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Abstract—While Phase Change Memory (PCM) has emerged
as one of most promising complements or even replacements
of DRAM-based memory, it has only limited write endurance.
Because of uneven write distribution, PCM is highly likely
to have early failures, which can spread over the chip space
and leave the entire chip unusable. Wear leveling is an
indispensable technique to even out wear caused by the writes.
However, because of process variation early failure cannot be
fully avoided. State-of-the-art wear-leveling schemes, such as
Start-Gap and Security Refresh, cease to function once even
a single block failure occurs because their designs require
persistent writable address space for wear leveling operations.
Existent solutions attempting to address the problem demand
substantial OS supports, such as explicit space allocations and
data migrations. The demand on substantial OS cooperation
creates a barrier to widespread adoption of the PCM technique.

While fault-tolerance techniques, such as FREE-p and zom-
bie, that remap failed blocks to inaccessible but healthy space
have the potential to address the wear-leveling issue by relocat-
ing data from failed blocks to healthy ones, they cannot work
together with the wear-leveling schemes as data migration may
change placement of relocated data. In this paper, we propose a
framework, WL-Reviver, that allows any in-PCM wear-leveling
scheme to keep delivering its designed leveling service even
after failures occur in its working address space. The design
is unique on two aspects: (1) it leverages the fault-tolerance
techniques so that they can work together with the wear-
leveling schemes; and (2) it requires no OS supports additional
to what’re available to today’s DRAM-based memory system.
Furthermore, WL-Reviver is a lightweight framework of very
low overhead. Our extensive experiments show that WL-
Reviver can efficiently revive a wear-leveling scheme without
compromising the scheme’s wear-leveling effect.
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I. INTRODUCTION

Resistive memory has emerged as a promising technology
when the scaling of DRAM technology to smaller feature
sizes (beyond 30 nm) becomes increasingly difficult [10],
[13]. With higher scalability and being non-volatile, they
are expected to complement or even replace DRAM as
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main memory in the near future. Among a number of resis-
tive memories currently available, phase-change memories
(PCM) is the most likely technology for volume produc-
tion [1], [2] and has seen the most research efforts [9], [14],
[15], [18], [20], [21].

A. PCM’s Limited Endurance and Wear Leveling

One of most challenging constraints on PCM is its limited
endurance. That is, after a limited number of writes on a
memory cell (on average about 107 - 108), the cell perma-
nently fails. Because of existence of write locality, cells of
PCM memory are probably not uniformly worn. That is,
some cells can become unuseful earlier than others, leading
to loss of memory space. A computer becomes unavailable
once a certain percentage of its memory capacity gets lost.
To postpone this effect as late as possible, practitioners must
apply wear leveling techniques to spread the wear evenly
across the entire address space. A wear leveling scheme
may periodically change address mapping so that addresses
mapped to more heavily written blocks can be remapped to
less written blocks.

While it is possible for the operating system (OS) to con-
duct the remapping and accordingly to provide PCM wear
leveling functionality, an OS-based design is a less desirable
solution. Such a design may require substantial changes to
OS, including page usage monitoring, page mapping, and
data migration. It is much more expensive to preform these
operations with software than that in hardware. In addition,
as wear leveling is an indispensable operation in the use of
PCM, an OS-based solution requires an OS supporting wear
leveling as a prerequisite for adopting PCM in the memory
system. This creates an artificial barrier to a widespread
adoption of PCM-based main memory. Therefore, if it is
possible every effort should be made to leave OS out of
the execution of wear leveling functionality in PCM. As
an analogous example, flash-based SSDs always implement
their wearing leveling functionalities within the devices,
rather than requiring OS to play the role.

To this end, state-of-the-art PCM wear-leveling schemes,
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Figure 1. Illustration of changes of mapping from physical address (PA) to
device address (DA) because of data migration required by a wear-leveling
scheme. (a) Initially user data ”Data1” at PA P1 is stored at DA D1 when
mapping function F1 is applied; (b) Data1 is migrated into DA D2, and
the mapping function is accordingly changed to F2(P1) = D2.

such as Start-Gap [21] and security refresh [22], are all
designed to function in the memory controller without any
OS involvements. In the meantime, the traditional approach
of tracking every memory block’s access count, comparing
the counts of different blocks, and using an indirection table
to perform address mapping, is too expensive and non-
scalable to be implemented in hardware. Accordingly the
schemes designed for PCM give up the flexibility enabled
by the mapping table to avoid the expensive table main-
tenance cost and table look-up time spent on each PCM
access, which could significantly increase access latency and
consume substantial energy. Instead, they all use easy-to-
compute algebraic mapping functions for the purpose.

B. Wear Leveling in the Face of PCM Failures

In a computer system, software uses physical address,
or PA in short, to access the memory device, and the
memory controller translates this address into its corre-
sponding device address, or DA in short. A memory block
is persistently identified with a specific device address.
As we have explained, for space and time efficiency a
wear-leveling scheme uses a PA-to-DA address mapping
function, rather than a mapping table, to quickly determine
which memory block should be accessed upon a software-
initiated PA access. As illustrated in Figure 1, a fundamental
and essential operation of any weal-leveling scheme is to
periodically migrate data and accordingly change PA-to-DA
mapping function. When a condition for the wear-leveling
operation is met (e.g., a certain number of writes have
been serviced on the PCM), a block of data is migrated
from its current storage location (memory block at DA
D1), to a selected new location (memory block at DA D2).
As illustrated, before the migration physical address P1 is
mapped to D1 using function F1 (F1(P1) = D1) and any
software-initiated access to data at P1 occurs at D1. After the
migration, the access should occur at D2. For correctness,
the mapping function has to accordingly change to F2 so that
F2(P1) = D2. When the block of data keeps its migration
from one memory block to another one, the function needs
to keep changing so that P1 always refers to the same block
of data. It is an invariant in any wearing leveling schemes

that the same valid PA consistently refers to the same data no
matter where it is physically migrated, unless it is updated
by the software via a re-write.

