2182

1

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.8, AUGUST 2016

A General Approach to Scalable
Buffer Pool Management

Xiaoning Ding, Jianchen Shan, and Song Jiang

Abstract—In high-end data processing systems, such as databases, the execution concurrency level rises continuously since the
introduction of multicore processors. This happens both on premises and in the cloud. For these systems, a buffer pool management of
high scalability plays an important role on overall system performance. The scalability of buffer pool management is largely determined
by its data replacement algorithm, which is a major component in the buffer pool management. It can seriously degrade the scalability if
not designed and implemented properly. The root cause is its use of lock-protected data structures that incurs high contention with
concurrent accesses. A common practice is to modify the replacement algorithm to reduce the contention on the lock(s), such as
approximating the LRU replacement with the CLOCK algorithm or partitioning the data structures and using distributed locks.
Unfortunately, the modification usually compromises the algorithm’s hit ratio, a major performance goal. It may also involve significant
effort on overhauling the original algorithm design and implementation. This paper provides a general solution to improve the scalability
of a buffer pool management using any replacement algorithms for the data processing systems on physical on-premises machines
and virtual machines in the cloud. Instead of making a difficult trade-off between the high hit ratio of a replacement algorithm and the
low lock contention of its approximation, we design a system framework, called BP-Wrapper, that eliminates almost all lock contention
without requiring any changes to an existing algorithm. In BP-Wrapper, we use a dynamic batching technique and a prefetching
technique to reduce lock contention and to retain high hit ratio. The implementation of BP-Wrapper in PostgreSQL adds only about 300
lines of C code. It can increase the throughput by up to two folds compared with the replacement algorithms with lock contention when
running TPC-C-like and TPC-W-like workloads.

Index Terms—Buffer pool management, replacement algorithm, lock contention, multi-core

4

INTRODUCTION

ATA processing systems, such as databases, usually use

high-end servers with many cores for high perfor-
mance. For example, it is common to equip a database
server with 16 or more cores. In the cloud, an Amazon RDS
database instance can have up to 32 virtual CPUs (VCPUs)
[1]. On such a server, a large number of worker threads run
concurrently to maximize computing power of the system.
With the high computing power, the overall system perfor-
mance is often determined by how fast the worker threads
can access the data they process. As a common practice, a
data-processing system maintains a buffer pool in the user
memory space for its worker threads to cache the data sets
that are actively accessed. The system carefully manages the
buffer pool using sophisticated policies to minimize costly
disk I/O operations.

Worker threads access the buffer pool concurrently at a
very high frequency. With the increasing number of cores
(or VCPU count), the buffer pool management must be
highly scalable and efficient to effectively cope with the
growing processing concurrency. Otherwise, it can become

e X. Ding and]. Shan are with Computer Science Department, New Jersey
Institute of Technology, Newark, NJ 07041.
E-mail: {xiaoning.ding, js622 j@njit.edu.

o S. Jiang is with the Department of Electrical and Computer Engineering,
Wayne State University, MI 48202. E-mail: sjiang@uwayne.edu.

Manuscript received 13 Mar. 2015; revised 14 Aug. 2015; accepted 4 Sept.
2015. Date of publication 1 Oct. 2015; date of current version 20 July 2016.
Recommended for acceptance by X. Gu.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2015.2484321

a serious system bottleneck, leading to significant perfor-
mance degradation. In fact, such performance problems
have been widely observed in various systems, such as
PostgreSQL [2], MySQL [3], and Oracle [4].

The performance issue is caused by the contention on the
locks used in the buffer management, particularly the lock
that protects a core data structure used for data replacement
algorithm. The algorithm makes decisions on which data
pages should be cached in memory to effectively serve
requests for on-disk data. To implement the algorithm, the
threads maintain a data structure to track their data-access
history. They update the data structure in response to page
accesses so that replacement decisions can be made based
on the history recorded in the data structure. To guarantee
the integrity of the data structure, the updates must be
made in a serialized fashion. Thus, a lock is required to syn-
chronize the updates. Lock contention happens when the
lock is held by one worker thread and other threads must
wait in the form of busy-waiting and/or context switches.

Many replacement algorithms and their implementations
have been proposed. They organize and manage deep page-
access history to maximize hit ratios and minimize the cost
incurred by disk I/O operations. These algorithms usually
take actions upon each I/0O access, either a hit or a miss in
the buffer, which mainly include a sequence of updates in
the data structure to record the access history. Though the
operations are usually designed to be simple and efficient to
minimize overhead, in a production system where a large
number of threads access on-disk data frequently and con-
currently, the high frequency and concurrency may lead to
serious lock contention. Performance degradation caused

1045-9219 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

DING ETAL.: AGENERAL APPROACH TO SCALABLE BUFFER POOL MANAGEMENT

by lock contention can be significant in large-scale systems.
This subject has been a major research issue for years (e.g.,
[5], [6], [7]). Our experiments show that contention on the
lock associated with replacement management may reduce
database throughput by a factor of 3 in a 16-processor
system.

While the replacement algorithm designers have not paid
particular attention to the lock contention issue, the advan-
tages of the algorithms, including high hit ratio, could be
compromised in real systems. For example, some widely
used DBMS systems, such as PostgreSQL, gave up advanced
replacement algorithms due to the performance problems
caused by lock contention. Instead, they resorted to the
clock-based approximations of the LRU replacement [2].

Clock-based approximations, such as CLOCK [8],
CLOCK-PRO [9], and CAR [10], are usually more scalable
than their corresponding original algorithms (LRU, LIRS, or
ARCQ). They organize buffer pages into circular list(s), and
use a reference bit or a reference counter to record access
information for each buffer page. When the accesses are
buffer hits, clock-based approximations set the reference
bits or increment the counters, rather than modifying the
circular list(s) or the clock hand(s). So they do not need to
lock the list(s). Only when there are misses do they need to
lock the list(s) and the clock hand(s), and search for victim
pages for replacement. Since the lock is less frequently
requested than that in the original algorithms, the conten-
tion for the lock is reduced.

However, many sophisticated replacement algorithms
do not have clock-based approximations. For replacement
algorithms that do have clock-based approximations, their
clock-based approximations usually cannot achieve high hit
ratios as high as they do. By making minimal updates on
their data structure, clock-based approximations record
very limited history access information, specifically,
whether a page has been accessed or how many times it has
been accessed. It loses richer history information, especially
cross-access information, such as relative order in which a
sequence of pages are accessed. This would compromise hit
ratio. For some replacement algorithms, such cross-access
information is indispensable. Thus, they do not have clock-
based approximations. Examples include SEQ [11],
DULO [12], and the buffer replacement policy used in
DB2 [13]. They need to know in which order the buffer
pages are accessed to detect access sequences and sequen-
tial/random access patterns.

Lock contention can also be reduced by reducing lock
granularity, or using distributed locks [5], [6], [7], [14],
[15], with which a buffer is divided into multiple parti-
tions and pages are distributed through hashing. Each
partition has its own data structure for tracking history
of its accesses and uses a local lock to coordinate concur-
rent updates to the data structure. Since only accesses to
the same partition compete on the same lock, lock con-
tention can be ameliorated.

However, in the distributed lock approach hash colli-
sions and hot pages can still cause contention. Moreover,
as the recorded history information is localized within
each partition, the lack of global history information can
be harmful to the performance of the replacement algo-
rithms. For example, the algorithms that need to detect

2183
Pages Requests

Buffer Pages

Mapping Table

Lock Synchronization

F———=—=—=====n

Replacement Management

Buffer Pool (in DRAM)

v

Fig. 1. The diagram of a buffer manager.

sequence of accesses cannot retain their performance
advantages when pages in the same sequence have been
distributed into multiple partitions and cannot be identi-
fied as a sequence.

In summary, existing efforts on the research and devel-
opment of replacement algorithms in data processing sys-
tems have been focused on addressing the trade-offs
between high hit ratios of high-performance algorithms
and low-lock-contention implementation in systems.
Instead of making a trade-off between these two objec-
tives, our goal is to retain the performance advantages of
a replacement algorithm and provide an efficient frame-
work that makes the buffer pool with any replacement
algorithm (almost) lock-contention free. With a small
FIFO queue maintained for each worker thread, our
framework provides two key scalability supports, which
can be universally applied to any replacement algorithms.
One is dynamic batch execution, which reduces number of
conflicting lock requests by dynamically batching accesses
and amortizes lock contention overhead among a batch of
page accesses. The other one is prefetching, which reduces
the average lock-holding time by pre-loading necessary
data managed by the replacement algorithm into the
processor cache. We name the framework employing
Batching and Prefetching as BP-Wrapper. Our prototype
implementation of BP-Wrapper in PostgreSQL has deliv-
ered a nearly two-fold throughput increase by removing
almost all lock contention associated with buffer page
replacement for TPC-W-like and TPC-C-like workloads.

2 BACKGROUND ON BUFFER MANAGEMENT

In a data processing system, a buffer stores a collection of
buffer pages of fixed sizes and is shared by worker threads.
Data pages read from hard disks are cached in the buffer for
possible reuses. A buffer manager uses some data structures
such as linked lists and mapping tables (e.g., hash tables or
trees) to organize the metadata of the buffer pages, includ-
ing identifiers of the cached data pages, status, and pointers
to form linked lists and mapping tables.

