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Abstract information and run-time cache management mechanisms

that alleviate hot spots. Techniques such as cache bypassing

The paper proposes MESA (Multicoloring with Embedded [13], cache miss classification and isolation [10], and various
[orms of cache reconfiguration, including reconfigurable as-

Skewed Associativity), a novel cache indexing scheme thasociativity and dynamic cache partitioning [4, 9, 21] fall into

integrates dynamic page coloring with static skewed ass0-, . category. Page remapping [5, 24] with hardware support

ciativity to reduce conflicts in L2/L3 caches with a small de- . . X
o . . is yet another technique that attempts to reduce conflicts by
gree of associativity. MESA associates multiple cache pages

) . sampling misses and changing page colors at run-time.
(colors) with each virtual memory page and uses two-level . . A . . .
o . Concerned with the high penalties of conflict misses in
skewed associativity, first to map a page to a different color econdary caches. we make three contributions in this pa-
in each bank of the cache, and then to disperse the lines of Y ' P

a page across the banks and within the colors of the page per. The firstis a novel cache indexing scheme ca&bA
MESA is a multi-grained cache indexing scheme that com—(MUItICO|Or'ng with Embedded Skewed Associativi=SA

: . combines a skewed-associative page coloring scheme with
bines the best of two worlds, page coloring and skewed asso- e ; . .

N a skewed-associative set indexing scheme to disperse both
ciativity. We also propose a novel cache management scheme

X ! - ages and cache lines within a page between the banks of set-
based on page remapping, which uses cache miss imbalanc L i
. . . _associative secondary cachdglESAassociates each page
between colors in each bank as the metric to track conflicts

and trigger remapping. We evaluate MESA using 24 bench_W|th multiple colors, one per way of associativity in the

! L ; ; ; cache. The memory lines within each page are dispersed us-
marks from multiple application domains and with various . L : X

o . : : ing skewed associative mapping, under the constraint that all
degrees of sensitivity to conflict misses, on both an in-order . . : L
. : . ) memory lines in the page are contained within the colors of
issue processor (using complete system simulation) and an, o pageMESAcombines the advantages of page coloring in

out-of-order issue processor (using SimpleScalar). MESA N . :
LN . .~ _resolving inter-page conflicts with the advantages of skewed
outperforms skewed associativity, prime modulo hashing, A o . .
associativity in resolving inter-bank conflicts within sets. It

and dynamic page coloring schemes proposed earlier. Com-.~; . . . .
2 . is in essence a multi-grained indexing scheme that attempts
pared to a 4-way associative cache, MESA can provide as L : : I
to eliminate conflict misses within and across pages.

much as 76% improvement in IPC. The second contribution of this paper is a dynamic page
remapping algorithm for a multicolored secondary cache.
The algorithm departs from page remapping algorithms pro-
posed earlier in that it tracks the hottest cache color at run-
time and usesache miss imbalandeetween the hottest and
Conflict misses are a perennial problem for caches with the coldest colors in each bank to make better remapping de-
limited associativity. Caches have gone through a sequenceisions. The remapping criterion used in our mechanism is
of optimizations to reduce conflicts misses, including victim more aggressive than criteria based on miss sampling [24].
buffers [14], pseudo-associativity [2] and eventually higher Results from simulations show that this aggressiveness pays
associativity. Architects have considered intelligent cache off due to the high cost of conflict misses to memory.
indexing functions[6, 16, 23] to disperse data more evenly  The third contribution of this paper is a comprehensive
across the cache. Software techniques such as page cobomparison between static cache indexing and dynamic col-
oring and bin hopping [7, 15] have also been proposed tooring and remapping schemes for secondary caches. This
reduce conflict misses via careful mapping of pages in thecomparison shows that static indexing schemes perform re-
cache. Another approach to the problem is to use run-timemarkably well. Most often, they are better than standalone