To ensure that writes are evenly spread over a given range
of PCM space, a wear-leveling scheme schedules a block of
data to migrate into every memory block in the space over
a certain period of time. In other words, any device address
Di, where i = 0, 1, ..., N − 1 and N is the total number
of blocks in the space, can be the mapping target of any
physical address Pj , where j = 0, 1, ..., N−1. If the memory
block at Di fails, the wear-leveling scheme does not function
as designed because (1) a block of data cannot be migrated
into Di, and (2) attempt for accessing Pj , which is mapped
to Di, will fail. Even worse, because every physical address
(Pj) can be mapped to the failed block (Di) at different
time periods of the wear-leveling execution, the OS would
be informed that Pj is a failed address and ultimately be
misled to believe that all memory blocks fail.

To address this issue, one might attempt to change the
data migration schedule to keep data from migrating into
the failed memory blocks, or DAs, and to modify the
mapping function to exclude the DAs from being mapped
to. However, as failed blocks can appear at any random
locations and are accumulating, it is unlikely to design a
set of functions, rather than to use a mapping table, to cover
scenarios of various failure distributions. Though the state-
of-the-art PCM wear-leveling schemes can achieve a near-
perfect wear-leveling effect even with writes of strong spatial
locality and malicious wear-out attacks [21], [22], they stop
functioning with even a single block failure, leading to
accelerated failures and loss of memory space. Furthermore,
due to process variations there is a high variability in
PCM cells’ lifetime and some cells are subject to early
failures [18]. Therefore, it is critical to revive the wear-
leveling techniques that cease to function with failures.

C. Page-recovery Schemes vs. the Wear-leveling Issue

One of the studies on PCM’s fault tolerance is concerned
with recovery of an OS page when some blocks of the page
fail. This study is important as it keeps an entire page from
being lost due to failure of some of its blocks. An OS page
can be 4KB while a block is usually of a cacheline size.
Representative schemes from this study include FREE-p [23]
and Zombie [8]. Their idea is to link a failed block to a
healthy block in another page that has been considered by
OS as a failed one and is dedicated for supplying its healthy
blocks for being linked to other pages’ failed blocks.

By making a failed block appear to be available for
storing data via its linked healthy block, these page-recovery
schemes have the potential to allow a wear-leveling scheme
to continue functioning after occurrence of block failures.
After the linkage, any access, including that for data mi-
gration due to wear-leveling operations, to the failed block
is redirected to the linked healthy but software-unreachable



block1. We name this healthy block as a shadow block of the
corresponding failed block. These shadow blocks are from
a pre-reserved space, such as the page considered as failed
one by OS, dedicated for the purpose. Because blocks in
the space are not used to store data until they are linked to
failed blocks. the space must be incrementally obtained to
maintain a high space utilization.

D. Challenges on Reviving Wear-leveling Operations

While the approach suggested by the page-recovery
schemes for reviving wear-leveling operations in the face of
block failures sounds promising, it has three critical issues
challenging its feasibility and efficacy.

The first issue is how the reserved space can be incre-
mentally obtained. For the sake of space efficiency, one
must reserve a relatively small amount of additional space
once currently reserved space has been used up and failing
of a block demands for a shadow block [12], [23]. This
means one block used to be mapped into the software’s PA
address space and was accessible to the software needs to
become unreachable. Because only operating system (OS)
is able to determine which PA address space is accessible
via page allocation and deallocation, any explicit request
for additional reservation requires OS to change its memory
allocation and possibly move data among its pages. As
mentioned, the demand of such an OS support is highly
undesirable and should be avoided if possible.

The second issue is whether to involve unlinked blocks
in the reserved space in the wear leveling operations. Once
physical blocks, or their corresponding DAs, are reserved,
they have to remain unused and be ready to be linked to
failed blocks and store their data. This means that these
blocks cannot participate in the wear leveling, which may
migrate data into them. Excluding them from the wear level-
ing can compromise entire PCM chip’s leveling efficacy. A
more serious issue of the reservation method is that the wear
leveling scheme may have to be substantially modified [12],
assuming such a modification is possible. Because mapping
function of a scheme is designed to accommodate its sched-
uled data migration, DAs of the reserved blocks, whose data
are not involved in the data migration, have to be removed
from the functions’ target set (or codomain). Accordingly,
the mapping functions have to be revised after the removal.
Even worse, some wear-leveling schemes, such as security
refresh [16], requires its mapping functions’ target set (or
mapped DA space) be of size of power of 2 in terms of block
count. In this case, the schemes have to resort to mapping
table [12] if each reservation did not take away half of a
scheme’s target set.

The third issue is that the page-recovery schemes them-
selves can be at odds with the wear-leveling operations

1When a block at a DA is claimed to be unreachable to software, the
software, including OS, does not access data at a PA that is mapped to the
DA.

if shadow blocks are allowed to participate in the wear
leveling. Data stored in a shadow block actually belongs to
its corresponding failed block, and the failed block records
its shadow block’s address. When the data in the shadow
block is migrated to another block in a wear-leveling oper-
ation, the failed block cannot find its data via its recorded
address. Because in both FREE-p [23] and Zombie [8] a
shadow block does not record its failed block’s address,
it can be very expensive to re-link the failed block to the
new shadow block. Therefore the wear-leveling operations
essentially invalidate the page-recovery schemes.

E. Our Solution

In this paper we propose a framework in which wear-
leveling schemes continue to function with failures and the
page-recovery schemes can be used together with active
wear-leveling operations. In the design all the aforemen-
tioned issues are effectively addressed in a very lightweight
manner. Specifically, the framework is unique at four as-
pects. First, it does not require any new OS supports. Second,
it consistently performs wear-leveling operations over any
blocks, including those in the reserved space. Third, it does
not require any modifications of wear-leveling schemes.
Fourth, the page-recovery schemes can continue to function
without any efforts of updating links after data migration.