Fig. 1 shows the diagram of a typical buffer manager.
When a thread requests a data page, it first checks whether
the page is cached in the buffer. The mapping table is used
to speed up the searching. If the page is found (a hit), the
operations described by a replacement algorithm are

2184

performed to update the data structures to reflect the page
access. For example, with LRU, the page is removed from
the LRU list and inserted back to the MRU end of the list.
Then the page is returned to complete the request. In
another scenario where the requested data page is not in the
buffer (a miss), the algorithm selects a victim page and
evicts the data in the page to make room for caching the
requested data page. When the data page is read into mem-
ory, the buffer page is moved to the MRU end of the list and
returned to satisfy the request.

The buffer manager is a central component frequently
used by all worker threads upon each page request. Simul-
taneous updates on its data structures have to be carried
out in a controlled fashion to maintain its data structure
integrity. Usually lock synchronization is used for this
purpose.

The use of locks to synchronize mapping table searching
and updating does not limit system scalability. The map-
ping table usually uses distributed locking or hierarchical
locking. At the same time, since the mapping table is not
changed upon hits, concurrent accesses are allowed upon
hits, and exclusive accesses are only required upon misses,
which are usually rare, compared to hits. Both factors above
help maintaining high scalability. For example, in a hash
table, the metadata of buffer pages are distributed into a
large number of small hash buckets, each of which is pro-
tected by a local read/write lock. Even when multiple
threads need to access the same bucket, they can search the
bucket concurrently. Only when searches fail (i.e., misses),
the exclusive accesses to a bucket are required.

We focus on the lock contention in the replacement man-
agement because (1) the replacement management may use
one lock for its entire data structure, which is a single point
of hot spot, and (2) most replacement algorithms require an
update of their data structures upon every page access.
Therefore, a thread has to acquire the lock for every page
request to exclusively conduct the replacement manage-
ment operations. The highly contented lock may dramati-
cally degrade system performance on a multicore/
multiprocessor system.

3 BP-WRAPPER

A lock contention problem can be analyzed with a queuing
model, in which requests are serviced in a critical section
sequentially. Lock contention happens when there is more
than one outstanding request, and the intensity of the con-
tention increases with the number of outstanding requests.
Based on the Little’s law, the average number of outstand-
ing requests is determined by two factors—the arrival rate
of requests and the average request service time. For the
lock contention problem in the replacement management,
these factors correspond to (1) the frequency in which a lock
is requested, and (2) the time to complete the required oper-
ations, including lock acquisition, replacement operations,
and lock release.

To reduce the two factors contributing to lock contention,
we design and integrate two methods in BP-Wrapper. Both
methods are independent of the replacement algorithm
itself, so that BP-Wrapper can be used directly with any
replacement algorithms to make them highly scalable.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.8, AUGUST 2016

Buffer Pages

Pages Requests
A A A o

e EEE B T
Buffer Manager P
YVY

| Mapping Table

L]

Recording Access Info

i1 1 Access Info
YVY
Lock Synchronization

Replacement Management

| Buffer Pool (in DRAM) |

v

Fig. 2. A buffer manager using the dynamic batching technique.

3.1 Reducing Lock Requests with Dynamic
Batching

We use a technique called dynamic batching to reduce the fre-
quency of lock requests. The basic idea is to acquire a lock
after receiving a set of page accesses. Once a lock is
acquired, access history about the set of the accesses is com-
mitted to the replacement’s data structure together. In this
way, the lock acquisition frequency is significantly reduced.
The rationale of the technique is that it is unnecessary to
carry out the history-recording operations on the data struc-
ture immediately after a page access, and we still ensure
that all the operations are conducted when a lock is held.

There are two unique properties of a replacement algo-
rithm that allow us to effectively apply the batching tech-
nique to significantly reduce the frequency of acquiring the
lock. First, postponing the operations on the data structure
in replacement algorithms, such as LRU stack or LIRS
stacks [16], will not keep the threads from accessing their
requested data from the buffer, and thus will not affect the
correctness of data processing. Second, in a system with mil-
lions of pages (e.g., a server used in our experiments has
64 GB memory, or eight million 8 KB pages), postponement
of the operations for recording a few (e.g., 64) recent page
accesses into the lock-protected data structure would cause
little impact on the performance of the replacement algo-
rithm. Furthermore, the order in which the batched opera-
tions are committed on the data structure does not change
with the adoption of the dynamic batching technique.

The dynamic batching technique is shown in Fig. 2. A
FIFO queue is set for each worker thread. When a thread
requests a page, the pointer to the page is recorded in the
FIFO queue of the thread. When the number of accesses
recorded in the queue reaches a pre-determined threshold,
named as batch threshold, the thread can start to request a
lock to commit the access history in the queue in a batching
fashion. After committing the history, the queue is emptied.
With the FIFO queue, a thread can access multiple pages
without requesting a lock for running the page replacement
algorithm.

In the batching technique, an alternative is to use one
common FIFO queue shared by multiple threads. However,

DING ETAL.: AGENERAL APPROACH TO SCALABLE BUFFER POOL MANAGEMENT

/* a FIFO queue of a thread =/
1 Page xQueue[S];

/% current queue position to receive next page x/
2 int Tail = 0;

/+ minimal number of pages before a committing =/
3 #define batch_threshold T

/+* multiple lists organizing free pages =*/
4 List Free_Page_Lists[N_FREE_LISTS];

/+ called to commit pages with the lock secured =/
5 wvoid commit_pages () {
6 For each page P in Queue[]
7 do what is specified by the replacement algorithm
upon a hit on P;
8 }

/* called upon a page hit x/
9 void replacement_for_page_hit (Page xthis_access) {
10 Queue[Tail] <-- this_access;
11 Tail = Tail + 1;
12 if (Tail >= batch_threshold) {
/* a non-blocking attempt to acquire lock =*/

13 trylock_outcome = TryLock();

14 if (trylock_outcome is a failure)

15 if(Tail < S) return; else Lock();
16 commit_pages () ;

17 UnLock () ;

18 Tail = 0;

19 }

20 }

/+ called upon a page miss =/
21 Page *replacement_for_page_miss(int Block_Index) {
22 List_Index = mod(Block_Index, N_FREE_LIST);
23 List = Free_Page_Lists[List_Index];
24 if List is not empty {

25 remove a free page P from List (atomic operation);

26 replacement_for_page_hit (P);

27 return P;

28 }

29 else {

30 Lock () ;

31 commit_pages () ;

32 do what is specified by the replacement algorithm
upon a miss on block Block_Index;

33 do what is specified by the replacement algorithm
to reduce buffer size by N_FREE_PAGES;

34 UnLock () ;

35 List <-- free pages released on line #33;

36 Tail = 0;

37 return the page selected on line #32;

38 }

39 }

Fig. 3. Pseudo-code for the replacement-algorithm-independent frame-
work that uses the dynamic batching technique.

we choose to use a private FIFO queue for each thread for
two reasons: 1) A private FIFO queue keeps the precise
order of the page accesses that occur in the corresponding
thread. Keeping the order is essential in some replacement
algorithms, such as SEQ [11], because they need the order-
ing information for detection of access patterns. 2) Record-
ing access information into private FIFO queues incurs the
least synchronization and coherence cost.

Fig. 3 presents the pseudo-code describing the dynamic
batching technique, including lock-related operations upon
page hits (replacement for page hit()) and page misses
(replacement_for page miss()). When there is a page hit,
the access is first recorded in the queue (Queuel[]). Then
there are two conditions under which the committing proce-
dure is activated and the actual replacement algorithm is
executed. One condition is that the queue is full. In this
case, a lock must be explicitly requested (Lock() on line 15).
The other condition is that there are sufficient number of
accesses in a queue (not fewer than batch_threshold) and the
lock is currently not held by any other threads (indicated by
the return value of TryLock()). To effectively reduce the

2185

frequency of lock requests, batch_threshold and the queue
size need to be reasonably large.

We use multiple lists (IN_FREE _LIST) to organize the
free pages in the buffer. When there is a page miss, one of
the lists is selected. If the list is not empty, a free page is
removed from the list to service the page miss. The
removal can be conducted with an atomic (lock-free) oper-
ation or with the protection of a local lock. Then, similar to
handling a hit, the access is also recorded in the queue (
replacement_for_page_hit() on line 26). If the list is empty,
in addition to committing the accesses and looking for a
victim page for the current page miss, the thread must also
get a batch of extra victim pages (F pages as described on
line 33) to replenish the free page list. Though these opera-
tions must be carried out when the thread is holding the
lock, with a reasonably large batch size (e.g., F = 64), the
frequency of the lock requests for handling misses can be
kept very low.

When the committing procedure is activated, the
replacement algorithm starts to carry out its delayed book-
keeping work on its lock-protected data structure for each
access recorded in the queue. If we take the LRU algorithm
as an example, the work is to move pages involved in
every access to the MRU end of the list. Note that the
pseudo-code actually describes a framework that uses the
dynamic batching technique to provide any algorithm with
efficient access to the data structures that have to be lock-
protected, because the description of the replacement algo-
rithm itself is independent of the dynamic batching tech-
nique. No design of an existing replacement algorithm,
which may have required significant effort for its develop-
ment, has to be modified to accommodate the technique to
reduce its lock overhead. This is in contrast to the work
transforming an algorithm to its CLOCK approximation
for reduced lock contention but with a compromised
replacement performance.

3.2 Reducing Locking Cost with Dynamic Batching
There are two major types of cost that affects the time used
for replacement management upon a buffer access—the
locking cost, which is incurred by acquiring and releasing
the lock, and the operation cost, which is incurred by updat-
ing the data structure for replacement management.
Replacement algorithms are usually designed to carry out
simple operations upon each page access. Thus, lock opera-
tions, especially lock acquisition, may dominate the total
cost of replacement management. The cost increases on lock
contention when a thread requests a lock which is currently
held by another thread, since it must wait for the current
lock holder to complete the operations in the critical section
and release the lock. The cost also increases when the sys-
tem scales up.

