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Abstract

The demand of delivering streaming media content in the
Internet has become increasingly high for scientific, edu-
cational, and commercial applications. Three representative
technologies have been developed for this purpose, each of
which has its merits and serious limitations. Infrastructure-
based CDNs with dedicated network bandwidths and power-
ful media replicas can provide high quality streaming ser-
vices but at a high cost. Server-based proxies are cost-
effective but not scalable due to the limited proxy capacity
and its centralized control. Client-based P2P networks are
scalable but do not guarantee high quality streaming service
due to the transient nature of peers. To address these limi-
tations, we present a novel and efficient design of a scalable
and reliable media proxy system supported by P2P networks.
This system is called PROP abbreviated from our techni-
cal theme of “collaborating and coordinating PROxy and
its P2P clients”. Our objective is to address both scalability
and reliability issues of streaming media delivery in a cost-
effective way. In the PROP system, the clients’ machines in
an intranet are self-organized into a structured P2P system
to provide a large media storage and to actively participate
in the streaming media delivery, where the proxy is also em-
bedded as an important member to ensure quality of stream-
ing service. The coordination and collaboration in the sys-
tem are efficiently conducted by our P2P management struc-
ture and replacement policies. We have comparatively eval-
uated our system by trace-driven simulations with synthetic
workloads and with a real-life workload trace extracted from
the media server logs in an enterprise network. The results
show that our design significantly improves the quality of me-
dia streaming and the system scalability.

1. Introduction

Delivering multimedia contents with high quality and low
cost over the Internet is challenging due to the typical large

� This work is supported in part by the U.S. National Science Foundation
under grants CCR-0098055 and ACI-0129883 and a grant from the HP
labs.

sizes of media objects and the continuous streaming demand
of clients. There are three representative solutions for me-
dia streaming in the Internet. First, special content delivery
networks (CDN) have been built to replicate media servers
across the Internet to move the contents close to the clients
[1]. This approach is performance-effective but is also very
expensive. The second approach is to utilize existing prox-
ies to cache media data, which is cost-effective but not scal-
able due to limited storage and bandwidths of centralized
servers. The third approach is to build client-based P2P over-
lay networks for media content delivery, which is highly
cost-effective but does not guarantee the quality of services
because the capacities of peers can be heterogeneous and
their availabilities can be transient. Our proposed system at-
tempts to address both the scalability and the reliability is-
sues of streaming media delivery in a cost-effective way.

Many researchers delve in the media delivery problem by
looking into the proxy caching approach, which has been
successfully used for delivering text-based content on the In-
ternet. However, a full caching approach of media objects
can quickly exhaust the limited proxy cache space. To han-
dle the large sizes of media objects, researchers have devel-
oped a number of segment-based proxy caching strategies
(e.g.[2], [3]) to cache partial segments of media objects in-
stead of their entirety.

Although the segment-based proxy caching technique has
shown its effectiveness for media streaming, the quality of
service it can provide is still not satisfactory to clients for
the following reasons. First, the limited storage capacity of
a proxy will restrict the amount of media data it can cache
for clients. Second, the delivery of streaming media nor-
mally requires a dedicated reservation of continuous band-
widths for the clients, thus, the highly demanded proxy band-
widths will limit the number of clients to be served simulta-
neously. Furthermore, a proxy not only easily becomes a sys-
tem bottleneck, but also forms a single point of failure, be-
ing vulnerable to attacks. On the other hand, the resources
of bandwidth, storage, and CPU cycles are richly available
and under-utilized among the clients. Thus, the P2P file shar-
ing model is very attractive. However, directly borrowing
this model for media streaming can not guarantee the qual-
ity of streaming service for the following three reasons. First,
the availability of demanded media data in each peer can be
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unpredictable because each peer caches and replaces media
content independently without any coordination with other
peers. Second, the availability of services can also be dy-
namic due to the transient nature of peers even though the
data is always available. Third, the quality of services pro-
vided by multiple collaborative peers sometimes may not be
sufficient for highly dynamic and bursty media streaming re-
quests.

In order to address the scalability problem of proxy-based
techniques, and to deliver the media content with high quality
to the clients, we present a novel and scalable segment-based
P2P media delivering system by organizing the proxy and its
clients in the same intranet into a P2P system. In such a sys-
tem, the clients effectively coordinate and collaborate with
the proxy to provide a scalable media storage and to actively
participate in the streaming media delivery. Media objects
are cached in segment unit both in peers and in the proxy
for the purposes of both self-viewing and global sharing. We
have comparatively evaluated our proposed system by trace-
driven simulations with synthetic workloads and with a real-
life workload trace extracted from the media server logs in
an enterprise network. We have shown that our design sig-
nificantly improves the quality of media streaming and the
system scalability. Our contributions in this work are three-
fold.