The enabling technique of the framework is to reserve
virtual space in the PA address space, instead of memory
blocks in the DA address space, to provide shadow blocks. A
key observation inspiring the design is the fact that once an
access failure is reported to the OS, OS would discontinue its
use of the page containing the failure [3], where page is the
unit for OS to manage its memory. A page contains multiple
PAs, each mapped to a memory block at a DA, which is
unit for wear-leveling. While the OS excludes the page,
where a failure has been reported, from further accessing, the
PAs contained in the page are essentially reserved without
an explicit request to the OS. Although the reserved PAs
themselves are simply addresses, or they represent virtual
space, each of them is mapped to a DA. As long as a PA
is reserved and becomes unaccessible to the software, its
mapped DA, a memory block, is also reserved and available
to serve as a shadow block for storing data on behalf of a
failed block. However, a reserved PA is possibly mapped to a
different memory block, or DA at different time, as the wear
leveling scheme migrates data and changes the mapping.
Because a failed memory block is only linked to a reserved
PA, their relationship is independent of the data migration
and change of PA-DA mapping function.

In this paper we present the proposed design as a frame-
work, named as WL-Reviver, to revive any wear-leveling
schemes on PCM-based memory in the face of failures.



II. RELATED WORK

To address PCM’s issue of limited endurance, many
efforts have been made to achieve two objectives. One is
to use additional resources to correct errors, and the second
is to prevent early failures.

Regarding the first objective, PCM is more likely to
have permanent stuck-at faults, rather than transient errors,
that can be gradually accumulated over time within the
lifetime of a data block. To postpone the occurrence of first
uncorrectable fault on PCM, many fault tolerance schemes
have been proposed, including ECP [20], SAFER [21], and
RDIS [15]. In particular, ECP corrects errors by perma-
nently encoding the locations of failed cells into a vector
and assigning other cells to replace them. With additional
metadata the schemes can correct a certain number of errors
in a bit group before the group is declared as failed. A bit
group usually consists of 64bits to 512bits. WL-Reviver is
designed to help manage failures that cannot be tolerated by
the schemes.

The second objective is at least as important as the first
one, because a PCM chip or an entire PCM-based memory
can become unavailable with only a small percentage of
blocks failed and most of them still alive. There are two
sources leading to early failures. One is the process variation,
which causes high lifetime variability across PCM cells.
The other is non-uniformly distributed writes. The proposed
solutions can be categorized into three groups.

The first group of solutions is to dynamically allocate
hardware resources for error correction so that early-failed
blocks can stay alive longer for storing data. As an example,
Pay-As-You-Go (PAYG) reserves a certain amount of meta-
data space for a set of bit groups and uses the space for any
of the groups only when their faults cannot be corrected by
their local metadata [18].

The second group is to prevent pages from early loss
due to failure of its blocks. One such scheme is FREE-
p, which acquires some reserved data space and uses the
space to hide any failed blocks via pointers embedded in
the failed blocks [23]. Zombie [8] pairs a failed block in
a working memory page with a spare block in a disabled
page. Zombie also uses a pointer (or a link) to record the
pairing relationship. This pairing may enable various error
correction codes between the failed and spare blocks. As we
have discussed, migration of data in the spare blocks in the
wear leveling operations can foil the efforts of these page-
recovery schemes and WL-Reviver provides a solution to
this issue.

The third group is to level wear on the PCM. Though
the technique can be applied at the bit level by shifting
data placement offset in a bit group [20], [24] and at the
byte level [25], wear leveling techniques are most commonly
used at the cacheline level for migrating data across memory
blocks. Start-Gap [21] and Security Refresh [22] are two rep-

resentative schemes, which also consider malicious attacks
that keep writing at the same set of addresses. Though they
are effective and play an irreplaceable role for extending
PCM’s lifetime, they cease to function with occurrence
of the first block failure in their working address spaces
as a contiguous address space is required. WL-Reviver
effectively addresses the issue with an efficient address re-
mapping technique.

LLS [12] is a scheme sharing a similar goal with WL-
Reviver. It dynamically reduces software-useable address
space to acquire reserved space for re-mapping failed blocks.
Compared with WL-Reviver, LLS is inadequate in four
aspects. First, LLS has to rely on OS’s support to obtain
reserved space. To maintain contiguous address space for
wear leveling, LLS has to constantly acquire space from
either higher or lower device addresses. Consequently, to
reserve space for LLS, an OS may have to conduct expen-
sive data relocation operations among pages. Second, LLS
represents the mapping relationship between failed blocks
and their backup blocks, which are equivalent to shadow
blocks in WL-Reviver, by maintaining the same relative
order in their respective block lists. This may constantly
incur block insertion operations, and consequently expensive
data shifting operations. This also requires LLS to maintain
a bitmap that has to be read upon each access of data on
a backup block, which can substantially increase PCM’s
access time. Third, it is less flexible for LLS to manage
address space. LLS uses chunk, which is 64MB by default
in the paper, as the unit for expanding the reserved space.
To maintain contiguous wear-leveling space, LLS partitions
blocks into salvaging groups and dictates that a failed block
can only use block in the same group as its backup one.
Because a group consists of blocks from different chunks,
LLS may have to move a new chunk into the reserved space
while many idle blocks are in the reserved space without
being mapped to failed blocks. Therefore, software-usable
space can be unnecessarily reduced. Furthermore, because
these idle blocks do not participate in wear leveling, the wear
leveling effect is compromised. Fourth, to integrate existent
wear-leveling schemes into LLS, one may have to conduct
substantial adaptation of the schemes. In contrast, WL-
Reviver requires almost no OS support, no data migration
other than that demanded by the wear-leveling scheme itself,
and minimal data access overhead. It conducts implicit,
incremental, and flexible space reservation without requiring
any modifications of the wear-leveling schemes for them to
be in the framework.

III. THE DESIGN OF WL-Reviver

WL-Reviver is a framework to revive any wear-leveling
scheme that becomes incapable to perform its leveling opera-
tions due to block failures in its working space. Its strategy is
to hide the failures from the scheme by redirecting accesses
that are originally to the failed blocks to the reserved



healthy blocks without any new OS supports. To serve as a
framework accommodating any wear-leveling scheme, WL-
Reviver assumes only one fundamental operation common to
any of such schemes, which is to migrate data into a memory
block. Below we will describe when and how reserved space
is acquired and how a failed block is linked to a reserved
block.

A. Acquiring Spare Space to Hide Failed Blocks

There are two issues to address in the acquisition of spare
space for hiding currently failed blocks and for being used
as reserved space to cover future failures. The first issue
is about condition and timing of this acquisition, and the
second one is about acquisition method.