In the cloud, worker threads run on virtual CPUs in vir-
tual machines (VMs). Lock operations incur higher costs on
VMs than they do on physical machines. On VMs, spin
locks can dramatically reduce system throughput due to the
lock-holder preemption (LHP) problem. The LHP problem
is caused because, when a VCPU holding a spin lock is pre-
empted by the virtual machine monitor (VMM), other
VCPUs waiting for the lock have to spin for a long time to
get the lock. Thus, software usually uses block-based locks

2186
g 10 — T —T —— 100
.Eg F physical —+— | 95
';] B virtual ———
cy hit ratio —x— - 90 9
25 h 85 =
25 5
S E 80 o
[©
9 ﬁ 5=
g,g 70 T
©
55 65
32 o1 S 60
1 2 4 8 16 32 64
Batch Size

Fig. 4. Average lock holding time (including locking cost) per page
access and buffer hit ratio when batch size is varied from 1 to 64 on a
physical machine and a virtual machine. The workload is DBT-1 with a
128 MB buffer. The number of processors or VCPUs is 16.

on VMs. Usually, a thread waiting for a lock blocks itself
after it has been spinning for a brief time period. When there
is contention on a block-based lock, the lock waiter thread
and sometimes the corresponding VCPU may be blocked.
When the lock is released, they must be woken up and
scheduled before the thread can request the lock again. This
significantly increases the lock acquisition cost [17].

With the dynamic batching technique, a lock is requested
only when a thread has accumulated more accesses than the
batch threshold. Thus, the cost of acquiring a lock and
releasing the lock is effectively amortized. Meanwhile, the
dynamic batching technique uses TryLock() calls to reduce
the overhead incurred by spinning and/or blocking a
thread when the thread waits for a lock. TryLock() makes
an attempt to get a lock. If the lock is currently not held by
other threads, the caller thread of TryLock() gets the lock.
Otherwise, TryLock() fails without blocking the caller
thread, which can proceed and process the data it just reads
from the buffer pool. Though TryLock() helps reducing the
locking cost, we do not use it for every page access to keep
it from producing too many lock acquisition attempts and
reducing the chance for a TryLock() to succeed.

To illustrate the effectiveness of the dynamic batching
technique on reducing locking cost, we have conducted an
experiment on a 16-core physical machine and a 16-VCPU
virtual machine (detailed configuration is described in Sec-
tion 5) to measure the duration in which the lock is
requested and held by a thread (i.e., lock-holding time) for
processing a certain number (batch size) of page accesses
for the 2Q replacement algorithm [18]. We varied the batch
size from 1 to 64. Fig. 4 shows the lock holding time, which
includes the locking cost, averaged over the batch size. It is
evident that the time is much larger with smaller batch
sizes. Though the execution time in the critical section for
each access can hardly be reduced, the measurements
clearly show the effectiveness of the batching technique on
reducing locking cost. The experiment also shows that a
small number of batch size, such as 64, is sufficient to signif-
icantly reduce the locking cost, and the hit ratio does not
change with a such small batch size.

3.3 Reducing Operation Cost with Prefetching

When multiple accesses are committed together, the opera-
tion cost (i.e., the time spent on examining and updating
replacement management data structures) also accumulates
and increases proportionally. We wuse a prefetching

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.8, AUGUST 2016

Entering critical section (without prefetching)

[
process! | I :

process2

Entering critical section (with prefetching) .

prefetching D
proces |) a1 g
process! | MMMIINRL T @ r

cache miss stalls
computation
lock

a unlock

Fig. 5. Using prefetching to move the cache miss penalty out of the lock
holding period.

technique to reduce the cost. With the technique, we read
the data that would be accessed in the critical section by the
replacement management immediately before a lock is
requested. Taking the LRU algorithm as an example, we
pre-read the forward and/or backward pointers involved
in the movement of accessed pages to the MRU end of the
page list, as well as other fields of the lock data structure. A
side-effect of the read is that the data are loaded into the
processor’s cache and the cache misses otherwise experi-
enced by the critical section code can be removed. The
potential benefit of the technique is illustrated in Fig. 5.

The prefetching (read) operation on the shared data
without a lock does not compromise the integrity of the
shared data structure used in the replacement algorithm. It
only loads the data into processor cache, and does not mod-
ify any data. The prefetched data will be re-read in the criti-
cal section. If the data have been changed by other threads
before they are used by the thread that prefetches them,
hardware mechanism built in processors will automatically
invalidate the data from the cache or update the data with
the latest values to keep data coherent; thus re-reading will
return the correct values of the data.

4 COMBINING BP-WRAPPER AND OTHER
TECHNIQUES TO FURTHER REDUCE LOoCK
CONTENTION

With a conventional design of a replacement algorithm, the
operations on its data structures are carried out inside a crit-
ical section protected by a lock. BP-Wrapper does not
change the operations or the data structures. It only changes
when and how these operations are carried out. Thus, BP-
Wrapper can be combined with other techniques that
involve the changes to the data structures and/or opera-
tions of replacement algorithms, in order to further reduce
lock contention. In this section, we discuss the benefits and
methods to combine BP-Wrapper with other contention-
reducing techniques. We use two techniques as examples.
One technique uses distributed locks and the other uses
lock-free operations to handle accesses to hot pages.

The distributed lock approach divides a buffer pool into
multiple partitions, each of which has its own data structure
and is protected by a local lock. Since each partition can be
considered as a buffer pool with a small size, a natural
method to combine the distributed lock approach and BP-
Wrapper is to apply BP-Wrapper techniques to each parti-
tion in the same way as applying it to a buffer pool, as
shown in Fig. 6. The combination helps reducing the cost

DING ETAL.: AGENERAL APPROACH TO SCALABLE BUFFER POOL MANAGEMENT

Pages Requests

Buffer Pages Buffer Pages

v Buffer T | Misses v
Pages H
| v ;

od] e [

Free Page Lists
Recording Access Info Recording Access Info

i i i Access Info Access Info | i i
YVVY YV VY

Lock Synchronization

Lock Synchronization

Replacement Management| Replacement Management

Buffer Partition 1 Buffer Partition N

Fig. 6. The combination of BP-Wrapper and the distributed-lock
approach.

incurred by lock operations and the lock contention in hot
partitions. To use BP-Wrapper in a partition, a queue is cre-
ated in each worker thread to accumulate the accesses to the
partition. When the number of accesses accumulated in the
queue exceeds the batch threshold, the thread will try to
acquire the lock and commit the accesses. Depending on
whether the distributed-lock implementation of a replace-
ment algorithm selects victim pages locally or globally on
misses, the lists for free pages can be created dedicatedly for
each partition (when victim pages are selected locally) or
shared by all the partitions (when victim pages are selected
globally).

To reduce lock contention, another approach is to man-
age hot pages (frequently accessed) and cold pages (infre-
quently accessed) separately and handle hot pages with
lock-free operations. Since usually most accesses are to hot
pages and there is no need to request locks to handle them,
lock contention can be effectively reduced. For example, the
Oracle Universal Server divides a buffer into a hot region
and a cold region, and maintains the hot region as a FIFO
queue and the cold region as a conventional LRU queue [19].
Accesses to the pages in the hot region do not move the
page and thus do not need to acquire the lock. Accesses to
the pages in the cold region will move the pages into the hot
region while holding the lock. When the length of the hot
region exceeds a threshold, the page at the tail of the FIFO
queue are moved to the cold region when holding the lock.

The effectiveness of the above approach is determined by
the access patterns of the workloads. It is effective when the
accesses have strong temporal locality and the hot region is
large enough to host hot pages. When the accesses do not
have strong temporal locality (e.g., random accesses) or
when hot pages cannot be completely held in the hot region,
a substantial portion of accesses will hit the cold region. For
example, when looping through a table larger than the hot
region, all the accesses will hit the cold region. When the
accesses to the cold region cannot be effectively reduced,
severe lock contention still may be incurred by the lock
requests of these accesses.

The combination with BP-Wrapper addresses the above
problems. Fig. 7 shows the pseudo-code for handling page
hits (the pseudo-code for handling page misses is similar to
that in Fig. 3). In the combined approach, BP-Wrapper is uti-
lized to reduce the lock contention incurred by buffer
misses and the accesses to cold pages. It is enabled when

2187
1 Page xQueue([S];
2 int Tail = 0, Access_Count = 0;
3 bool bpwrapper_enabled = false;
4 $#define batch_threshold T
5 wvoid replacement_for_page_hit (Page *this_access) {
6 if bpwrapper_enabled
7 Access_Count = Access_Count + 1;
8 if this_access is in hot region
9 lock-free operations defined in the original
replacement algorithm;
10 else {
11 bpwrapper_enabled = true;
12 Queue[Tail] <-- this_access;
13 Tail = Tail + 1;
14 }
15 if (Access_Count >= batch_threshold) {
16 pre-read data to be used in the critical section
17 trylock_outcome = TryLock();
18 if (trylock_outcome is a failure)
19 if (Access_Count < S) return; else Lock();
20 commit_pages () ;
21 UnLock () ;
22 Tail = 0; Access_Count = 0;
23 bpwrapper_enabled = false;
24 }
25}

Fig. 7. Pseudo-code illustrating the combination of BP-Wrapper and the
approach of using lock-free operations for hot pages.

there is a miss or an access to the cold region (line 11). Then it
starts to accumulate accesses. Since the accesses to the hot
region does not change the data structure, they are not accu-
mulated in the queue, and are handled in the same way as
that with the original replacement algorithm (line 9). BP-
Wrapper counts the number of accesses since last time it com-
mits the accesses. If the number of accesses exceeds
batch_threshold, it tries to get the lock and commit the accumu-
lated accesses. After committing the accesses, BP-Wrapper is
disabled (line 22). Thus, in a worker thread, if most accesses
hit the hot region, BP-Wrapper is inactive. When more
accesses hit the cold region, BP-Wrapper becomes more
active. If all the accesses hit the cold region, BP-Wrapper
behaves exactly the same as that in Fig. 3.