1. Introduction



run-time remapping schemes, if the latter are used with-address space into consecutive cache frames. An alternative
out any provision for dispersing cache lines instead of just to page coloring is bin hopping, in which pages accessed se-
pages. However, carefully designed run-time algorithms canquentially are mapped to consecutive cabhes (page-sized
enhance sophisticated static indexing schemes, by conveyinglots). Although intuitive and simple to implement, page col-
cache miss information which is statically undetectable. This oring variants are to some extent limited in sophistication,
argument is supported by the superior performanddiBeSA since they do not take into account run-time information on
when combined with our remapping algorithm. Our inte- cache misses.
grated scheme reduces significantly the number of secondary A natural extension to static page coloring is dynamic
cache misses compared to both sophisticated static indexingage coloring, in which the hardware tracks information on
schemes and standalone dynamic remapping schemes. cache misses and take actions to remap pages to different col-
We have experimented with a wide set of benchmarks (24 ors, if these pages are located in hot spots [5, 24]. Dynamic
in total) from multiple application domains. Our simulations remapping can correct poor operating system decisions and
show thatMESA outperforms two of the best static cache adapt cache mapping to the access patterns of programs. The
indexing schemes that disperse memory lines between setbenefit of dynamic coloring depends on the capability of the
—skewed associativity and prime number based hashing—hardware to detect cache conflicts and to react to them timely.
and one previously proposed dynamic coloring algorithm This issue has not been discussed extensively in the litera-
based on miss sampling, yielding IPC improvements of up ture. An earlier paper from Sherwood et. al [24] appears to
to 76% compared to conventional 4-way associative cachespe the only one to investigate this issue in detail. In their
and at least 1%—-5% compared to the next best cache indexingcheme, if misses in hot sets are constantly above a thresh-
scheme. old, a remapping interrupt is fired and the operating system
The rest of this paper is organized as follows. Section 2 changes the color of a page that maps to the congested color
discusses static and dynamic cache indexing schemes foin the cache. This mechanism will henceforth be referred to
avoiding conflicts and motivates multicoloring with skewed asDynColoring
associativity. Section 3 presents the implementation and de- The main drawback ddynColoringis that it tracks only
sign choices foMESAand our dynamic remapping algo- colors with number of misses above a fixed threshold in
rithm. Section 4 discusses the experimental setting and Seca sampling period. To avoid mis-remapping pages from
tion 5 presents our results. Section 6 overviews related work‘normal-temperature’ colors in memory intensive process or
and Section 7 concludes the paper. execution phases, the threshold is usually set high. Thus, the
scheme tends to be more conservative than needed. More-
2. Static and Run-Time Schemes for Eliminat-  over, this scheme may detect multiple colors as remapping
ing Conflicts in Secondary Caches candldat_es, v_vlthou'F maklng an informed choice between
them to identify which one is the hottest. In other words,

Previous work adoots bostaticandrun-timeapproaches the mechanism may detect hot pages but not necessarily the
P bp ones that cause most of the conflicts. It may be infeasible

to d'St”bUt.e data in the cache and ellm_lna_ltt_a hot Spots,so tha{o collect the entire information to track the hottest page in
a cache_wnh a small degree of associativity bfahaves like Bhardware. However, it is possible to locate this page if the
cache with a larger degree of associativity. Static approache%ardware keeps track of the hottest (not just a hot) color in

e o St Cche t any gen e Wo gt s dea o Gerve
bp y n improved remapping algorithm based on continuous bal-

misses to adaptively change the mapping of data located Ir'ancing of misses between the hottest and the coldest color in
hot spotsand scatter these data throughout the cache.
. . A . X each cache bank.

Different mechanisms for eliminating conflict misses use
different data granularitiefage-basednechanisms attempt . .
to eliminate conflicts by intelligently mapping virtual pages 2-2- Static .Se.t .Indexmg Schemes: Slfewed
to page-sized slots in the cache and decoupling the indexing Associativity and Related Techniques
of physical memory from the indexing of the cach8et-
basedmechanisms attempt to eliminate conflicts at the gran-  Although page-based schemes can reduce conflicts by
ularity of individual cache sets. In the following we review mapping and moving data at a coarse granularity, static hard-
some representative static and run-time schemes, to motivatevare schemes exist that address the same problem at the

the work proposed in this paper. granularity of cache sets. The seminal work on skewed as-
sociativity [23] has introduced a design to scatter data in the