As we have discussed, for the sake of widespread and
quick adoption of PCM as main memory, minimal involve-
ment of OS is preferred. To this end, WL-Reviver does
not modify existent interface between the software and
the memory hardware. In addition to supporting read and
write commands, the interface also includes mechanism of
generating exception to OS when an access error is detected.
A standard procedure for OS to handle the exception is to
exclude the page associated with the error from its allocation
pool and to prevent future access of data in the page. Some
system architectures, such as HP Memory Quarantine [3],
use firmware to mark memory locations with errors as bad
and unavailable before passing the errors to the OS. To avoid
computer downtime, especially for servers running mission-
critical applications, the OS would make every effort to
recover from the errors without shutting down the system or
even without closing down the affected threads or processes.
To facilitate this effort, WL-Reviver does not require any
changes of the interface. The only assumption it makes to
acquire spare space is that the page associated with the
error reported in the exception will not be accessed by
the software. As the assumption had been supported, WL-
Reviver is not intrusive to existent systems at all.

Note that wear-leveling is conducted at the unit of mem-
ory block to match the memory access unit, which is the
cacheline size of the last-level cache, and OS uses memory
at the unit of page. As an example, for a 64B memory
block, acquisition of a 4KB page is equivalent to receipt
of 64 physical addresses (PAs), each mapped to a different
memory block at a device address (DA). If one of the
PAs is mapped to a healthy memory block, the healthy
block can be served as the shadow block of a recently
failed block that is demanding for a spare block to hide
the failure, or to transparently redirect accesses to the failed
block to the shadow block. A salient feature of WL-Reviver
distinguishing it from other schemes is that a failed block
is not directly linked to its shadow block. Instead, the failed
block is only linked to a PA that is excluded out of the
scope accessible to the software. This PA is named as virtual

shadow block, as it has to be mapped to a shadow block
addressed by a DA to serve the purpose of hiding failures.

For the first block failure, WL-Reviver allows PCM to
report it to the OS so that it can acquire a number of PAs
included in the page associated with the failure to serve as
virtual shadow blocks. For this particular failure, only one
virtual shadow block is needed to be linked to the failed
block. For a number of following block failures, WL-Reviver
does not report them to the OS. Instead, it uses the unlinked
PAs as virtual shadow blocks to hide the failures. Only after
the acquired PAs are used up, a new block failure will trigger
another exception to the OS for another page acquisition.
Apparently WL-Reviver incrementally acquires a small set
of PAs at a time for two benefits. First, it avoids reservation
of a large chunk of memory at once to minimize reduction of
software-usable memory space. Second, it can handle most
of failures without any interaction with the OS . To facilitate
the acquisition method, WL-Reviver sets up two registers.
One records the PA currently available to serve as a virtual
shadow block, and the other records the last PA available
for the purpose. PAs in the range between the current PA
and the last PA represent the reserved virtual spare space.
When a failed block is detected, the PA recorded in the first
register is employed as a virtual shadow block, and then the
register increments its recorded PA value by one. If the PA
in the first register exceeds that in the second one and an
access error occurs, the error is reported to the OS, which
discontinues its use of the page that is associated with the
error, and the two registers are accordingly set.

In addition to failures detected in the service of accesses
from the software, there are failures detected in the execution
of data migration due to wear leveling within the PCM.
If there are unlinked virtual shadow blocks, the failures
can be hidden transparently without interruption to the OS.
However, if there are not any unlinked PAs ready for use,
there are two options about the timing to acquire the PAs.
One is to immediately interrupt the OS to acquire the PAs.
The drawback of this option is the need to change the OS. It
requires PCM to send the OS an interruption to proactively
report errors and explicitly acquire spare space. Apparently
the OS needs to be accordingly modified to handle this new
type of interruption. The other option is to leave the space
acquisition as a reactive operation, or reporting errors only
in response to access requests from the software, to keep
the OS unchanged. This option requires a delayed space
acquisition.

A challenge with the second option, which is taken
by WL-Reviver, is its risk of losing data that has been
successfully stored in the PCM. The sequence of data
migration operations, including source and destination of
each migration, has been pre-determined in a wear leveling
scheme. Without an immediately available shadow block,
data would have to be unsuccessfully written into the failed
block and get lost. To address the challenge, WL-Reviver
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or D3’s shadow block. The mapping function is F3(). (b) Leveraging the
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page A, P2 and D4 become D0’s virtual shadow block and shadow block,
respectively. Meanwhile, D3 has P1 as its virtual shadow block without
having a shadow block, or it is on a PA-DA loop. Reverse pointers are
actually stored on memory blocks pointed to by pointers in the pointer
section.

temporarily suspends the data migration until the next write
request from the software arrives. Then WL-Reviver reports
the write to the OS as a failure to obtain spare PA space,
even though actually it may not be a failure. With a virtual
shadow block, WL-Reviver can resume the data migration.
In this strategy, WL-Reviver chooses next write request
rather than the next access, which could be a read request,
as a victim, because in general a write error is more likely
to be recovered than a read error. The OS could redirect
an unsuccessful write to an alternative memory location
for a retrial. A process encountering a write error can

also be recovered by rolling back to its last checkpoint if
an execution log is available for reading history data. In
contrast, a read failure could crash processes or an entire
system by losing critical data, such as log data and system
metadata, that have been considered as safely stored ones.
Furthermore, the pace of wear-leveling operations is not
slowed down by delaying data migration to the next write,
because wear-leveling operations are scheduled according to
write rate. As an example, one data migration operation is
performed for every 100 writes in the Start-Gap scheme [21].

When a system is rebooted, the OS needs to know which
of the pages have been providing virtual shadow blocks
and to keep the pages from being accessed. To this end,
WL-Reviver maintains a bitmap, in which each bit indicates
whether the corresponding memory page has been excluded
from accesses. As part of memory diagnostics procedure at
a system’s restart, the bitmap is loaded to inform the OS
of the knowledge about PCM’s page usage. As only one
bit is required for each memory page and a bit is set at
most once during a PCM’s lifetime, the cost is minimal. To
ensure safety of the important metadata, WL-Reviver can
keep multiple copies of the bitmap in the PCM with only
trivial overhead.

