following strategies. For each strategy, find the asymptotic performance of inserting n items with identical keys into an initially empty binary search tree. (The strategies are described for line 5, in which we compare the keys of z and x. Substitute y for x to arrive at the strategies for line 11.)

b. Keep a boolean flag $x.b$ at node x, and set x to either $x.left$ or $x.right$ based on the value of $x.b$, which alternates between FALSE and TRUE each time we visit x while inserting a node with the same key as x.

c. Keep a list of nodes with equal keys at x, and insert z into the list.

d. Randomly set x to either $x.left$ or $x.right$. (Give the worst-case performance and informally derive the expected running time.)

d. Worst-case: every random choice is to the right (or all to the left) this will result in the same behavior as in the first part of this problem, $\Theta(n^2)$.

Expected running time: notice that when randomly choosing, we will pick left roughly half the time, so, the tree will be roughly balanced, so, we have that the depth is roughly $\lg(n)$, $\Theta(n \lg n)$.

(5) Exercise 13.3-2 on Page 322 [15 points]

13.3-2
Show the red-black trees that result after successively inserting the keys 41, 38, 31, 12, 19, 8 into an initially empty red-black tree.

Solution:
The resulting red-black trees are shown in the figure:
Exercise 14.1-5 on Page 344 [20 points]

14.1-5

Given an element x in an n-node order-statistic tree and a natural number i, how can we determine the ith successor of x in the linear order of the tree in $O(\log n)$ time?

Solution:
The data structure should support the following two operations:

OS-RANK(T, x), which returns the position of x in the linear order determined by an in order tree walk of T in $O(\log n)$ time,

OS-SELECT(x, i), which returns a pointer to the node containing the ith smallest key in the subtree rooted at x in $O(\log n)$ time.

The ith successor of x is given by OS-SELECT(x, OS-RANK(T, x) + 1), which will also run in $O(\log n)$ time.