2.1. Page-Based Schemes: Page Coloring banks of associative caches, by allowing as many indexing
and Dynamic Remapping functions per cache line as the degree of associativity. With

skewed associativity, each memory line is mapped to a differ-
Page coloring [15] is a well-known technique that reduces ent offset in each cache bank. Using carefully chosen XOR-
conflict misses by mapping consecutive pages in the virtualmapping schemes [11, 23] or other indexing schemes, such



2000 1 [ T T e
D irtual # i its [+
% virtual page# mbits| cbits ' oTiB ;
£ Virtual Address ! :
ﬁlSOO* : virtual page# |physical page#| cl c2|:
X ! H
% >§< """"""""""""""" 1 """"" R B
g :
%1000 - Physical Address
Z # oy
g mbits |mbits|cbits
Gy
° % [
5 500+ X . I
2 2000 4000 ¢
E’ x
0 aF .. %% Xx‘x XX ‘X x _x x . XXy x hottest —»{me1 color; hashing color; |mc, hottest
0 5000 10000 15000 20000 > j
Number of accesses to cache sets me, | color, _,-P color, |mc,
Figure 1. Accesses and Misses per set in NAS mes | colors| ! WAy Colory [mes
LU.
coldest _>mc“ color,. color, |mc, coldest
as prime modulo hashing [16], memory lines mapped to a L L
given offset in one way are highly unlikely to map to the RSC, RSC,

same offset in another way. At the same time, consecutive
memory lines are unlikely to be mapped to the same cache
line in the same bank.

Static schemes try to achieve a highly randomized yet
uniform distribution of memory accesses between the cache
sets. A balanced distribution of accesses though is not nec-
essarily a reflection of the distribution of cache misses. Fig-

ure 1 illustrates the problem. We recorded the number of works in a two-level hierarchical fashion. Its high level com-
accesses and the number of misses per cache set while rurponent is responsible for static and dynamic page (color)
ning NAS LU, a program which suffers from conflicts in the  mapping, while its low level component is responsible for
L2 cache. The (X,Y) scatter plot has a point per cache set.static cache line skewing within the colors of each page.
For each set, the X coordinate is the number of accesses to MESAtreats a set-associative L2 cache as multiple banks.
the set in a typical execution phase of the program and theRather than using only one color per page and having the
Y coordinate is the number of misses to the same set. Thecolor span all cache banks for a page, as in conventional col-
embedded plot is a zoom into the lower left corner of the oring, MESAassociates each page with multiple colors, as
chart. The larger the X coordinate the higher the access fremany as the degree of associativity. The colors of each page
quency to the cache set. The chart shows several dark regiongre identified with a skewed associative mapping scheme, ap-
(large concentrations of cache sets) with high access frequenplied at the page level. Furthermore, a new dynamic recol-
cies but low miss frequencies. Such regions are shown morepring algorithm based on miss balancing is implemented on
clearly in the zoom chart, for sets with 1K to 4K accesses. the multi-colored pages. In this way, each bank is treated as
a large direct-mapped cache [5, 15], in which MESA utilizes
2.3. MESA Outline access information to resolve intra-bank conflicts.
The fixed placement of memory lines within a page can
Interestingly enough, the literature has given little em- still cause inter-bank conflicts, despite remapping. To resolve
phasis on comparing and combining sophisticated static setthese conflicts, MESA disperses the memory lines within a
indexing schemes against dynamic, page-based schemes ipage across the ways of the cache exactly as in a conventional
terms of effectiveness in reducing conflicts. A cost-effective skewed associative cache. The difference from a conven-
scheme should make a trade-off between fully static andtional skewed associative cache is that each line is confined
fully dynamic approaches. One important contribution of within one of the colors assigned to the pageMigSA
our work is that we provide such a framework and quanti-
tative evidence on which of three approaches, namely static, . .
setindexing, hardware page coloring or an integrated schemg" Implementation Details
is the best for a wide set of programs.
We propose a new cost-effective scheme caN#gaSA MESAdivides the cache into pages (colors) and uses the
(Multicoloring with Embedded Skewed Associativityich TLB to identify the color of each virtual page, as in conven-