B. Linking Failed Blocks to Virtual Shadow Blocks and
Shadow Blocks

To hide a failed block from the wear-leveling scheme,
WL-Reviver needs to pair it with a shadow block, which
is not directly accessible to the software. Afterwards every
access to the failed block is transparently passed to the
shadow block. Instead of directly linking the two blocks,
WL-Reviver introduces an indirection, which is the virtual



shadow block, to support wear leveling so that migration
of data into or out of a shadow block does not break the
linkage between the two. Specifically, we need to link a
failed block to its virtual shadow block, and further to link
the virtual shadow block to the corresponding shadow block,
as illustrated in Figure 2.

For the first linkage, WL-Reviver records the PA address
associated with a virtual shadow block on its corresponding
failed block. To this end, WL-Reviver needs a status bit with
each block, indicating whether the block stores a pointer
or regular data. We also need to find a space to store the
address. There have been proposals about where to store the
address in the page-recovery schemes, such as FREE-p [23]
and Zombie [8]. In these schemes, they store DA address
of a reserved healthy block from the reserved area into the
failed block assuming that most bits in the failed block are
still available for storing information. For example, FREE-P
can reliably store a DA in a failed block with a strong error-
correction code, such as 7-modular-redundancy code, as the
available space in the block can be much larger than what
is needed for storing an address. Zombie uses space in a
failed block originally for metadata, such as those for ECC
or ECP [20] error correction codes, to store the DA address
of a linked healthy block, and may use both the failed block
and the healthy block for storing data. WL-Reviver uses the
same approach to store an address. The difference is that it
records PA address, rather than DA address.

For the second linkage, there is no need to explicitly
store a pointer. The PA-to-DA mapping function currently
adopted by the wear-leveling scheme provides the link from
the virtual shadow block, addressed by a PA, to the shadow
block, addressed by a DA. With a migration of data (e.g,
from the current shadow block D1 to another block D2, as
shown in Figure 2(a)), the wear-leveling scheme accordingly
updates its mapping function. Consequently, the linkage
and shadow block are automatically updated (as shown in
Figure 2(b), the mapping function is updated from F1 to
F2 and the shadow block changes from D1 to D2). By
using a virtual shadow block, which is simply a PA address,
as an indirection, WL-Reviver allows a failed block to
be efficiently linked to a constantly moving shadow block
without rewriting pointers. When a failed block is linked to
a shadow block, any read and write requests to the failed
block, including those incurred due to data migration, are
served at its shadow block.

We name the path from a failed block to its shadow block
via DA-to-PA links and PA-to-DA mappings as the failed
block’s chain. We further define the path consisting of one
DA-to-PA link and its following PA-to-DA mapping as one
step. There are two scenarios where a failed block’s chain
can grow to more than one step. While we aim to minimize
access time of failed blocks, we manage to keep all chains
to be of only one step.

The first scenario occurs when a fault on the shadow block

is detected at the time when the block serves a software-
issued write. As shown in Figure 2(c), with this detected
fault a new virtual shadow block (P2) is employed, which
is mapped to memory block D3. Now D3 becomes D0’s
new shadow block with a two-step chain. At this time all
involved DAs (D0, D2, and D3) and PAs (P1 and P2) are
known. WL-Reviver can switch two failed blocks’ (D0 and
D2) virtual shadow blocks (P1 and P2, respectively). In this
way, D0 is only one step away from its shadow block, D3.
D2 is mutually linked by its virtual shadow block, P1. We
name the mutually linked D2 and P1 as a PA-DA loop. In
this scenario, D2 does not have a shadow block. However,
this is not an issue because with current mapping function
D2 can only be reached via P2, which is not accessible from
the software. When the mapping function is updated and P2

is mapped to a different memory block, D2 would have its
shadow block. It is straightforward to extend the strategy
to maintain a one-step chain when new shadow block fails
again. To do this, WL-Reviver only needs to let D0 point to
the last virtual shadow block in the chain.

The second scenario occurs with migration of data from
a shadow block into a failed block during a wear-leveling
operation (e.g., migration of data from D2 to D3 as shown
in Figures 2(b) and 3(a).) According to the WL-Reviver’s
design, the data is actually written into the failed block’s
shadow block (or D4 in the example shown in Figure 3(a)),
producing a multi-step chain. For example, in Figure 3(a)
D4 is D0’s shadow block and D0 has a two-step chain.
Whenever such a chain of two steps with two failed blocks
is formed, WL-Reviver reduces it into a one-step chain by
switching the two failed block’s virtual shadow blocks. As
an example, to reduce the two-step chain in Figure 3(a),
WL-Reviver switches the virtual shadow blocks of D0 and
D3, namely P1 and P2, respectively. D4 is still the shadow
block of D0. But now it can be reached in just one step
from D0, as shown in Figure 3(b). D3 is mutually linked
by its virtual shadow block, P1, or on a PA-DA loop.

Section for Virtual Shadow Blocks

…

Section for Inverse Pointers

Figure 4. Illustration on where inverse pointers are stored. An acquired
OS page of PAs is divided into two sections. The first section, including
PAs from P0 to P59, is used as virtual shadow blocks. The second and the
smaller one, including PAs fromP60 to P63, is used to indicate memory
blocks storing inverse pointers via a PA-DA mapping function.

At the time when a two-step chain is formed, WL-Reviver
knows only blocks following the second failed block in the
chain but does not know blocks preceding it. To switch two



failed block’s virtual shadow blocks in a two-step chain,
WL-Reviver needs to know all the blocks. In the example
shown in Figure 3(a), WL-Reviver needs to know not only
P2 and D4 but also P1 and D0. Because a mapping func-
tion in any wear-leveling scheme is a one-to-one mapping
function, there always exists its inverse function allowing
us to derive the PA that is mapped to a given DA. In the
example, as D3 = F3(P1) WL-Reviver can know P1 by
P1 = F−1