BP-Wrapper can also be combined with clock-based
approximations, which show high scalability on page hits,
but may suffer lock contention on misses. In the combina-
tion, BP-Wrapper can be utilized for the operations process-
ing misses in a way similar to that shown in Fig. 3.

5 PERFORMANCE EVALUATION

We have implemented the proposed BP-Wrapper frame-
work on the postgreSQL database system version 8.2.3.
PostgreSQL used LRU and 2Q replacement algorithms in its
previous versions. Since version 8.1, postgreSQL adopted
the CLOCK replacement algorithm in order to improve the
scalability of its buffer management on multi-processor/
multicore systems. The CLOCK replacement algorithm
does not need a lock upon hit accesses. In this sense, it
reduces lock contention and provides high scalability. In
the experiments, we will compare the performance of BP-
Wrapper against the clock-based replacement management
implemented in postgreSQL.

We have also implemented an emulator, in which multi-
ple threads periodically access a shared buffer managed by
LRU replacement algorithm. In the emulator, we imple-
mented BP-Wrapper framework and the distributed-lock
method to coordinate concurrent accesses. In the emulation,
we can conveniently control the frequency in which buffer

2188

pages are accessed by the threads. With the emulator, we
want to compare the performance of BP-Wrapper against
the distributed-lock approach under different workloads.
We also show the performance advantages obtained
by combining BP-Wrapper with the distributed-lock
approach and by handling misses in a scalable way. We ran
the emulator on a physical machine and in a virtualized
environment.

5.1 Evaluation with PostgreSQL

Our evaluation with postgreSQL has two parts. In the first
part, we focus only on the scalability issue, and show that,
using BP-Wrapper a high-performance replacement algo-
rithm like 2Q can be as scalable as the CLOCK replacement
algorithm, in spite of their more complex data structures
and operations. In the experiments, we set the buffer large
enough to hold the entire working set of a benchmark and
pre-warm the buffer. Thus there are no misses incurred no
matter which replacement algorithm is used. There are two
reasons for us to choose this experiment setting. One is that
the performance differences among the postgreSQL systems
with different buffer management implementations result
completely from the differences in the scalability of their
implementations, rather than hit ratios. Then the better per-
formance we observe about an implementation, the more
scalable it is. The other reason is that the CLOCK implemen-
tation has optimal scalability when there are no misses and
should show the best performance when the system is
scaled up. Thus we can test the scalability of an implemen-
tation by measuring how close its performance is to that of
the CLOCK implementation.

In the second part of our evaluation, we vary the buffer
size and show the overall performance of a buffer with
improved hit ratio and scalability. There exist a variety of
replacement algorithms that can provide performance
much better than the CLOCK algorithm in terms of hit ratio,
but whose performance does not scale with access concur-
rency. While LRU can be transformed into the CLOCK algo-
rithm, many of other algorithms are very hard, if not
impossible, to be effectively transformed and thus are not
appropriate choices in an environment of high concurrency.
If no actions are taken to reduce lock contention, the perfor-
mance advantages of such a replacement algorithm can be
compromised in a large-scale system. Our techniques help
it retain its performance advantage by improving its
scalability.

5.1.1 Tested Systems and Implementation Issues

We first modified postgreSQL by replacing its CLOCK algo-
rithm with the 2Q algorithm, as a representative of the
replacement algorithms with high hit ratios [18]. This modi-
fied system, which was not optimized for lock contention, is
named as postgreSQL-2Q, or simply pg2Q, and serves as a
baseline system in the comparison. Then we enhanced the
baseline system with our BP-Wrapper framework. We
enabled the dynamic batching technique and the prefetch-
ing technique separately, and named the systems as
pgBatching and pgPref, respectively. We also enabled both
techniques together, and name the system as pgBat-Pre. The
stock postgreSQL is denoted as pgClock. These tested

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.8, AUGUST 2016

TABLE 1
The System Names, Replacement Algorithms, and Scalability
Enhancements of the Five Tested postgreSQL Systems

Name Replacement Enhancement

pgClock Clock None

rg2Q 2Q None

pgBatching 2Q Dynamic Batching

pgPref 2Q Prefetching

pgBat-Pre 2Q Dynamic Batching and Prefetching

systems are summarized in Table 1. We also implemented
systems by replacing the 2Q algorithm of the last four sys-
tems in the table with the LIRS [16] and MQ [20] replace-
ment algorithms, respectively. We did not observe
significant performance differences between the experi-
ments with these algorithms and those with their 2Q coun-
terparts, so we do not show their results.

The implementation of batching and prefetching requires
only limited modification of the baseline system. We added
fewer than 300 lines of new code. Most modifications are
made in a single file (src/backend/storage/buffer/freelist.
¢), which contains the source code of the replacement algo-
rithm. In the implementation, each entry in the FIFO queues
consists of two fields: one is a pointer to the meta-data of a
buffer page (BufferDesc structure), and the other stores Buf-
ferTag, which is used to identify a data page. Before an
entry is committed, we first compare the BufferTag in the
entry against the BufferTag in the meta-data of the buffer
page to ensure that the data page has not been invalidated
or evicted. If the buffer still caches the valid data page, we
run replacement-related operations to update the data
structure to reflect the page access. In the 2Q algorithm, if
the page is in Am list, it is moved to the MRU end of the list.
In the LIRS algorithm, it is moved on the LIR or HIR lists. In
the MQ algorithm, it is moved among multiple FIFO
queues.

5.1.2 Experiment Setup and Workloads

We carried out our experiments on both a traditional uni-
core SMP platform and a multi-core platform. One platform
is an SGI Altix 350 SMP server with 16 1.4 GHz Intel Ita-
nium 2 processors (16 cores in total) and 64 GB memory.
The storage is a 2 TB LUN on an IBM FAStT600 turbo stor-
age subsystem. The LUN consists of 9 250 GB SATA disks
in an 8+P RAID5 configuration. Operating system is Red
Hat Enterprise Linux AS release 3 with SGI ProPack 3 SP6.
The other platform is a DELL PowerEdge 1900 server,
which has two 2.66 GHz quad-core Xeon X5355 processors
(eight cores in total). The memory size is 16 GB. The storage
is a RAIDS5 array with 5 15K RPM SCSI disks. Operating sys-
tem is Red Hat Enterprise Linux AS release 5.

We tested the systems with DBT-1 and DBT-2 from
OSDL database test suite [21], and a synthetic benchmark
TableScan. DBT-1 simulates the activities of web users who
browse and order items from an on-line bookstore. It gener-
ates a database workload with the same characteristics as
that in the TPC-W benchmark specification version 1.7 [22].
The database generated for the experiments includes infor-
mation on 100,000 items and 2.9 million customers. DBT-2

DING ETAL.: AGENERAL APPROACH TO SCALABLE BUFFER POOL MANAGEMENT 2189
DBT-1 DBT-2 TableScan
100 T 900 T T
700
T kel °
5 g 5
] § 500 - 8 10}
"’) g e]
©) ©
o o o
@ 2 300 o
o g i s o
g s Clock —%— o pgClock
2 pBg(ilgck %De 3 pnggat-Pre - 2 pgBat-Pre -- [-}-
g SBatching 7 - g poBatching = - g pgBatching -~
a puPrefeching - x F pgPrefetching ---x - F pgPrefetching ---x--
0g2Q pg2Q 4 pg2Q 4
1 | | | 100 | | 1 | | |
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Number of Cores Number of Cores Number of Cores
1.2 140 25
1l i 120 + .
~ 2 100 .- pg2Qf . .
? s E B pgPref ---x--
T 08f p%ZQf ° 1 % 3 T pgBatching = -
£ pgPref ---x - S g ol] E 15F pgBatPre - [} S
£ pgBatching -~ =~ A = pg2Q -4 = pgClock —%¢—
g 06 pgBatPre [} S pgPref -+ y 8 '
5 pyClock —X— X 2 60| pgBatching = - 4 5
& 04 T . WL~ J g pgBat-Pre - []- X a
¢ g wf paClock —— 8
02t . 20 ,
0 Il Il Il 0 0 Il Il Il
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Number of Cores Number of Cores Number of Cores
100000 T 100000 T - 1e+06
P - e 100000
L It S 4 . F A A
g ' s § 10000 | * 1 s R
€ Lx77 pg2Q s €) pgeQ -4 T 10000 | e i
2 10004 el i ¢ ook pPref % - 2 pz%fgf e
Q . pgBatching ---=-- Q pgBatching = -- E 5] e ing = i
o Bra . 1. o = (¢} 1000 pgBatching --=
X 100k pgBat-Pre - [} 1 % pgBat-Pre - [} 4% poBat-Pre - [1-
S S a S of 1
° ° 100 e -H 9
o 10 F 4 9 NP 5 o e 0
] T b} B) 10F .- = i
< e . 2 0k 1 2) o
N -4 (1F 7
- -
01 Il Il 1 Il 01 Il Il
2 4 8 16 2 4 8 16 2 4 8 16
Number of Cores Number of Cores Number of Cores

Fig. 8. Throughput, average response time, and average lock contention of five postgreSQL systems with workloads DBT-1, DBT-2, and TableScan
on SGI Altix 350 when the number of cores increases from 1 to 16. We do not show the average lock contention for pgClock or when one core is

used because the values are too small to fit in the graphs.

derives from the TPC-C specification version 5.0 [23] and
provides an on-line transaction processing (OLTP) work-
load. In the experiments, we set the number of warehouses
to 50. TableScan simulates sequential scan, one of most com-
monly used database operations. It makes concurrent
queries, each of which scans an entire table. Each table con-
sists of 800,000 rows, and each row is 128 bytes long.