Figure 2. Multicoloring and run-time remap-
ping implementation in MESA



tional page coloring [24]. The main difference with previous maintained upon cache accesses as follows. On each access
coloring schemes is that each page has multiple colors, repto the cache to a specific color, the miss counter of the color
resented by multiple fields in the TLB entry. The TLB entry is compared against the miss counter of the coldest color,
includes as many colors as the number of banks (ways) in thewhich is initialized to 0. If the currently accessed color has
cache. The color entries of each page are modifiable via aless misses, the coldest color pointer is updated. The over-
dynamic remapping algorithm. In addition, hardware similar head of this check is overlapped with the cache access.

to that used in a skewed associative cache is used to imple- Remapping is effected by moving pages from the hottest
ment skewing functions to select the color of a page in eachcolor to the coldest color in the same bank. It is necessary to
bank. The following discussion describes an implementationthrottle remapping activity for several reasons. First, remap-

of MESAfor large secondary caches. ping does have a non-negligible overhead. Second, too ag-
gressive remapping may thrash the cache by frequently mov-
3.1. Static Multicoloring ing pages back and forth between two colors. To throttle

remapping we use two thresholds. The first threshold is

Figure 2 depicts the hardware implementatiorMESA used for controlling the speed of remapping (we call it the
for a cache with two cache banks. The 2-way associative Z5C threshold, wher&zSC' stands forRemappingSpeed
cache is used merely as an example for illustration purposesCONtrol). An RSC counter per bank is used for this purpose.
Each TLB entry includes two color fields andc,. The The counter is |n|t|aI|z_ed to 0, and mcrementgd whenever
color fields enable remapping of a page without memory & 'cac.he miss occurs in thg hottest color. While the cache
copying. Each field stores the color of the page in one way MISS IS being served, the miss counters c_Jf th_e cqldest ar_ld the
(bank) of the cache. The cache color bits decouple cachelOttest color are compared, and remapping is triggered if the
indexing from physical memory indexingESAperforms RSC Qf the hottest cplor exceed; a hardwired threshol_d, set
an N-dimensional division of the cache into pag@&tepre- {0 32 in the current implementation. THeSC' counter is
sents the degree of associativity), whereas standard coloring€S€t to 0 after one page is remapped from the hottest color.
performs a one-dimensional division. We use a skewed asso- _1he second threshold corresponds to the minimum cache
ciative mapping similar to the one proposed in [6], of a page MISS imbalance M 1,,,;,,) between the hottest and the cold-

number from the TLB to set the initial colors of the page. est color that needs to be observed by the hardware to trigger
remapping. CMI,,;, is set to be equal to the number of

misses in the coldest color. In other words, the hottest color

should see twice the number of cache misses of the coldest

color to activate remapping. The specific threshold allows
Mor a fast calculation of'M T in hardware.

3.2. Miss Balancing Algorithm

Our dynamic remapping scheme is based on an algorith
calledM B A (Miss Balancing Algorithm), which uses cache
miss |mbalanc§ betyveen colorsjepgnQentlyn each bank, 3.3. Embedded Skewing
as the remapping trigger. The basic idea is to remap pages
from the hottest (most overloaded) color in a bank to the
coldest (most underloaded) color in the same bank, with the
intuition that the hottest color tends to be the host of pages

that are heavily responsible for conflicts and that reshuffling . . 7
these pages in the bank is likely to ameliorate the problem.'n the TLB determme; the cache color (page) mzjhe:ache
way for the memory line, as well as the starting index of that

Note that a cache color is a page-sized block of cache sets

insidea bank. Our remapping algorithm attempts to avoid _color. We use hashing hardware and a XOR-based index-

inter-bank interference and retain the benefit of skewed asso'"9 scheme in the address of the memory line to generate as

ciativity by not moving pages across banks. many offsets as cache ways, which are in turn used to locate

The remapping algorithm uses one miss counter perthe target cache set inside each color. In our prototype im-

color per bank. These counters are denoted with p:;ahmenthatlﬁnr\rqveti\tjs?ntge)(isname ﬁkrenwmg flrJ]ng:tlonS;]ai(Sj Irr] [dB]t
mecy, mea, ..., mc, In Figure 2. The counters are incre- although alternative indexing Schemes can be considered 1o

mented upon cache misses. They are aged periodically (ev_resolve pathological cases [16, 26].

ery 16K misses in our implementation) so that they do not ) )
accumulate stale historical information. Aging is done pro- 4. Experimental Setting
gressively by rightward bit shifting of the counters.

