CSE 5311

Lecture 12 Skip Lists

Song Jiang, Ph.D.
Department of Computer Science and Engineering
Skip lists

- Simple randomized dynamic search structure
 - Invented by William Pugh in 1989
 - Easy to implement
- Maintains a dynamic set of n elements in $O(\lg n)$ time per operation in expectation and with high probability
 - Strong guarantee on tail of distribution of $T(n)$
 - $O(\lg n)$ “almost always”
One linked list

Start from simplest data structure: (sorted) linked list

- Searches take $\Theta(n)$ time in worst case
- How can we speed up searches?
Two linked lists

Suppose we had two sorted linked lists (on subsets of the elements)

- Each element can appear in one or both lists
- How can we speed up searches?
Two linked lists as a subway

IDEA: Express and local subway lines
(à la New York City 7th Avenue Line)

- Express line connects a few of the stations
- Local line connects all stations
- Links between lines at common stations
Searching in two linked lists

SEARCH(x):

- Walk right in top linked list (L_1) until going right would go too far
- Walk down to bottom linked list (L_2)
- Walk right in L_2 until element found (or not)
Searching in two linked lists

Example: `SEARCH(59)`

```
14 14 23 34 34 42 42 50 59 66 72 72 72 79
```

Too far:
59 < 72
Design of two linked lists

QUESTION: Which nodes should be in L_1?

- In a subway, the “popular stations”
- Here we care about *worst-case performance*
- **Best approach:** Evenly space the nodes in L_1
- But *how many nodes* should be in L_1?
Analysis of two linked lists

ANALYSIS:

- Search cost is roughly $|L_1| + \frac{|L_2|}{|L_1|}$
- Minimized (up to constant factors) when terms are equal
- $|L_1|^2 = |L_2| = n \Rightarrow |L_1| = \sqrt{n}$
Analysis of two linked lists

Analysis:

- \(|L_1| = \sqrt{n}\), \(|L_2| = n\)
- Search cost is roughly
 \[|L_1| + \frac{|L_2|}{|L_1|} = \sqrt{n} + \frac{n}{\sqrt{n}} = 2\sqrt{n}\]
More linked lists

What if we had more sorted linked lists?

- 2 sorted lists \(\Rightarrow 2 \cdot \sqrt{n} \)
- 3 sorted lists \(\Rightarrow 3 \cdot \frac{3}{2} \sqrt{n} \)
- \(k \) sorted lists \(\Rightarrow k \cdot \sqrt[2]{k} \sqrt{n} \)
- \(\lg n \) sorted lists \(\Rightarrow \lg n \cdot \sqrt[2]{\lg n} = 2 \lg n \)
lg n linked lists

lg n sorted linked lists are like a binary tree
(in fact, level-linked B⁺-tree; see Problem Set 5)
Searching in $\lg n$ linked lists

Example: Search(72)
Skip lists

Ideal skip list is this $\lg n$ linked list structure

Skip list data structure maintains roughly this structure subject to updates (insert/delete)
Insert(x)

To insert an element x into a skip list:

- **Search**(x) to see where x fits in bottom list
- Always insert into bottom list

Invariant: Bottom list contains all elements

- Insert into some of the lists above…

Question: To which other lists should we add x?
INSERT(\(x\))

QUESTION: To which other lists should we add \(x\)?

IDEA: Flip a (fair) coin; if **HEADS**, promote \(x\) to next level up and flip again

- Probability of promotion to next level = 1/2
- On average:
 - 1/2 of the elements promoted 0 levels
 - 1/4 of the elements promoted 1 level
 - 1/8 of the elements promoted 2 levels
 - etc.

Approx. balanced?
Example of skip list

EXERCISE: Try building a skip list from scratch by repeated insertion using a real coin

Small change:
- Add special $-\infty$ value to every list
 \[\implies \text{can search with the same algorithm} \]
Skip lists

A *skip list* is the result of insertions (and deletions) from an initially empty structure (containing just $-\infty$).

- **INSERT(x)** uses random coin flips to decide promotion level.
- **DELETE(x)** removes x from all lists containing it.
Skip lists

A skip list is the result of insertions (and deletions) from an initially empty structure (containing just $-\infty$)

- $\text{INSERT}(x)$ uses random coin flips to decide promotion level

- $\text{DELETE}(x)$ removes x from all lists containing it

How good are skip lists? (speed/balance)

- **INTUITIVELY:** Pretty good on average

- **CLAIM:** Really, really good, almost always
Theorem: With high probability, every search in an n-element skip list costs $O(\lg n)$.
With-high-probability theorem

Theorem: With high probability, every search in a skip list costs $O(\lg n)$

- **Informally:** Event E occurs with high probability (w.h.p.) if, for any $\alpha \geq 1$, there is an appropriate choice of constants for which E occurs with probability at least $1 - O(1/n^\alpha)$
 - In fact, constant in $O(\lg n)$ depends on α

- **Formally:** Parameterized event E_α occurs with high probability if, for any $\alpha \geq 1$, there is an appropriate choice of constants for which E_α occurs with probability at least $1 - c_\alpha/n^\alpha$
With-high-probability theorem

Theorem: With high probability, every search in a skip list costs $O(\lg n)$

- **Informally:** Event E occurs with high probability (w.h.p.) if, for any $\alpha \geq 1$, there is an appropriate choice of constants for which E occurs with probability at least $1 - O(1/n^\alpha)$