5.1.3 Experiments on Scalability

In the experiments, we evaluate the scalability of the five
different postgreSQL systems under the three workloads.
We increase the numbers of cores used by postgreSQL from
1 to 16 on the Altix 350 server and from 1 to 8 on the Power-
Edge 1900 server by setting CPU affinity masks of its
back-end processes, which are threads in charge of handling
transactions in postgreSQL. Because a postgreSQL back-end
process blocks itself and yields the core when it fails to get a
lock due to contention, we make the system over-committed
and the cores always busy by keeping more active post-
greSQL back-end processes than the number of cores used

in each test. In the experiments, we set the FIFO queue size
to 64, and batch threshold to 32 for pgBatching and pgBat-
Pre. The number of free page lists is 64 and pages are
reclaimed in batches of size 64.

To eliminate page misses during the running of the work-
loads, we adjust the shared buffer size to ensure that the
entire working sets are always held in the memory. We col-
lect the throughput (number of transactions per second) and
the average response time of the transactions. For systems
pg2Q, pgBatching, pgPref, and pgBat-Pre, we also calculate
average lock contention. A lock contention happens when a
lock request cannot be immediately satisfied and a process
context switch occurs. During the running of a workload, the
average lock contention is defined as the number of lock con-
tentions per million page accesses. We show throughput,
average response time, and average lock contention for the
three workloads on the different systems in Figs. 8and 9 .

When the number of cores is increased, as we expect, the
throughput of pgClock increases almost linearly with it, and
its average response time increases moderately with

2190 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.8, AUGUST 2016
DBT-1 DBT-2 TableScan
100 11 3000 100
° o 2000 pgClock —%— E °
5 5 pgBat-Pre - [-}- 0 §
g 9 pgBatching ——=-- s [BT
n 0 pgPrefetching ---x-- 2]
g‘_) g:) 1000 pg2Q -4 E’
» o | T ke o 10
_S pgClock —%— _5 _S pgClock —%¢—
5 pgBat-Pre - [-}- B 500 | 3 pgBat-Pre - [-}-
@ Batching -——#-- @ @ f
2 £9 ng @ @ pgBatching &~
& pgPrefetching T & & pgPrefetching - --
= Pg2Q = D = pg2Q -
10 L 200 L L 1 L L
1 2 4 8 1 2 4 8 1 2 4 8
Number of Cores Number of Cores Number of Cores
05 25 04
035 F 0g2Q 4 g
04 h = 20 - pg2Q -4 K 03| pgPref ---x--]
o E 2 pgPref ---x-- o pgBatching --=--
T T pgBatching = - T gl pgBat-Pre -- [}- |
E 03f & 1 € 5¢ pgBat-Pre - [-}- 1 & 7 pgClock
PR - g F pgClock —%— o X
a) x 2
S 02 1 5 - &
@ pg2Q -4 a @
S pgPref ---x-- 2 &
pgBatching ---#-- ¢
0.1} pgBat-Pre - [-}- 1
pgClock —X— 0.05 E
o Il Il 0 Il Il 0 Il Il
1 2 4 8 1 2 4 8 1 2 4 8
Number of Cores Number of Cores Number of Cores
100000 100000 1e+06
o 10000 F o 1 . . - 100000 —
5 e 5 5 &
Z Z 10000 k£ E Z K
£ 1000 F pg2Q -4 {1 g £ 10000 4
c c pg2Q 4 c
Q pgPref ---x-- Q Pref ---%-- Q
% 100 prgtcthl!‘ng E} 1 % 1000 | praﬁghing - 13 1000 | pgl%ZrSf i]
§ pgeat-rre § pgBat-Pre - [}- § pgBatching = --
° ° ° pgBat-Pre - [-}-
2 10+ T 18 o ;
: B § IS o Y | I i
< e < B <
1T =R — e 10 F e LR 7
oqB - I 10[} -) . .{_, P ‘
2 4 8 2 4 8 2 4 8
Number of Cores Number of Cores Number of Cores

Fig. 9. Throughput, average response time, and average lock contention of five postgreSQL systems with workloads DBT-1, DBT-2, and TableScan
on DELL PowerEdge 1900 when number of cores increases from 1 to 8. We do not show the average lock contention for pgClock or when only one

core is used because the values are too small to fit in the graphs.

workloads DBT-1 and TableScan. However, with workload
DBT-2, the throughput of pgClock increases sub-linearly and
the average response time increases significantly. This is
because the contention on other locks, such as the one to
serialize Write-Ahead-Logging activities, becomes intensive
with the growing number of cores.

System pg2(Q) can maintain its scalability only when the
number of cores is less than 4. On the Altix 350, its through-
put saturates when the number of cores is greater than 8 for
DBT-1 and TableScan, and 4 for DBT-2, respectively, and the
average response time increases significantly when addi-
tional cores are added. For workload TableScan, its through-
put even drops by 12.7 percent when the number of cores is
increased from 8 to 16. When 16 cores are used, its through-
puts are 61.1, 56.5, and 66.5 percent less than those of
pgClock, and its average response times are 1.6, 1.5, and 1.8
times longer than those of pgClock for workloads DBT-1,
DBT-2, and TableScan, respectively. By examining the plots
of average lock contentions, we see that pg2Q has the high-
est number of contentions per million page accesses and the

number increases rapidly with the number of cores (Note
that the numbers are shown in logarithmic scale). Therefore,
these experiments indicate that the lock contention is a
major culprit of the system performance degradation.

We observe a similar trend on the PowerEdge 1900
server. The throughput of TableScan saturates even earlier,
or when the number of cores reaches 4. The average lock
contention numbers indicate that lock contention is more
intensive on PowerEdge 1900 than that on the Altix 350,
especially with benchmark TableScan. When eight cores are
used, the average lock contentions of pg2Q on the Power-
Edge 1900 are 74.4, 18.5, and 270.2 percent more than those
on the Altix 350 for the three workloads, respectively.
Thus, lock contention causes more performance degrada-
tion on the PowerEdge 1900 than on the Altix 350. With 8
cores, the throughputs of system pg2Q are 37.9, 52.1, and
57.2 percent less than those of pgClock on the PowerEdge
1900 system, while the throughputs of system pg2Q are
30.1, 51.5, and 32.6 percent less than those of pgClock on
the Altix 350 system. Similarly, with system pg2Q, lock

DING ETAL.: AGENERAL APPROACH TO SCALABLE BUFFER POOL MANAGEMENT

contention increases the average response times of the
workloads by larger percentages on the PowerEdge 1900
than it does on the Altix 350.

Lock contention on the PowerEdge 1900 server is more
intensive because the Xeon X5355 processors in the Power-
Edge 1900 have data prefetching modules, which can speed
up sequential memory accesses by fetching data specula-
tively to their last-level caches. However, Itanium 2 process-
ors do not have such hardware support. Thus, on the
PowerEdge 1900 server, computation outside of the critical
section, which accesses memory sequentially, is accelerated
by the prefetching modules, while the operations of replace-
ment management protected by the lock can hardly be
accelerated by the prefetching modules because they usu-
ally access memory randomly. Therefore, a larger propor-
tion of time is spent on the critical section on the
PowerEdge 1900 server than that on the Altix 350. This
makes lock contention more intensive on the PowerEdge
1900 server.

Compared with pg2Q, pgPref reduces the average lock
contention by 33.7 to 82.6 percent on the Altix 350 server
and by 20.8 to 87.5 percent on the PowerEdge 1900 for the
workloads. This is because prefetching reduces the lock
holding time and accordingly increases the chance to get a
free lock. As a result, the throughputs of pgPref are larger
than those of pg2Q by up to 26.1 percent and the average
response times of pgPref are smaller than those of pg2Q by
up to 25.2 percent. We note that prefetching is more effec-
tive on the Altix 350 than on the PowerEdge 1900. This is
because long pipelines and deep out-of-order execution
capability of X5355 processors increase their ability to toler-
ate cache misses. Based on this observation, we expect that
the prefetching technique would be more effective in reduc-
ing lock contention on larger-scale systems with more cores.

The scalability of system pgPref is as poor as that of pg2Q,
because prefetching individually cannot reduce lock conten-
tion sufficiently, especially when more than four cores are
used, as shown in the plots of average lock contention. For
example, when two cores are used on the Altix 350 server, it
reduces average contention by 82.4 percent over pg2Q on
average for the three workloads. When more cores are used,
it reduces the contention by smaller percentages, 60.2 per-
cent for four cores, 46.3 percent for eight cores, and 38.6 per-
cent for 16 cores. As we know, the prefetching technique in
pgPref reduces lock contention and thus improves system
throughput. However, with an increased throughput, the
lock is requested more frequently, which offsets the effect of
reduced lock contention. This phenomenon becomes even
more apparent with a larger number of cores.

System pgBatching demonstrates almost the same scal-
ability as that of pgClock, the optimal algorithm in scalability
when there are not any misses. Its throughput curves and
average response time curves overlap with those of pgClock
very well when the number of cores is scaled up. As shown
in the figures for average lock contention, system pgBatching
improves scalability through reducing lock contention by a
factor from 197 to over 9,000. We notice that average lock
contention in pgBatching with 16 cores is even much lower
than that of pgPref and pg2Q with two cores.