For each cache bank, two additional counters are used to We used Simics [19], a complete system simulator,
point to the hottest and the coldest color in the bank. Uponto evaluateMESA and other static and run-time schemes
a miss to a color in the cache, the color miss counter is com-for reducing cache conflicts. We used the out-of-the-box
pared to the hottest color’s miss counter and the hottest colotUltraSPARC-II processor of Simics, executing the SPARC
pointer is updated, if needed. The overhead of this checkV9 instruction set and running SPARC Linux 7.2. While
is overlapped with the memory access. The coldest color isSimics is capable of conducting a complete system simu-

When a memory line is accessedESAuses a skewed
associative scheme that provides as many candidate set in-
dices for the line, as the degree of associativity. thigeld



lation and evaluating the performance impactMESAIn in the implementation obynColoring(64 and 4 as opposed
the system as a whole, it models in-order issue proces-to 128 and 8 used in the original implementation [24]), both
sors. To show the effectivenessMESAfor modern out-of-  because we are using a smaller page size than in the original
order issue processors, we used SimpleScalar [8], and modwork and because we found that the original thresholds were
eled a 4-issue, out-of-order processor. We set the load/stor@verly conservative for the workloads we tested.
queue(LSQ) size to be 8, and used the Alpha instruction set We evaluated the aforementioned schemes with a total
for the SPEC 2000 benchmarks, and the PISA instruction setof 24 applications, including 19 applications from SPEC
for the rest of the benchmarks. CPU2000, 4 applications from the NAS Benchmarks [3], and
We simulated a two-level cache hierarchy. The parame-one application (FFT) from SciMark 2.0 (C version) [1]. We
ters are given in Table 1. The size of the secondary cache isused theeferencanput size for SPEC benchmarks, the Class
set to 1MB, to realistically support the data sets used in ourA input size for the NAS benchmarks except from LU, in

benchmarks. which we used the Class C input size, and ldrge input
size for SciMark. All benchmarks were run on a simulated
| Parameter Value uniprocessor system. The results include operating system

L1 cache 32KB, 32-byte lines, 2-way set associative,| activity as recorded in Simics. For each application except
write-back,write-allocate, 1 cycle latency,LRY FFT, we simulated 2 billion instructions starting with a cold
L2 cache 1MB, 64-byte lines, 4-way set associative, | cache. FFT completes in about 937 million instructions in
10 cycles latency, LRU replacement Simics and 755 million instructions in SimpleScalar.

TLB 64-entry iTLB, 64-entry dTLB, fully associative
Memory 4K page size,120 cycles latency in Simics,| 5. Simulation Results
80 cycles for the first chunk and 10 cycles

for each additional chunk in SimpleScalar We divide the results from the 24 programs into three
_ _ groups: Group 1 contains the 10 integer programs from
Table 1. Simulation parameters. SPEC 2000, group 2 contains the 9 floating point programs

from SPEC 2000, and group 3 consists of the rest programs
from the NAS suite as well as FFT from the SciMark suite.

Parameter Value
’ - ‘ = ‘ 5.1. Overall Results
Length of interval 16K misses
Miss counter aging | right shift 4 bits each interval 5.1.1. Results with an In-Order Issue Processor
RSC threshold 32
Remapping overheafl 400 cycles The normalized numbers of L2 misses for the programs in
each group are shown in Figures 3, 5, and 7, respectively.
Table 2. Remapping algorithm parameters. All results are normalized to those of the baseline 4-way

associative cache. The run times of the programs in each
group are shown in Figures 4, 6, and 8, respectively. We