3 (D3). To know the first failed block, WL-Reviver
needs to record an inverse pointer from virtual shadow block
to its corresponding failed block. The challenge is where to
store the inverse pointer. WL-Reviver does not pre-reserve
memory blocks for this purpose. Instead, it uses a method
similar to that for acquiring shadow blocks. Once the OS
discontinues its use of a new page in response to PCM’s
access exception, WL-Reviver designates last several PAs
in the page as inverse pointer section. The memory blocks
mapped to by the PAs are used to store inverse pointers
corresponding to the pointers from failed blocks to virtual
shadow blocks in the page2. Thus, the number of inverse
pointers stored in the page is equal to the number of virtual
shadow blocks in the page. As an example, for a 64B
memory block a 4KB page can accommodate at most 64
virtual shadow blocks. For a 32bit pointer, a memory block
can hold 16 inverse pointers. As shown in Figure 4, the first
60 PAs, from PA0 to PA59, can be used as virtual shadow
blocks and the last four PAs, from PA60 to PA63, are
mapped to memory blocks for storing inverse pointers. When
the page of PAs is acquired, the two registers recording the
current and last available PAs for virtual shadow blocks are
set as PA0 to PA59, respectively. Compared to the regular
data, these pointers are way much less frequently updated,
and the blocks storing the pointers are much less worn and
less prone to failures. Even in very rare cases where the
pointers are lost, they can be rebuilt by scanning the entire
PCM.

To guarantee the correctness of WL-Reviver with the
aforementioned linkage between various blocks and ad-
dresses, we demonstrate the below three statements are true.

Theorem 1. In WL-Reviver, any software-accessible failed
block is backed up by a healthy shadow block.

Proof. In WL-Reviver, a request presents its access ad-
dress in the form of a PA (say P0), which is mapped to
a failed block at a DA address (say D0). Assume D0’s
virtual shadow block is P1. P1 must not be P0 because P0 is
software accessible but P1 is not. Because a one-to-one PA-
to-DA mapping function is used, P1 must be mapped to a
block, D1, that is different from D0. D1 must be a block that
is considered as healthy at the time of the access. Otherwise,
D1 would be a block of a known failure and store a pointer to
a virtual shadow block. If this were true, this virtual shadow

2We will prove that the memory blocks are ready for storing data, either
directly or indirectly.

block must not be P1, because P1 has been D0’s virtual
shadow block and a PA can be at most one block’s virtual
shadow block. This leads to a chain whose length is more
than one step. This contradicts the fact that all chains in WL-
Reviver are of one step. �

This theorem ensure that any read and write requests
issued by the software to a failed block can be passed to
and served at its corresponding shadow block.

Theorem 2. In WL-Reviver, any unlinked PAs in a re-
served OS page, including PAs that have not been pointed
to by failed blocks in the section for virtual shadow blocks
and PAs that have not been used for storing pointers in the
section for inverse pointers, are mapped to heathy blocks,
either directly or indirectly.

Proof. Suppose an unused PA (say P0) is mapped to
memory block D0. If D0 is a block currently known as
healthy, P0 is directly linked to a healthy block. Otherwise,
if D0 is a block of known failure, it must have stored a
pointer pointing to PA P1. Because P0 is unlinked, P1 is
not P0, and D0 is not on a PA-DA loop. Therefore, D0

must have its shadow block, a block currently known as
healthy. In this way, P0 is indirectly linked to a healthy
block. �

This theorem suggests that as long as WL-Reviver can
obtain an unlinked PA, it is guaranteed that it has a memory
block currently known as healthy to store a block of data.
Note that actually writing data into the memory block
may be a failure. WL-Reviver can follow the protocol as
described before to handle the newly detected block failure.

In WL-Reviver, the only failed blocks not backed up by
shadow blocks are those on PA-DA loops. This is not a
concern for accesses from the software because their linked
PAs are unaccessible to the software. However, it could be an
issue if data possibly need to be migrated into such a failed
block for wear leveling. The below theorem eliminates the
possibility.

Theorem 3. In WL-Reviver, a wear-leveling scheme does
not migrate data into a memory block on a PA-DA loop.

Proof. The wear leveling scheme determines the mapping
function from a PA to DA regardless of whether the PA is
accessible or whether the DA is a failed one. Therefore, the
scheme has to assume that a memory block at a DA could
store regular data if it is mapped to by a PA that could
be accessible to the software, even if its access is canceled
later due to block failure. While migration of data from
one memory block D0 to another memory block D1 would
destroy data currently stored in D1, the scheme must make
sure that D1 is impossible to store regular data. Equivalently
the scheme has to make sure that D1 is not mapped by any
PA. Therefore, D1 is not on a PA-DA loop, because a DA on
the loop is mapped to by a PA. �

According to this theorem, any wear-leveling scheme has
to assume a buffer block, either explicitly, such as GapLine
in Start-Gap [21], and implicitly, such as data swapping in



Security Refresh [22], and the buffer block is not mapped
to by any software-accessible PA.

IV. PERFORMANCE EVALUATION

In this section we evaluate efficacy and cost-effectiveness
of WL-Reviver as a framework to revive wear-leveling
operations discontinued due to failures of the PCM blocks.
In the evaluation we’d like to answer two questions. The
first is whether it is indeed imperative to revive the wear-
leveling mechanism after the occurrence of failures. The
second question is how efficiently WL-Reviver keeps a wear-
leveling scheme alive with PCM faults. Regarding the first
question, there are a number of fault-tolerance solutions that
can effectively postpone the timing for the first failure to
be exposed to a wear-leveling scheme. The solutions can
be represented by PAYG [18], which dynamically allocates
metadata for error corrections according to error distribution,
and FREE-p [23], which hides block failures using blocks
in a pre-reserved space until the space is used up. To allow
FREE-p to be compatible with the wear-leveling operations,
we have to disallow dynamic reservation of space in the
experiments. Regarding the second question, WL-Reviver
needs an additional read when a failed block is accessed by
the software. We compare WL-Reviver with LLS [12], a de-
sign integrating wear leveling schemes with fault-tolerance
solutions to keep wear-leveling from being disrupted upon
a block failure, in terms of space loss and time overhead.

In the presentation of evaluation results we use only
one representative PCM wear-leveling scheme, which is
Start-Gap [21], though there can be more such schemes,
including Security Refresh [22], because of space constraint.
However, this methodology is not an issue. WL-Reviver, as
a framework, interacts with any such schemes only via one
basic operation, data migration, that is common to any of the
schemes. The way for WL-Reviver to perform its operations
and its associated efficiency are not subject to any design
choice of a particular weal-leveling scheme other than this
common operation. Furthermore, WL-Reviver neither com-
promises nor improves a scheme’s weal-leveling efficacy.
Instead, it only restores an existent scheme’s function.