Using both dynamic batching and prefetching techni-
ques, system pgBat-Pre can further reduce lock contention

2191

compared with pgBatching. However, the reduced lock con-
tention is not translated into higher throughput or lower
average response time, as shown in the figures, because the
average lock contention of pgBatching is already very small,
and the impact on performance would diminish with the
further decrease of lock contention. When 16 cores are
used, both pgBatching and pgBat-Pre have around or fewer
than 400 lock contentions in a million page accesses. When
the number of cores keeps increasing, the lock contention
would be more serious and further reduction of lock
contention by pgBat-Pre would help improve system
performance.

Under the above settings, we have also performed
sensitivity study on two key parameters—the size of the
FIFO queue and the batch threshold. The results can be
found in [24].

5.1.4 Overall Performance

We have evaluated the scalability of the systems by setting
the buffer size equal to the data sizes of the workloads, and
have shown that lock contention can be reduced signifi-
cantly by combining the batching and prefetching techni-
ques. However, buffer sizes are usually much smaller than
data sizes in real systems. Thus, the ability of the systems to
reduce costly I/O operations by improving hit ratios is also
critical to the overall performance. In this section, we evalu-
ate the overall performance of three systems pgClock, pg2Q,
and pgBat-Pre on the PowerEdge 1900 using eight cores
when we change the buffer size from 32 to 1,024 MB, and let
the systems issue direct I/O requests to bypass the operat-
ing system buffer cache. As the data set sizes of DBT-1 and
DBT-2 are 6.8 and 5.6 GB respectively, not all the accesses
can be satisfied from the buffer.

Fig. 10 shows the changes of hit-ratio and throughput in
the three systems. When memory size is small (less than
256 MB), the systems are I/O bound. Systems pg2Q and
pgBat-Pre produce higher throughputs than system pgClock
by maintaining higher hit ratios. The performance advan-
tages of these two systems over pgClock increase with the
number of cores, as shown on the last row in Fig. 10 when
the memory size is 128 MB. This is because, when more
cores are used, the space in the buffer pool is more inten-
sively contended and the replacement algorithm plays an
increasingly important role to minimize I/O operations.
The figure also shows that the throughput with pg2Q is
slightly lower that with pgBat-Pre when the number of
cores is increased to 4. This indicates that lock contention
may still happen and can degrade system throughput in
this scenario, though I/O throughput is the major perfor-
mance factor.

As the memory size becomes larger, the overall perfor-
mance of a system is increasingly determined by its scalabil-
ity and the advantage of system pg2(Q in terms of hit ratio
has less impact. When the buffer size reaches 512 MB, its
overall performance drops below that of system pgClock.
Meanwhile, system pgBat-Pref retains its performance
advantage with its improved scalability. We also notice
that, when the memory size increases, the hit ratio curves of
pg2Q and pgBat-Pref overlap very well. This indicates that
our techniques do not hurt hit ratios.

2192

DBT-1 DBT-2

3]

pgClock —*—
pgeQ s |
pgBat-Pre -~ £1--

pgClock —*—
pgeQ b |
pgBat-Pre -~ £1--

Hit Ratio(%)
o
=z

Hit Ratio(%)
2y

0 L 1 1 1 1 J 0 1 1 1 1
32 64 128 256 512 1024 2 64 128 256 512 1024
Buffer Size(MB) Buffer Size(MB)
16 T T 14 T T

LB
141 = 1 12+ g 4% 1

120 -

08 B
06 [a q

04 pg2Q & B
pgBat-Pre -3
pgClock ——

Normalized Throughtput
b=
&
Normalized Throughput

04 pg2Q &
pgBat-Pre -3
02 pgClock —— 1 02

0 I I I I 0 I I I I
32 64 128 256 512 1024 32 64 128 256 512 1024

Buffer Size(MB) Buffer Size(MB)
16 T T 14 T T

4 ey .
25 R T
-

1

08 -
08
06
06 [
04

04

Normalized Throughtput
Normalized Throughtput

P20 -
pgBat-Pre -- £1-- 1 02+
pgClock ——
0 L L 0 L L
1 2 4 8 1 2 4 8
Number of Cores Number of Cores

02+ pgClock ——

Fig. 10. Hit ratios and normalized throughputs of three postgreSQL sys-
tems (pgClock, pg2Q, and pgBat-Pre) with workloads DBT-1 and DBT-2
on the PowerEdge 1900 when the number of cores is 8 (the first two
rows), and the normalized throughputs of these systems when the num-
ber of cores is increased from 1 to 8 and the buffer pool size is 128 MB
(the third row). Throughputs are normalized against those of the pgClock
system.

5.2 Evaluation with a Buffer Emulator

We have tested the performance of BP-Wrapper under data-
base workloads and compared it against the replacement
management with a clock-based approximation. In this sec-
tion, we compare it against another major approach to
achieving scalable buffer management—distributed locks.
We have implemented an emulator of buffer management,
in which 16 threads running on 16 cores share a buffer pool.
In a loop, each thread repeatedly accesses the buffer pool
for a data page, performs necessary replacement manage-
ment operations, and spends a period of random length on
computation. We choose emulation because we want to con-
trol the intensity of lock contention by adjusting the average
length of computation between consecutive buffer accesses.
The data pages accessed by the thread are randomly chosen.
The number of accesses to the data pages follows a Zipfian
distribution. As we want to conduct some of the experi-
ments on a virtual machine, we use mutex for lock synchro-
nization in the emulator.

The buffer pool is managed with the LRU replacement
algorithm. We choose the LRU replacement algorithm
because it is widely used and the distributed-lock approach
can be used to reduce its lock contention while maintaining
similar hit ratio. With the distributed lock approach, the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,

VOL.27, NO.8, AUGUST 2016

1.2 : . . |
"""" B 4]
32 1 - pre T
é_ m- x’/ %
2 08f |
o s
£ L
3 °F 1
5 bufBatching ---4---
g 04T bufBat-Pref -- £1- - i
S bufDistLock
Z 02 bufBP-DistLock ---a--- |
. bufBP-prim -
0 ! . , .
1 2 3 4 5 s

Computation (us)

Fig. 11. Normalized throughputs of bufBatching, bufBat-Pref, bufBP-
DistLock, and bufBP-prim (relative to those of bufDistLock) when the
average computation time is varied from 1 to 6us.

buffer pool is divided into 64 partitions. (On our system,
dividing the buffer pool into more partitions cannot further
improve performance.) The buffer pages in each partition is
organized into an LRU list and is protected by a local lock.
For brevity, we name the buffer pool under the original
LRU replacement management without any techniques to
reduce lock contention bufLRU, and name the buffer pool
using the distributed-lock approach bufDistLock. When the
dynamic batching technique is used, the buffer pool is
named bufBatching. With fully-fledged BP-Wrapper frame-
work, the buffer pool is named bufBat-Pref.

We emulate a buffer pool with one million buffer pages.
The number of data pages is ten million, and the hit ratio is
roughly 90 percent. Similar to the research in [14], we per-
form the experiments using a RAM disk to hold the data
pages. Thus, the performance is not affected by I/O
overhead.

We use system throughput as the performance metric,
which measures the total number of accesses to the buffer
pool per second. We collect the throughput of bufDistLock,
bufBatching, and bufBat-Pref when we vary the average
length of computation from 1 to 6 us to adjust the intensity
of lock contention. Considering a memory access may take
about 100 ns, 1 us is a very short time period for the compu-
tation between consecutive buffer page accesses. It incurs
intensive lock contention such that the system throughput
is significantly reduced—based on our experiment, with a
1us average computation time, the throughput of bufLRU is
15x lower than that of bufDistLock or bufBat-Pref. Since the
system throughputs change dramatically when the average
length of computation time is varied from 1 to 6 us, to
clearly show the performance difference, we normalize the
throughputs of bufBatching and bufBat-Pref against that of
bufDistLock with the same average length of computation
time. We show the normalized throughputs in Fig. 11.

Generally, BP-Wrapper performs similarly or slightly
better than the distributed-lock approach, except when the
average computation time is very short. BP-Wrapper has
better performance because the dynamic batching technique
significantly reduces the number of locking operations,
including lock acquisitions and releases, which are costly.
With BP-Wrapper, a thread acquires a lock for a batch of
accesses. With the distributed-lock approach, however, a
thread has to acquire a lock for each page access. The figure
also shows that, in BP-Wrapper, the prefetching technique

DING ETAL.: AGENERAL APPROACH TO SCALABLE BUFFER POOL MANAGEMENT

1.6 : . . .
1.4 F |
2 qom..
2 12l e |
2 h ---""'“-----..-B.:__,____‘___' e
3 1 B
= X
£
Foosfh . |
GN->
= 0.6 |
£ 04 - bufBat-Pref -- -E1- -
2 bufDistLock
0.2 | bufBP-DistLock ---#--- |
' bufBP-prim -
0 L I L)
1 2 3 4 5 6

Computation (us)

Fig. 12. Normalized throughputs of bufBat-Pref, bufBP-DistLock, and
bufBP-prim (relative to those of bufDistLock) on a virtualized platform
when the average computation time is varied from 1 to 6us.

can effectively reduce lock contention and increase through-
put when lock contention is intensive and the dynamic
batching technique alone cannot reduce the lock contention
to a desirable level. For example, when the average length
of computation is 1us, the throughput of bufBat-Pref is
almost 2x as high as that of bufBatching. When the average
computation time is 1us, the throughput of bufBat-Pref is 7
percent lower than that of bufDistLock. This is because, with
the distributed-lock approach, the threads can update the
data structures for different buffer pool partitions in parallel.