For the simulation ofMESA we chose the parameters break run times into busy CPU cycles and memory stall cy-
listed in Table 2. BesiddglESA we implemented four other  cles. We observe that across a wide and diverse range of
schemes for comparison, namelyway (a standard 4-way  programs,MESA provides consistently better performance
set-associative L2 cachd)ynColoring(a conventional col-  than the baseline 4-way set-associative cache, though the
oring scheme with dynamic remapping on a 4-way cache performance gains vary between programs. Programs like
[24]), prime (a 4-way associative cache with prime modulo ammp, FFT, gece, LU, twol f andsixztrack obtain signifi-
hashing [16]), andkeweda 4-way skewed associative cache cant performance improvements while programs tifglu,
[23]). 4-wayis used as a baseline for comparisongnCol- gap, gzip, IS, andwupwise obtain little or no benefit from
oring is used to assess how much additional beESA any of the conflict avoidance schemes. The other programs
can obtain from its multicoloring design, as well as to inves- obtain some benefit by suffering less L2 cache misses, but
tigate if the remapping algorithm used in conjunction with this benefit is not translated into substantial performance im-
MESAachieves further improvements. We comppriane provements, as these programs access the L2 cache rarely.
and skewedagainstMESAto investigate whether run-time  The reaction of the programs to different cache mapping al-
remapping reduces conflict misses further than plain skewedgorithms can be explained by characterizing the imbalance
associativity or prime modulo hashing. of their miss distributions across cache sets. To characterize

In the experiments, we used 4093 as the prime numberthe instantaneous miss distributions, we calculate the coeffi-
used in the hashing function @fime, which is very close  cient of variation (CoV) of misses for every interval of 16384
to 4096, namely the number of cache sets of the L2 cachemisses, and average the CoVs. The larger the ratio, the more
used in our experiments. We used low thresholds for bothserious the imbalance. Figure 9 shows the ratios for all 24
the sampling miss counters and the interrupt miss countergprograms.
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Figure 5. Normalized number of L2 cache misses of floating point benchmarks in SPEC 2000.

For programs with high average CoVs, which indicate se- low average CoV of 0.08yIESAreduces its misses by a mere
rious load imbalance among cache sets, we observe signifiQ.2% and its run time by 0.1%.
cant improvements fromIESAIn terms of number of misses For the programs with serious miss imbalari2gnColor-
and run times. For examplé; F'T" has an average CoV of ing, prime andskewedalso achieve better performance over
1.9. Accordingly, MESAcan reduce its misses by 52.1%, the baseline scheme by reducing conflict misses. However,
and reduce its run time by 41.4%. This happens because thé¢heir improvements are consistently lower than those from
imbalance causes a large number of conflict misses for overMESA The performance advantages\ESAover DynCol-
loaded cache sets, while leaving other sets underutilized. Ororing, prime andskewedare shown in Table 3.
the other hand, fagzip, a well-balanced program with a very In generalprimeandskewedare more effective thabDyn-
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Figure 7. Normalized number of L2 cache Figure 8. Normalized run time of NAS bench-
misses of NAS benchmarks and FFT bench- marks and FFT benchmark.

mark.

Coloring. Some imbalance that is detected at the fine gran-ments with the SimpleScalar simulator using five representa-
ularity of cache lines remains undetected at the coarse grantive benchmarks, namelypr andtwolf from group 1ammp
ularity of pages. Botlprime andskewedesolve this imbal- ~ from group 2,FFT from group 3, and a new SPEC 2000
ance implicitly, by dispersing hot spots at the granularity of benchmarkgalgel which we could not compile to run in
cache lines. The run-timBynColoring scheme cannot af-  Simics. We compare the performanceWiESAwith skewed

ford such an option because of its excessive implementatiorwhich is the cache management scheme which has exhibited
overhead. In some programs sucheas, prime performs  the best performance among the schemes used to compare

better tharskewed In other programs such asnmp, LU, againstMESAIn our simulations with Simics. The run times
andsiztrack, skewedperforms better thaprime. The aver-  and miss reductions achieved by skewedache andMESA

age reductions shown in Table 3 indicate tietweds better running on SimpleScalar are shown in Table 4. We can see
thanprimein general. that the relative performance trends observed in our simula-

tions with Simics remain the same in the simulations with
5.1.2. Results from an Out-of-Order Processor an out-of-order processor. For bammpandFFT, skewed
o associativity can reduce misses and run times by a large per-