� The collaboration and coordination between the proxy
and its P2P clients in our system address the scalability
problem of proxy-based technique, and also eliminate
the concern of unstable quality of services by only rely-
ing on self-organized clients. These two system compo-
nents are complementary to each other: the proxy pro-
vides a dedicated storage and reliable streaming ser-
vices when peers are not available or not capable to
do so, while peers provide a scalable storage for data
caching and significantly reduce the service load of the
proxy.

� Our proposed content location mechanism in the sys-
tem is efficient and cost-effective. The segment access
information and the location of peers holding segments
are simply abstracted into a distributed hash table across
the P2P network. Locating content in our system con-
sists of two steps: (1) the system locates the peer main-
taining the index of the requested segment, and (2) the
indexing peer selects a serving peer to provide the seg-
ment. Since the index in step (1) contains global infor-
mation about the segment, the system is able to balance
the workload and improve the service quality.

� The load balance and data locality in the PROP system
are determined by the segment replacement policies. We
have proposed two replacement policies, one for peers
and one for the proxy. Our objective is to keep popu-
lar media segments in the proxy for global sharing, and
leave a certain space in each peer to cache relatively
unpopular segments. With this arrangement, both popu-
lar and unpopular segments are fairly treated, improving
the overall hit ratios in the PROP system. Our proxy re-
placement policy is popularity-based, considering both

the recent and past access information of media seg-
ments, maximizing the cache utilization of the proxy.
Our peer replacement policy is utility-based, consider-
ing both the popularity and the number of copies of the
segments already in the system, giving a fair distribu-
tion of media data in the system.

2. Other Related Work

Efforts have been made on P2P media streaming only re-
cently. Authors in [4] and [5] propose P2P multicast trees
for live media streaming. Although multicast can be used
for on-demand media streaming as well, the startup latency
is non-trivial. Authors in [6] and [7] propose P2P stream-
ing schemes for layer-encoded media. The quality of layer-
encoded media streaming may not be guaranteed if some lay-
ers are not delivered in time, which can not occur in segment-
based system. In weakly coupled P2P systems such as the
ones presented in [6] and [5], users collaborate loosely to
each other in a peer-to-peer fashion for on-demand media
streaming, instead of being organized into a P2P overlay. Au-
thors in [8] and [9] propose a Gnutella-like unstructured P2P
media streaming system and a structured P2P media stream-
ing system respectively. Both systems target media sharing in
the global Internet. In contrast, our system targets on-demand
media streaming from professional and commercial media
providers for clients in a large intranet.

3. Our System Design and Rationale

3.1. Infrastructure Overview

The two main components of the PROP system are (1) the
proxy and (2) all the client peers receiving the media stream-
ing service, which are connected by a P2P overlay network.
The proxy is the bootstrap site of the P2P system and the in-
terface between the P2P system and media servers. When an
object is requested for the first time or when no peers in the
system are able to serve a streaming request, the proxy is re-
sponsible for fetching the requested media data from remote
server, caching them locally, and segmenting the object into
small units evenly.

Each peer in the PROP system has three functionalities.
First, a peer is a client that requests media data; second,
a peer is a streaming server that provides media streaming
service to clients. Each peer caches the media data in seg-
ments while its content accessing is in progress, and shares
the cached data with other peers in the system. Third, a peer
is also an index server that maintains a subset of indices of
media segments in the system for content locating. Peers in
our system are self-organized into a structured P2P overlay
supporting a distributed hash table, which maps the identi-
fier of each media segment to the index of the segment (see
Section 3.2 in details). The P2P operations in our system are
overlay independent. We use CAN [10] in our simulation,
however, other P2P overlay structures, such as Chord [11],
Pastry [12], and Tapestry [13], can also be used.
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Figure 1. The requesting and serving of media data. Left: The proxy fetches and serves the requested
media data; Right: A peer serves the requested media data.

In our system, the media segments and their correspond-
ing indices are decoupled. In other words, they are main-
tained by different peers. The index of a segment contains
a location list of peers, each of which caches a copy of the
media segment, and the access information of this segment,
which is used for replacement operations. The segment lo-
cating is conducted in two steps: the first step is to route the
request to the peer maintaining the index of the demanded
segment, and the second step is to select a peer that caches
a copy of the segment. This approach is efficient and cost-
effective for two reasons. First, the selection of a serving peer
can be optimized according to the capacities and workloads
of peers caching the demanded media data, because the in-
dex server maintains all access information of segments. Sec-
ond, the cost of content locating is distributed over the P2P
network so that the workload of P2P routing on each peer is
trivial. Once the demanded segment is successfully located,
the media streaming between the serving peer/proxy and the
requesting peer becomes point-to-point.