Fig. 11 also shows the potential to combine BP-Wrap-
per and the distributed-lock approach by using the BP-
Wrapper framework in each buffer pool partition. When
the average length of computation is 1us, the combina-
tion (bufBP-DistLock) can increase system throughput by
12 percent over that achieved by the distributed-lock
approach (i.e., bufDistLock).

A preliminary version of BP-Wrapper [24] needs to
acquire a lock on each buffer miss to reclaim a page, and
thus has low scalability when handling misses. On a system
with hard disk storage, since the system is I/O-bound even
when the hit ratio is high (e.g., 80 percent), the scalability
problem with handling misses may not be evident. How-
ever, since storage class memory (e.g., SSDs) may gradually
replace hard disks in data processing systems, misses will
become less costly on future systems, and the scalability of
handling misses will become an increasingly important per-
formance factor. To illustrate this, Fig. 11 also shows the
performance of the preliminary version of BP-Wrapper
(denoted by bufBP-prim). With bufBP-prim, the poor scalabil-
ity with handling misses can significant reduce system
throughput (e.g., 29 percent, relative to that of bufBat-Pref,
when the average length of computation is 1u.s). With longer
computation time, misses are less frequent. Though the speed
gap between bufBP-prim and bufBat-Pref reduces, the through-
put with bufBP-prim is still lower than that with bufBat-Pref.

To test the performance of BP-Wrapper in the cloud, we
perform the emulation on a virtual machine with 16 virtual
CPUs. The virtual machine is co-located with another vir-
tual machine on the same physical machine with 16 physical
cores. We run streamcluster in the second virtual machine,
which is a benchmark from PARSEC suite [25]. Fig. 12
shows the throughput of bufBP-prim, bufBat-Pref, and bufBP-
DistLock when we vary the average computation time from
lus to 6us. The throughput is normalized to that of

2193

T T T
bufBP-DistLock —><—
bufBat-Pref ---m---
bufDistLock -- £1- -
bufBP-prim ---

1000

Thousand Accesses Per Second

100 ' ' '

Number of Threads

Fig. 13. Throughputs of bufBP-Distlock, bufBat-Pref, bufDistLock, and
bufBP-prim when they handle misses.

bufDistLock. As shown in the figure, BP-Wrapper demon-
strates larger performance advantage on the virtual
machine than it does on a physical machine. When the aver-
age computation time is 1us, the throughput of bufBat-Pref
is 21 percent higher than that of bufDistLock on the VM. This
is because BP-Wrapper significantly reduces the frequency
in which lock is requested and lock acquisition is more
costly on virtual machines than it does on physical
machines. The performance advantage diminishes gradu-
ally when average computation time increases. This is
because, with longer computation periods, lock contention
become less intensive and there is less opportunity for BP-
Wrapper to improve performance. The similar trend is also
observed for bufBP-DistBlock. Due to the high cost of lock
acquisitions on virtual machines, the performance gap
between bufBP-prim and bufBat-Pref or buf BP-DistLock is wider
than that on the physical machine.

The experiments above test the overall performance
when handling both hits and misses. To test the scalability
of BP-Wrapper when it handles misses, we have modified
the threads in the emulator such that they always access
new pages. Thus, all the accesses are cold misses, no mat-
ter what the replacement algorithm is. The average com-
putation time is 3us. We vary the number of threads from
1 to 16 and collect the throughputs (numbers of accesses
per second), which are as shown in Fig. 13. The perfor-
mance of bufBP-prim saturates with four threads and then
declines with more threads. The other three systems show
scalable performance. The system bufDistLock is scalable
since pages can be reclaimed from different partitions in par-
allel. Systems bufBat-Pref and bufBP-DistLock show slightly
better performance than bufDistLock since lock acquisitions
are less frequently with BP-Wrapper than with bufDistLock.

6 RELATED WORK

Some preliminary results of this work have been presented
in [24]. The closest related work includes the adaption of
the techniques in BP-Wrapper in multi-level distributed
caches [26], and in infinispan key/value data grid [27]. The
efforts addressing performance degradation due to lock
contention have been made actively in the system and data-
base community. In general, lock contention can be reduced
by applying the following different approaches.

6.1 Distributed Locks
Reducing lock granularity is a commonly used method for
decreasing lock contention. Replacing a globally shared lock

2194

with multiple fine-grained locks can remove the single point
of contention. Oracle Universal Server [19], ADABAS [28],
Mr.LRU replacement algorithm [29], and set-associative
page cache [14] use multiple lists to manage their buffers.
Each list is protected by a separate lock. When a new page
enters the buffer, Oracle Universal Server inserts the page
into the first unlocked list, and ADABAS chooses a list in a
round-robin manner. They both allow a page to be evicted
from one list and inserted into another list later. So, the
approach is not applicable to many replacement algorithms,
such as 2Q [18] and LIRS [16]. To address the problem, Mr.
LRU and set-associative page cache choose a list by hashing,
which guarantees that a page enters the same list every time
itis loaded from the disk.

The distributed-lock approaches, including the one used
in Mr.LRU and set-associative page cache, have serious
drawbacks. First, they cannot be used to implement replace-
ment algorithms that need to detect access sequences, such
as SEQ [11], because pages in the same sequence may be dis-
tributed into multiple lists. Second, though pages can be
evenly distributed into multiple lists, accesses to buffer
pages may not. Lists with hot pages, such as top-level index
pages or pages in a small table for a parallel join, may still
suffer from lock contention. Third, to reduce contention a
buffer has to be partitioned into a large number of lists.
Each list has a much smaller size than the buffer size. With
small lists, the pages that need a special protection from
eviction, such as dirty pages and index pages, may be
evicted prematurely from the buffer. In contrast, our frame-
work is able to implement all replacement algorithms with-
out partitioning the buffer.

6.2 Reducing Lock Holding Time

The longer the lock holding time, the more serious the con-
tention would be. Thus, reducing lock holding time is
another effective approach to reduce lock contention.

The TSTE (two stage transaction execution) strategy used
in Charm [30] separates disk I/O and lock acquisition into
two mutually exclusive stages and ensures that all the data
pages a transaction needs are already in local memory
before they are locked. In this method, TSTE reduces the
delay caused by lock contention in the disk-resident transac-
tion processing system to the same level as that experienced
by memory-resident transaction systems.

In Linux kernel 2.4, the scheduler traverses the task struc-
tures in a global queue protected by a spin lock to select a
task to run. Paper [31] reports that the contention on the
spin lock can be very serious when the traversal time is
lengthened by unnecessary conflict misses in the hardware
cache during the traverse. By carefully laying out task struc-
tures in memory, most reducing conflict misses can be
avoided and lock contention can be greatly reduced because
the traversal takes much less time. In contrast, our frame-
work uses prefetch to reduce lock holding time by reducing
hardware cache misses when running the replacement algo-
rithm and by executing a replacement algorithm in a batch
mode for multiple accesses.

6.3 Wait-Free Algorithms and Transactional Memory

As lock synchronization can cause issues like performance
degradation and priority = inversion, wait-free

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.8, AUGUST 2016

synchronization [32] addresses these issues by guaranteeing
that each thread completes the operation of accessing the
shared resource in a limited number of steps regardless of
the execution progress of other threads. However, programs
adopting this technique are difficult to design, and it is pos-
sible that an algorithm does not have its wait-free imple-
mentation. Moreover, wait-free synchronization requires
atomic primitives supported by hardware. For example, the
wait-free implementation of a double-ended queue requires
Double Compare-And-Swap (DCAS) primitive, which is
not available on most processors. A lock-free implementa-
tion of the GCLOCK page replacement algorithm has been
developped to reduce the lock contention of the algorithm
on page misses [33]. But the implementation is only for a
specific algorithm. We have not seen a wait-free implemen-
tation of an advanced replacement algorithm.

Transactional memory is another approach to address the
issue of lock contention. In a transactional memory, a trans-
action is considered as a series of operations on the shared
resources. The atomicity of its execution is guaranteed by
either hardware [34] or software [35] that implements trans-
actional memory. It improves system scalability through
enabling optimistic concurrency control [36], [37]. While
hardware transactional memory has not been available, there
are various software transactional memory (STM) imple-
mentations. Performance comparisons between STM and
lock synchronization show that STM outperforms locks
when the shared resources are infrequently changed [38].
Because data structures in replacement algorithms can be
changed frequently (upon each page access), transactional
memory can hardly improve the scalability of replacement
algorithms. In contrast, both of the batching and the prefetch-
ing techniques in BP-Wrapper can be easily implemented in
software and do not require special hardware support.

7 CONCLUSION

In this paper, we address the scalability issue due to lock
contention in the implementation of replacement algorithms
for the management of buffer cache. We proposed an effi-
cient and scalable framework, BP-wrapper, in which the
dynamic batching and the prefetching techniques can be
used with any replacement algorithms without modification
of the algorithms. Without algorithm modification, the per-
formance advantage of the original replacement algorithms
will not be compromised, and human effort is also mini-
mized. The only cost of the framework is a small FIFO
queue for each worker thread, which keeps the thread’s
most recent access information.

We have implemented the framework and tested it with
a TPC-W-like workload, a TPC-C-like workload, and syn-
thetic workloads. Our performance evaluation shows that
BP-Wrapper can increase system throughput by nearly two-
fold compared to the implementation of an unmodified
replacement algorithm, such as LRU and 2Q, and achieve a
scalability as good as the one that uses distributed locks or
that does not use lock, such as the CLOCK algorithm.