We observe that there is a strong correlation between reduceentage, buMESAcan still outperform skewed associativ-
tions of secondary cache misses and the improvements irity due to its ability to dynamically resolve more conflicts.
runtime in all benchmarks. An out-of-order execution pro- This trend is consistent with the results on the in-order is-
cessor may weaken this correlation due to memory accessue processor. However, both the skewed cacheviilbgA
overlapping, thus lessening the improvements. To inves-cannot reduce run times as much as in the in-order issue pro-
tigate whethetMESA can achieve significant performance cessor inFFT. The reason is that the out-of-order proces-
improvements in an out-of-order processor, we ran experi-sor overlaps successfully a significant fraction of L2 cache
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Reduction in Cache Misses

twolf vpr galgel | ammp FFT
skewed| 1.24% | 3.37% | 40.99% | 88.13% | 44.49%
MESA | 14.28% | 23.94% | 60.85% | 95.38% | 49.13%
Run Time Improvements
twolf vpr galgel | ammp FFT
skewed| 0.13% | 0.61% | 2.47% | 71.26% | 29.94%
MESA | 1.23% | 3.90% | 6.47% | 75.62% | 32.83%

Figure 9. Average CoVs showing the balance
of miss distribution.

Table 4. Performance of
out-of-order processors.

MESA and skewedin

1.2

0.8
0.6
0.4
0.2

Reduction in Cache Misses
group 1| group 2| group 3
DynColoring | 4.31% | 3.83% | 0.18%
prime 8.41% | 2.16% | 9.65%
skewed 20.16%| 13.67% | 21.82%
MESA 22.70%| 18.18% | 24.56%
Run Time Improvements
group 1| group 2| group 3
DynColoring | 1.02 1.01 1.00
prime 1.14 1.00 1.05
skewed 1.18 1.04 1.11
MESA 1.20 1.05 1.15
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Figure 10. Normalized number of misses for
full and stripped-down implementations of
MESAand DynColoring

Table 3. Reductions in cache misses and run
time improvements of various confict avoid-
ance schemes. o
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misses. Fowpr andtwolf, skeweccan hardly reduce misses
and run times. In these two progranMiESAcan reduce L2
misses by about 14% and 23%. It therefore provides mea-
surable runtime improvements, despite that these programs Figure 11. Normalized run times for
have very low L2 miss rates. Fgrlgel skewedan reduce a stripped-down implementations of
large percentage of L2 cache misses. However, the reduction DynColoring
of cache misses can hardly be reflected on runtii&ESA
eliminates 20% more cache misses, most of which can not be
overlapped, and achieves a measurable IPC improvement. In
) MESA o, TSy each component s necessaryt i an
ventional 4-way associative cache, which implies that it can tegrated cache scheme Wl.t h consistently |_mproved perfor-
serve as a good substitute for cacr’1es with large associativitymance’ we take' the followmg §teps:' We. f|rst'evaluate the
remapping algorithm oMESAIn isolation (i.e. without any
and number of banks. L ) ! .
support for skewed-associative multicoloring), in order to as-

sess the effectiveness of using miss imbalance for run-time
elimination of conflict misses. For this purpose, we replaced
the remapping algorithm obynColoring with our MBA

To investigate how much each componentMiESAcon- remapping algorithm, and obtained a scheme, which we also
tributes to the total performance improvement and to un- call MBA. We then evaluate a stripped-down implementa-