- **Idea:** Can make error probability $O(1/n^\alpha)$ very small by setting α large, e.g., 100

- Almost certainly, bound remains true for entire execution of polynomial-time algorithm
Recall:

Boole’s Inequality / Union Bound:
For any random events E_1, E_2, \ldots, E_k,
$$\Pr\{E_1 \cup E_2 \cup \ldots \cup E_k\} \leq \Pr\{E_1\} + \Pr\{E_2\} + \ldots + \Pr\{E_k\}$$

Application to with-high-probability events:
If $k = n^{O(1)}$, and each $\overline{E_i}$ occurs with high probability, then so does $E_1 \cap \overline{E_2} \cap \ldots \cap \overline{E_k}$
Analysis Warmup

Lemma: With high probability, an n-element skip list has $O(\lg n)$ levels.

Proof:

- Error probability for having at most $c \lg n$ levels

 $\Pr\{\text{more than } c \lg n \text{ levels}\} \leq n \cdot \Pr\{\text{element } x \text{ promoted at least } c \lg n \text{ times}\}$

 (by Boole’s Inequality)

 $= n \cdot (1/2^c \lg n)$

 $= n \cdot (1/n^c)$

 $= 1/n^{c-1}$
LEMMA: With high probability, an n-element skip list has $O(\lg n)$ levels.

PROOF:

• Error probability for having at most $c \lg n$ levels is $\leq 1/n^{c-1}$.

• This probability is polynomially small, i.e., at most $\frac{1}{n^\alpha}$ for $\alpha = c - 1$.

• We can make α arbitrarily large by choosing the constant c in the $O(\lg n)$ bound accordingly.
Proof of theorem

Theorem: With high probability, every search in an \(n \)-element skip list costs \(O(\lg n) \)

Cool Idea: Analyze search backwards—leaf to root

- Search starts [ends] at leaf (node in bottom level)
- At each node visited:
 - If node wasn’t promoted higher (got TAILS here), then we go [came from] left
 - If node was promoted higher (got HEADS here), then we go [came from] up
- Search stops [starts] at the root (or \(-\infty\)
Proof of theorem

Theorem: With high probability, every search in an n-element skip list costs $O(\lg n)$

Cool Idea: Analyze search backwards—leaf to root

Proof:
- Search makes “up” and “left” moves until it reaches the root (or $-\infty$)
- Number of “up” moves < number of levels
 $\leq c \lg n$ w.h.p. (Lemma)
- \Rightarrow w.h.p., number of moves is at most the number of times we need to flip a coin to get $c \lg n$ HEADS
Coin flipping analysis

CLAIM: Number of coin flips until \(c \lg n \) HEADS

\[= \Theta(\lg n) \]

with high probability

PROOF:

Obviously \(\Omega(\lg n) \): at least \(c \lg n \)

Prove \(O(\lg n) \) “by example”:

- Say we make \(10c \lg n \) flips
- When are there at least \(c \lg n \) HEADS?

(Later generalize to arbitrary values of 10)
Coin flipping analysis

CLAIM: Number of coin flips until $c \lg n$ HEADS
 = $\Theta(\lg n)$ with high probability

PROOF:

• $\Pr\{\text{exactly } c \lg n \text{ HEADS}\} = \binom{10c \lg n}{c \lg n} \cdot \left(\frac{1}{2}\right)^{c \lg n} \cdot \left(\frac{1}{2}\right)^{9c \lg n}$
 \[\begin{aligned}
 &\text{orders} \quad \text{HEADS} \quad \text{TAILS} \\
 &\text{overestimate on orders} \quad \text{TAILS}
\end{aligned}\]

• $\Pr\{\text{at most } c \lg n \text{ HEADS}\} \leq \binom{10c \lg n}{c \lg n} \cdot \left(\frac{1}{2}\right)^{9c \lg n}$
Coin flipping analysis (cont’d)

• Recall bounds on \(\binom{y}{x} \): \(\frac{y^x}{x^x} \leq \binom{y}{x} \leq \left(e \frac{y}{x} \right)^x \)

• \(\Pr\{\text{at most } c \, \lg n \text{ HEADS}\} \leq \left(\frac{10c \, \lg n}{c \, \lg n} \right)^{9c \, \lg n} \cdot \left(\frac{1}{2} \right)^{9c \, \lg n} \)

\[\leq \left(e \frac{10c \, \lg n}{c \, \lg n} \right)^{c \, \lg n} \cdot \left(\frac{1}{2} \right)^{9c \, \lg n} \]

\[= (10e)^{c \, \lg n} 2^{-9c \, \lg n} \]

\[= 2^{\lg(10e) \cdot c \, \lg n} 2^{-9c \, \lg n} \]

\[= 2^{\lfloor \lg(10e) - 9 \rfloor \cdot c \, \lg n} \]

\[= 1 / n^\alpha \text{ for } \alpha = \left[9 - \lg(10e) \right] \cdot c \]
Coin flipping analysis (cont’d)

- $\Pr\{\text{at most } c \lg n \text{ HEADS}\} \leq \frac{1}{n^\alpha}$ for $\alpha = [9-\lg(10e)]c$

- **Key Property:** $\alpha \to \infty$ as $10 \to \infty$, for any c

- So set 10, i.e., constant in $O(\lg n)$ bound, large enough to meet desired α

This completes the proof of the coin-flipping claim and the proof of the theorem.