ACKNOWLEDGMENTS

This work is supported in part by the US National Science
Foundation under grants CNS-1409523 and CNS-1217948.

DING ETAL.: AGENERAL APPROACH TO SCALABLE BUFFER POOL MANAGEMENT

REFERENCES

[1]

[2]

[3]

[4]

[5]

(6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

(2015). Amazon. Amazon relational database service—DB
instance class [Online]. Available: http://docs.aws.amazon.com/
AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
T. Lane. (2005). Design notes for bufmgrlock rewrite [Online].
Available: http://grokbase.com/t/postgresql/pgsql-hackers/
052df59bqt/ design-notes-for-bufmgrlock-rewrite

P. LLC. (2011). Improved buffer pool scalability [Online].
Available: http://www.percona.com/doc/percona-server/5.5/
scalability /innodb_split_buf pool mutex.html

G. Harrison. (2014). Resolving latch contention [Online].
Available: http:/ /www.toadworld.com/platforms/oracle/w/
wiki/371.resolving-latch-contention.aspx

T. E. Anderson, “The performance of spin-lock alternatives for
shared-memory multiprocessors,” IEEE Trans. Parallel Distrib.
Syst., vol. 1, no. 1, pp. 616, Jan. 1990.

J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable
synchronization on shared-memory multiprocessors,” ACM
Trans. Comput. Syst., vol. 9, no. 1, pp. 21-65, 1991.

X. Zhang, R. Castaneda, and E. W. Chan, “Spin-lock synchroniza-
tion on the butterfly and KSR1,” IEEE Trans. Parallel Distrib. Tech-
nol., vol. 2, no. 1, pp. 51-63, Spring 1994.

F.]. Corbato, A Paging Experiment With the Multics System in Honor
of Philip M. Morse, Feshbach and Ingard, Eds. Cambridge, MA,
USA: MIT Press, 1969, p. 217.

S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An effective
improvement of the CLOCK replacement,” in Proc. Annu. Conf.
USENIX Annu. Techn. Conf., 2005, p. 35.

S. Bansal and D. S. Modha, “CAR: Clock with adaptive
replacement,” in Proc. 3rd USENIX Conf. File Storage Technol.,
2004, pp. 187-200.

G. Glass and P. Cao, “Adaptive page replacement based on mem-
ory reference behavior,” in Proc. ACM SIGMETRICS Int. Conf.
Meas. Model. Comput. Syst., 1997, pp. 115-126.

S.Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang, “DULO: An effective
buffer cache management scheme to exploit both temporal and spa-
tial locality,” in Proc. USENIX Conf. File Storage Technol., 2005, p. 8.
DB2 for z/OS: DB2 database design. (2004) [Online]. Available:
http://www.ibm.com/developerworks/db2/library/
techarticle/dm-0408whitlark /index.html

A. Da Zheng and A. S. Szalay, “A parallel page cache: IOPS and
caching for multicore systems,” in Proc. USENIX Conf. Hot Topics
Storage File Syst., 2012, p. 5.

M. Blasgen, J. Gray, M. Mitoma, and T. Price, “The convoy phe-
nomenon,” SIGOPS Oper. Syst. Rev., vol. 13, no. 2, pp. 20-25, 1979.
S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache perform-
ance,” in Proc. ACM SIGMETRICS Int. Conf. Meas. Model. Comput.
Syst., 2002, pp. 31-42.

X. Ding, P. B. Gibbons, M. A. Kozuch, and]. Shan, “Gleaner:
Mitigating the blocked-waiter wakeup problem for virtualized
multicore applications,” in Proc. USENIX Annu. Techn. Conf., 2014,
pp- 73-84.

T. Johnson and D. Shasha, “2Q: A low overhead high performance
buffer management replacement algorithm,” in Proc. Int. Conf.
Very Large Databases, 1994, pp. 439-450.

W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza, and N. Mac-
Naughton, “The oracle universal server buffer manager,” in Proc.
23rd Int. Conf. Very Large Databases, pp. 590-594.

Y. Zhou, J. Philbin, and K. Li, “The multi-queue replacement algo-
rithm for second level buffer caches,” in Proc. USENIX Annu.
Techn. Conf., 2001, pp. 91-104.

(2007). The Open Source Development Laboratory. OSDL - data-
base test suite [Online]. Available: http://old.linux-foundation.
org/lab_activities/kernel_testing/osdl_database_test_suite/
(2015). Transaction Processing Performance Council. TPC-W
[Online]. Available: http:/ /www.tpc.org/tpcw

(2015). Transaction Processing Performance Council. TPC-C
[Online]. Available: http:/ /www.tpc.org/tpcc

X. Ding, S. Jiang, and X. Zhang, “BP-Wrapper: A system frame-
work making any replacement algorithms (almost) lock conten-
tion free,” in Proc. IEEE 25th Int. Conf. Data Eng., 2009, pp. 369-380.
C. Bienia and K. Li, “PARSEC 2.0: A new benchmark suite for
chip-multiprocessors,” in Proc. 5th Annu. Workshop Model., Bench-
marking Simul., Jun. 2009, http://www-mount.ece.umn.edu/
~jjyi/MoBS/2009/MoBS_2009_Advance Program.html

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

2195

Y. Xu and Y. Han, “MLB-Wrapper: Distributed high scalable BP-
wrapper,” in Proc. Int. Conf. Inf. Technol. Manage. Sci., 2012,
pp- 649-660.

V. Blagojevic. (2010). Infinispan eviction, batching updates and LIRS
[Online]. Available: http:/ /blog.infinispan.org/2010/03/infinispan
-eviction-batching-updates.html

H. Schoning, “The ADABAS buffer pool manager,” in Proc. 24th
Int. Conf. Very Large Databases, 1998, pp. 675-679.

W. Wang, “Storage management for large scale systems,” Ph.D.
dissertation, Dept. Comput. Sci., Univ. Saskatchewan, Saskatoon,
SK, Canada, 2004.

L. Huang and T. cker Chiueh, “Charm: An I/O-driven execution
strategy for high-performance transaction processing,” in USE-
NIX Annu. Techn. Conf., 2002, pp. 275-288.

S. Yamamura, A. Hirai, M. Sato, M. Yamamoto, A. Naruse, and K.
Kumon, “Speeding up kernel scheduler by reducing cache mis-
ses,” in Proc. FREENIX Track: USENIX Annu. Techn. Conf., 2002,
pp. 275-285.

M. Herlihy, “Wait-free synchronization,” ACM Trans. Program.
Lang. Syst., vol. 13, no. 1, pp. 124-149, 1991.

M. Yui, J. Miyazaki, S. Uemura, and H. Yamana, “Nb-GCLOCK: A
non-blocking buffer management based on the generalized
CLOCK,” in Proc. IEEE 26th Int. Conf. Data Eng., 2010, pp. 745-756.
M. Herlihy and J. E. B. Moss, “Transactional memory: Architec-
tural support for lock-free data structures,” in Proc. 20th Annu. Int.
Symp. Comput. Archit., 1993, pp. 289-300.

N. Shavit and D. Touitou, “Software transactional memory,” in
Proc. 14th Annu. ACM Symp. Principles Distrib. Comput., 1995,
pp- 204-213.

H. T. Kung and J. T. Robinson, “On optimistic methods for
concurrency control,” ACM Trans. Database Syst., vol. 6, no. 2,
pp- 213-226, 1981.

D. Gawlick and D. Kinkade, “Varieties of concurrency control in
IMS/ VS fast path,” IEEE Database Eng. Bull., vol. 8, no. 2, pp. 3-10,
Jun. 1985.

B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B.
Hertzberg, “McRT-STM: A high performance software transactional
memory system for a multi-core runtime,” in Proc. ACM SIGPLAN
11th Symp. Principles Practice Parallel Program., 2006, pp. 187-197.

Xiaoning Ding received the PhD degree in com-
puter science and engineering from the Ohio
State University. He is an assistant professor at
New Jersey Institute of Technology. His interests
are in the area of experimental computer sys-
tems, such as distributed systems, virtualization,
operating systems, and storage systems.

Jianchen Shan received his BS and MS degrees
in 2008 and 2011 both from Shanghai University,
China. He is currently working toward the PhD
degree in the Department of Computer Science,
New Jersey Institute of technology. His research
interests include parallel and distributed comput-
ing and cloud computing.

Song Jiang received the PhD degree in com-
puter science from the College of William and
Mary. He is an associate professor at Wayne
State University. His research interests include
file and storage systems, operating systems, and
high-performance computing.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
http://grokbase.com/t/postgresql/pgsql-hackers/052df59bqt/design-notes-for-bufmgrlock-rewrite
http://grokbase.com/t/postgresql/pgsql-hackers/052df59bqt/design-notes-for-bufmgrlock-rewrite
http://www.percona.com/doc/percona-server/5.5/scalability/innodb_split_buf_pool_mutex.html
http://www.percona.com/doc/percona-server/5.5/scalability/innodb_split_buf_pool_mutex.html
http://www.toadworld.com/platforms/oracle/w/wiki/371.resolving-latch-contention.aspx
http://www.toadworld.com/platforms/oracle/w/wiki/371.resolving-latch-contention.aspx
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0408whitlark/index.html
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0408whitlark/index.html
http://old.linux-foundation.org/lab_activities/kernel_testing/osdl_database_test_suite/
http://old.linux-foundation.org/lab_activities/kernel_testing/osdl_database_test_suite/
http://www.tpc.org/tpcw
http://www.tpc.org/tpcc
http://blog.infinispan.org/2010/03/infinispan-eviction-batching-updates.html
http://blog.infinispan.org/2010/03/infinispan-eviction-batching-updates.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