‘ m CPU Cycle m Memory Stall ‘

full and
MESA and

5.2. Analysis of MESAPerformance Gains



tion of MESA called multicoloring in which a skewed as- cesses from memory accesses to allow for more flexible map-
sociative mapping is enforced for multi-colored pages acrossping of cache accesses and to avoid conflict misses. Similar
banks, but not for memory lines within a page. Comparison decoupling is encountered in other dynamic page remapping
of the simplifiedMESAagainstMESAcoupled with theViBA schemes, including ours. Contrary to Min and Hu's work
scheme and line-level skewed associativity gives an idea ofwhich uses reference information to tune cache mapping, we
the effectiveness of fine-grain skewed associativity indexing use cache miss information for the same purpose.
on cache performance. Page coloring is a well-known technique to reduce cache
We selected five programs, namelyhmp, art, FFT, conflicts [5, 7, 15]. Software page coloring is simple to im-
gee, and LU, where MESAachieves striking performance plement, however it incurs significant overhead in the oper-
improvements over the two intermediate schen\BA and ating system. It also interferes with page replacement algo-
multicoloring), as well as oveDynColoring Figure 10 plots  rithms, since the operating system needs to keep per-color
the normalized number of misses BlynColoring MBA, free lists. And it lacks the information for making informed
multicoloring and MESA Figure 11 plots the normalized recoloring decisions at run-time. Hardware page coloring
run times achieved with the same schemes. All results areschemes have been proposed for large secondary caches and
normalized to those of the 4-way set-associative cache. instruction caches [24, 18]. Our work differs from these
From the results we make the following interesting obser- schemes in the mechanism used to activate remapping and
vation. Though for the five progranMESAalways achieves in that it combines run-time remapping with static schemes
considerable performance gains, the amount of contributionsto reduce cache conflicts. Compiler transformations for re-
made by each of its components vary significantly among ducing conflict misses have also been proposed [22]. How-
the programs. For example, o/, MBA obtains the most  ever, such transformations are only applicable in the limited
performance improvement over its counterpart, narbgiy- context of loop-intensive scientific kernels.
Coloring. This means that our remapping algorithm is more
effective in identifying and resolving hot spots. For the
same progranmulticoloringandMESAachieve much lesser
improvements over their coarse grain dynamic counterpart, /. Conclusions and Future Work
namely MBA. This shows that skewed indexing on either
a page-sized granularity or a cache-line granularity is not
by itself effective for the access patterns exhibited in the
specific program. Foammp, we observe different trends.
Multicoloring and MESAgenerate the most performance

This paper makes several contributions in the direction of
designing more effective secondary caches with a reason-
able degree of associativity. We introduced MESA, a two-

gains, whileMBA contributes little to performance. The ex- level skewed iati he indexi h that
periments show that the effectiveness of each individual tech- evel skewed assoclalive cache indexing scheme that merges
effectively skewed-associative page coloring with skewed-

nigue depends heavily on the specific program and its sec- o . ) .
ondary cache access patterns. While none of the static an§ssociative cache indexing. We have extended MESA with

run-time techniques prevails across all programs or acces§ NeW rgnl-tlme p‘"’.‘gf rtehmaé) plrllg a]!gorltr;m basgdt_on cachhe
patterns, a comprehensive scheme TRESA which inte- miss imbalance within the banks of a set-associative cache.

grates both static and dynamic mechanisms, yields a consispur integrated scheme combines the advantages of skewed

tent performance improvement associativity, page coloring and page remapping to yield
' a cost-effective, high-performance design. This paper has

also shown that fine-grained static indexing schemes are
6. Related Work often more effective than coarse-grain dynamic remapping
schemes, but at the same time, static and dynamic schemes

This section overviews related work which shares similar can complement each other to maximize the benefits of both
objectives with MESA and our remapping algorithm. approaches.

Column caching allows software to specify which spe-  Although this paper provides a proof of concept by show-
cific data is mapped to specific ways (columns) of a set- ing that MESA combined with our remapping algorithm can
associative cache [9]. Under a column caching schemereduce significantly conflict misses, we plan to perform an
pages are mapped to tints (the equivalent of colors), so thataccurate estimation of the impact of multicoloring on cache
data within a tint cannot evict data from other tints. Our area, cache access time and power consumption using a
scheme bares partial similarity to column caching in that it cache model described in [25]. We also plan to investigate
restricts the remapping of pages within columns. The columnMESA in the context of more aggressive processor archi-
caching scheme proposed in [9] allows for dynamic remap- tectures, by looking at the impact of multicoloring on the
ping of data, however no specific information on remap- caches of multithreaded processors and chip multiprocessors,
ping mechanisms and their performance was provided in thiswhich suffer from destructive interference between threads,
work. as well as in caches with non-uniform access latencies [17]

Min and Hu [20] have proposed to decouple cache ac- and software-managed caches [12].
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