3.2. P2P Routing and Media Streaming

The distributed hash table supported by the P2P overlay
stores the ����� ������ maps where each ��� is the identifier
of a media segment and the corresponding ����� is the index
of the segment. The identifier of a media segment is a GUID
(globally unique identifier) hashed from the URL of the me-
dia object and the offset of the segment in the object. In our
system, each peer is assigned a key space zone when join-
ing the system, and maintains the segment indices mapped to
this zone. Joining P2P routing entails getting the key space
zone and take over the corresponding indices from a neigh-
bor while leaving P2P routing entails handing over the seg-
ment indices and merge the key space zone to a neighbor
[10].

The following operations on the distributed hash table are
designed in our system for content locating and data manage-
ment: ��	�
��, ���	�
��, �������, ������ and ��
��.

3.2.1. Publishing and Unpublishing Media Segments
The ��	�
������ 
�� �����
�� operation publishes a cached
copy of media segment in the P2P system, in which ��� 
�
is the segment identifier, and �����
� is the IP address and

port number of the peer that caches the segment copy. Corre-
spondingly, the ���	�
������ 
�� �����
�� operation un-
publishes the copy of media segment stored in �����
�. To
publish or unpublish a segment, a peer routes its �����
�
and the ��� 
� to the target peer that maintains the seg-
ment index. Then the target peer put the �����
� into or re-
move it out of the location list in the segment index. A
peer publishes a segment as soon as it caches the full seg-
ment and unpublishes a segment as soon as it deletes the
segment. A peer publishes all segments it caches when join-
ing the P2P system and unpublishes all segments it caches
when leaving the P2P system.

3.2.2. Requesting and Serving Media Segments A peer
requests media data segment by segment, and searches in
its local cache first. If the local search fails, it calls the
����������� 
�� ���� operation, which requests a segment
of the object designated by the ���. When a peer requests a
media object that it does not cache, it routes the ��� to the
target peer that maintains the key space zone that the iden-
tifier of the object’s first segment is mapped to. If the cor-
responding index does not exist, meaning the object is re-
quested for the first time, the target peer sends a request to
the proxy, which fetches the requested object from the me-
dia server, and creates the index and publishes the object.
Then the target peer routes the proxy’s location back to the
requesting peer, redirecting the peer to the proxy to get the
media data. If the target peer finds the segment index, but
the location list is empty, the target peer sends a request to
the proxy, which fetches the segment and publishes it. The
first five steps in Figure 1 (left) show such an example. If
the location list is not empty, the target peer checks the val-
idation of each location link, then returns the location of the
peer with the maximal available bandwidth to the requesting
peer. The first three steps in Figure 1 (right) show such an ex-
ample. Then the serving peer provides the requested data to
the requesting peer, as the last step shown in Figure 1 (left)
and Figure 1 (right). A client buffers the next segment when
the current segment is played back. If a serving peer wants
to leave the P2P system before the current streaming termi-
nates, it must push the rest of the segment to the requesting
peer before exiting the P2P system.
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3.2.3. Updating Segment Popularity and Utility Values
PROP uses the popularity and utility values of segments
to manage cached data (see Section 3.3 in details). These
values depend on the access information and number of
copies of corresponding media segments. When the proxy
or a peer finishes serving a segment streaming task, it calls
���������� ��	 �

��� ���� operation, which routes the
access information to the target peer maintaining the seg-
ment’s index, and then the target peer updates these infor-
mation items. When the segment popularity or utility values
change, the index server notifies all peers that cache the seg-
ment new values by �������������	 ��� ��	 ������ opera-
tion, where ������� is the peers in the location list of the seg-
ment index, and ����� is the popularity or utility value of the
segment designated by ��� ��.

3.2.4. Message Routing Overhead In PROP, for each seg-
ment a client requests, a ������� and an ������ message are
generated. For each segment replica that is cached or evicted
from cache, a ������� or ��������� message is generated.
Although a ����� operation may generate multiple mes-
sages, it can be postponed if the popularity or utility value
changes little. Further more, our replacement algorithm can
keep the location list of the segment index in a moderate size
(see Section 3.3 for details). Thus, the routing overhead in
PROP is trivial compared to the media data transfered. Our
simulation shows it is less than 1% of the streaming media
data (including TCP/IP and Ethernet headers). To further re-
duce the routing overhead, we can increase the segment size,
or use variable-sized segmentation such as exponential seg-
mentation [2] and adaptive and lazy segmentation [3].