A. Experimental Setup

we use trace-driven simulations in the evaluation. Memory
traces are collected by running a number of commonly used
programs, listed in Table I, from benchmark suites PAR-
SEC [5], NAS Parallel Benchmarks(NPB) [6], and SPLASH-
2 [7], with Pin [4]. These benchmarks represent various
distributions of writes over the memory blocks, which are
quantified by CoV (Coefficient of Variation) as shown in
the table. A larger CoV value means less uniform write
distribution and higher probability of early failures on the
PCM. In each experiment a program is assumed to run for
multiple times to produce required wear-out effect. In the
setup, we assume each PCM cell can sustain 108 writes

Name Description Benchmark
Suite

Write
CoV

blackscholes Option pricing PARSEC 8.88
streamcluster Online clustering of

an input stream
PARSEC 11.30

swaptions Pricing of a portfo-
lio of swaptions

PARSEC 13.17

mg Multi-Grid on com-
munication

NPB 40.87

fft fast fourier trans-
form

SPLASH-2 13.87

ocean large-scale ocean
movements

SPLASH-2 4.15

radix integer radix sort SPLASH-2 5.54
water-
spatial

molecular dynam-
ics N-body problem

SPLASH-2 5.44

Table I
SUMMARY OF THE BENCHMARKS.

with a normal distribution and a lifetime CoV of 0.2. The
memory block is 64B, which is also the cacheline size for the
last-level of cache. The OS page size is 4KB. We simulate
a 1GB PCM chip.

B. Impact of Wear Leveling on PCM’s Reliability
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Figure 5. Number of writes required to fail 30% memory blocks of the
PCM when different benchmarks and PCM life-extending schemes are used.

We first observe how the wear-leveling scheme (Start-
Gap) responds to variation of the benchmarks’ write CoVs.
In the experiment we choose ECP6, an ECP scheme that
can correct up to six errors in a 512b bit group, as the
base error correction scheme within each bit group. Figure 5
shows how many writes each of the benchmarks has to
issue to fail 30% of memory blocks of the PCM. Here we
assume an entire memory is considered unavailable when it
loses 30% of its space. In this sense this number of writes
represents the PCM’s lifetime. As shown, if only Start-Gap
is used with ECP6 (see the ”ECP6-SG” bars in the figure)
the PCM’s lifetime is highly related to benchmarks’ write
CoVs. A benchmark with a highly biased write distribution,
such as mg with a CoV of 40.87, causes the first block failure
to occur much earlier than that with a more uniform write
distribution, such as ocean with a CoV of 4.15. Without
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Figure 6. Percentage of survival memory blocks after certain numbers of
writes from benchmarks (a) ocean and (b) mg under different life-extending
schemes.

WL-Reviver, the first failure cripples Start-Gap. Once wear
leveling is suspended, writes of higher CoV apparently can
fail the remaining healthy blocks more quickly, or fewer
writes are needed to make the PCM unavailable. With WL-
Reviver (see the ”ECP6-SG-WLR” bars in the figure) PCM’s
lifetime is significantly improved for all the benchmarks
(from 36% to 325%). In fact, this lifetime shows much
less variation across the benchmarks because it is much
less sensitive to the write distribution when wear leveling
is consistently available. Below we will use ocean and
mg to represent benchmarks with moderately non-uniform
and highly non-uniform write distributions, respectively, to
present our experiment results.

To see when the first failure occurs and the failure rate
after the first failure, we show percentage of memory blocks
still alive (or block survival rate) after a certain number
of writes from benchmarks ocean and mg in Figures 6
(a) and (b), respectively. The figures only include results
for a survival rate of 70% or higher as a more severely
faulted PCM is less likely to be usable in practice. In the
comparison, in addition to ECP6 we include PAYG, an
error correction scheme making efforts on fending off the
first block failure by dynamically allocating error-correction
metadata. In the experiments, we adopt a PAYG’s default
setting, in which ECP1 is its local error correction method

and by average 19.5-bit metadata per bit group is used [18].
This space overhead is less than 1/3 of ECP6’s overhead,
which is 61 bits per bit group.

As shown in the figures, without wear leveling the first
failure appears at very early time for both ECP6 and PAYG
due to PCM cells’ lifetime variation and non-uniform write
distribution. With ECP6 and Start-Gap, survival rate can
be significantly improved for ocean, but not for mg (see
”ECP6-SG” curves) because mg’s highly non-uniform write
distribution makes the first failure occur pretty early. As
PAYG can effectively postpone the first failure’s occurrence,
the survival rate is substantially improved (see ”PAYG-
SG” in Figure 6 (a)). With WL-Reviver, the rate can be
further significantly improved. The improvement is much
more significant for mg than that for ocean (see ”ECP6-SG-
WLR” and ”PAYG-SG-WLR” in the figures) as WL-Reviver
makes write distribution much less influential on PCM’s
lifetime. Meanwhile, the improvement of ECP6-SG-WLR
over ECP6-SG is much larger than that of PAYG-SG-WLR
over PAYG-SG. Note that in the setup PAYG uses only about
1/3 of the metadata used by ECP6 for error protection. With
PAYG’s dynamical metadata allocation and wear leveling,
most of the blocks have been close to depletion of their
metadata at the time when the first failure occurs. So the
continued wear-leveling enabled by WL-Reviver does not
substantially further extend the lifetime. But even so, with
highly biased write distribution, such as those with mg and
malicious attacks, including birthday paradox attack [19],
the benefit of WL-Reviver is still substantial.

In general, WL-Reviver not only keeps the survival rate
nearly 100% for a longer time period, but also allows the rate
to drop at a less radical speed to extend a PCM’s lifetime.

C. Comparison to FREE-p on Use of Pre-reserved Space

FREE-p, as designed as a fault-tolerance scheme to
incrementally acquire free slots (equivalent to spaces for
shadow blocks in WL-Reviver) via OS’s support, cannot
work together with a wear-leveling scheme, because the
free slots’ DAs are directly recorded in their respective
failed blocks and data migration by the scheme can lead
to loss of data stored in the slots. We adapt FREE-p by pre-
reserving a certain percentage of PCM space as its remap
region to supply free slots. Because these free slots are not
visible to the software and out of scope of wear-leveling
operations, the adapted FREE-p can work together with
the wear-leveling scheme until pre-reserved slots are used
up. Figure 7 shows the percentage of user-usable space, or
PCM space excluding pre-reserved and failed blocks, with
different amount of pre-reserved space for FREE-p, namely,
0%, 5%, 10%, and 15% of PCM space. As expected, as soon
as FREE-p uses up the pre-reserved space and has to expose
the first failure to Start-Gap, the PCM space is quickly
lost because Start-Gap ceases to perform wear leveling.
Interestingly, while smaller pre-reservations, such as the 5%
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Figure 7. Percentage of user-usable memory blocks after certain numbers
of writes from benchmarks (a) ocean and (b) mg under WL-Reviver and
FREE-p with different percentages of pre-reserved space. In all experiments
ECP6 and Start-Gap are used.

one, are more effective to postpone occurrence of the first
failure for writes with a highly uniform distribution (see
benchmark ocean in Figure 7 (a), larger pre-reservations,
such as the 15% one, are more effective for writes with a
biased distribution (see benchmark mg in Figure 7 (b)). Pre-
reservation has two conflicting effects. It provides free slots
to hide failed blocks. In the meantime, it reduces the space
for accommodating writes and causes more failed blocks.
For writes of highly biased distribution (such as mg), a larger
number of failures can occur, demanding larger pre-reserved
space. For writes of more uniform distribution, it is more
beneficial to keep un-reserved space larger to reduce failures.
In contrast, WL-Reviver consistently provides significantly
more usable blocks. In particular, it makes 100% of the PCM
space usable before the first failure.

D. Comparison to LLS on Efficiency
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Figure 8. Reduction of software-usable space with ongoing writes. In the
experiments ECP6 and Start-Gap are used.

Failure Name Avg. Access Time Software-Usable Space(%)
Ratio mg ocean mg ocean

10% LLS 1.001 1.005 84 85
WL-Revival 1.001 1.004 89 89

20% LLS 1.001 1.011 73 73
WL-Revival 1.003 1.009 79 79

30% LLS 1.001 1.020 62 63
WL-Revival 1.004 1.013 68 69

Table II
AVERAGE PCM ACCESS TIME FOR ONE SOFTWARE-ISSUED REQUEST
AND PERCENTAGE OF PCM CAPACITY AVAILABLE FOR SOFTWARE TO

USE WHEN DIFFERENT PERCENTAGES OF PCM SPACE FAIL. THE
ACCESS TIME IS MEASURED IN NUMBER OF PCM ACCESSES.

As LLS also allows a wear leveling scheme to continue
functioning in the face of block failure, in this section we
compare WL-Reviver with LLS on how failures in PCM
memory would impact the system from the perspective of
software, or users of PCM. Figure 8 shows the rate at
which software-usable PCM space reduces with ongoing
writes. As shown in the figure, though LLS can prevent the
precipitous loss of usable space, number of writes the PCM
can sustain under LLS is much fewer than that for WL-
Reviver. The more uniform write distribution of ocean barely
helps in this aspect. The major reason is on its modification
of address randomization method, which is a component
of the PA-DA mapping function adopted in Start-Gap. To
eliminate spatial correlation, or spread heavily written blocks
uniformly across the PCM space, Start-Gap randomly maps
a PA to an intermediate PA. To adapt Start-Gap into the
LLS’s framework, LLS has to restrict the randomization
mapping between the first (or second) half of PA addresses
and the second (or first, respectively) half of randomized
PAs. This imposed restriction keeps concentrated writes in
a region from being fully spread, which makes mapped
blocks easier to be worn as data migration causes frequently
updated data to migrate into the blocks. Without the need
of adapting Start-Gap, WL-Reviver fully keeps its random-
ization mapping and achieves significantly longer lifetime.

Because there could be one indirection in the access of
data on a failed block, WL-Reviver uses two PCM accesses
for such an access, one to the failed block and another to its
shadow block. However, LLS may need three PCM accesses
for data on a failed block, which are to the failed block, a
bitmap for calculating location of backup block (equivalent
to shadow block in WL-Reviver), and the backup block.
Therefore, WL-Reviver has a smaller average access time
than LLS. In the LLS paper [12] LLS has an option of using
a cache to remove the extra PCM accesses. To be a fair
comparison, we configure a 32KB cache for both LLS and
WL-reviver, a cache size in a proportion of the PCM capacity
suggested in the LLS paper. As shown in Table II, because of
very high cache hit ratio both LLS and WL-Reviver achieve
the almost optimal average access time, which is one PCM
access for each software-issued PCM access request. Table II



also shows the space available to the software when a certain
percentage of blocks fail. As shown, WL-Reviver makes
almost all of the un-failed blocks usable to the software.
However, LLS consistently has smaller amount of software-
usable space than WL-Reviver because of its less flexible
and less inefficient use of reserved space, as explained in
Section II.

V. CONCLUSION

We propose the design of WL-Reviver, a framework that
revives any PCM wear-leveling scheme currently ceasing to
work once the first failed block appears. Considering that
a wear-leveling mechanism is an indispensable component
that has to be continuously functioning in any PCM device,
WL-Reviver hides failed blocks with shadow blocks in
an efficient manner so the mechanism is always available.
Recognizing wear leveling on PCM is a critical issue and
more optimized schemes addressing the issue would be
proposed, we design WL-Reviver as a framework with-
out requiring any adaptations of the schemes. Meanwhile,
relying on modifications of OS to enable wear leveling
can become a barrier for widespread adoption of the PCM
technique. Accordingly, WL-Reviver is designed to require
no additional OS supports by leveraging a well accepted
practice, which is that the OS does not access a page once it
is notified of an access failure on the page. By guaranteeing
that any access of failed block can be served with only one
indirection, WL-Reviver makes PCM’s average access time
minimally deteriorated even with substantial failures.
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