3.3. Global Replacement Policies

In our system, the proxy serves as a permanent cache site,
but the storage size is limited. On the other hand, the to-
tal storage space contributed by peers is huge but the avail-
able contents change dynamically because peers come and
go frequently. To fully utilize the storage and to improve the
streaming service quality, we propose efficient replacement
policies for both proxy and peers based on the global infor-
mation of segment accesses using the following variables.

� ��, the time when the segment is accessed for the first
time;

� ��, the most recent access time of the segment;

� ����, the cumulative bytes that the segment has been
accessed;

� ��, the size of the segment in bytes;

� �, the number of requests for this segment;

� �, the number of replicas of the segment in the system.

3.3.1. Popularity-based Proxy Replacement Policy The
proxy takes over the streaming service whenever the re-
quested media segment can not be served by any peer in the
system. Thus, the proxy should hold those popular media ob-
jects to minimize the performance degradation due to peer

failures. We use a popularity-based replacement policy in-
stead of LRU policy, because LRU is not efficient for file
scan operations, which are typical in media streaming ser-
vices, and can only exploit the locality of the accesses to the
proxy instead of the whole system. Similar to the cache util-
ity function proposed in [3], which describes the popularity
of objects in proxy caching systems, we define the popular-
ity of a segment as

� �

����

��

�� � ��
������	

�����

�

�� ��
�	 (3.1)

where � is the current time instant,
����

��

�����
represents the av-

erage access rate of the segment in the past, normalized by

the segment size, and �����	
�����

�

����
� represents the proba-

bility of future access: �����

�
is the average time interval of

accesses in the past, if �� �� �
�����

�
, the possibility that a

new request arrives is small; otherwise, it is highly possible a
request is coming soon. The segment with the smallest pop-
ularity is chosen as the victim to be replaced when the proxy
cache is full. Considering both the recent access and past ac-
cess information, the proxy can cache the most useful media
data for clients.

3.3.2. Utility-based Peer Replacement Policy in Client
Peers Independently exploiting access locality on each
client side is neither efficient from the system’s perspec-
tive nor effective from the user’s perspective. First, due to
the client access patterns, the popular objects get more ac-
cesses from peers and thus have more copies cached in
the system, which are already cached on the proxy side.
Keeping those unnecessary copies of popular objects de-
grades the cache efficiency since the cache space could
have been used to cache other objects. Second, the local-
ity on each client side is limited and the cached data is prone
to be flushed in a long streaming session if LRU replace-
ment is used. Third, the segments of a media object may be
cached in a single peer, thus the data availability is very sen-
sitive to the peer failure and leaving. On the other hand,
the access locality of all clients is much more signifi-
cant than that of a single client and the difference between
the access latency in an intranet and the local disk is unim-
portant for media streaming. Thus, in PROP system, the
cached data of all clients are maintained collectively in a de-
centralized fashion by replacement operations.

Our replacement policy in peers is designed to replace
both those media segments with diminishing popularities be-
cause they rarely get accessed, and those popular media seg-
ments with too many copies being cached. As a result, peers
accessing media objects completely will cache the latter seg-
ments and evict the beginning segments of the objects be-
cause they are more popular and have more replicas in the
system than the latter segments. Peers that access only the be-
ginning segments will cache the beginning segments. Thus,
naturally a peer will cache only a few segments of each ob-
ject it has accessed, while the segments of each object are dis-
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tributed in many peers in the system according to their pop-
ularities, reducing the negative effects of peer failures.

For the peer replacement policy, we define the utility value
of a segment as

� �
���� �� ��� ������ ���� ���� � ��� ��

����
� (3.2)

where � represents the popularity of the segment, ���� and
���� estimate the minimum and maximum of segment pop-
ularities in the P2P system respectively, and � is the number
of replicas of this segment in the system. The values of ����

and ���� can be maintained by the proxy and propagated
across the P2P overlay by flooding when necessary. The term
��� ����� ����

��
captures the segments with small popularities

and large numbers of replicas while ��� �������� �

��
captures

the segments with large popularities and large numbers of
replicas (we choose � � � � � in our simulations). These
two kinds of segment replicas should be replaced by the
replicas of segments with moderate popularities but a small
number of copies. So in our system, we choose those seg-
ments with the smallest utility value as the victims to be re-
placed when a peer’s cache is full. Thus, the data distribution
is optimized naturally along with the progress of media ac-
cessing, and the efficiency of cache utilization is maximized.

3.4. Streaming Task Dispatch

In PROP, a streaming session is divided into a number
of streaming tasks in a moderate granularity determined by
the segment size (we use 100 KB in our simulation). These
tasks can be served by different peers and it is the index
server’s responsibility to dispatch streaming tasks to differ-
ent streaming servers. Instead of having multiple peers to col-
laboratively serve media steaming for a client like [9], only
one streaming server is needed at a time in PROP. The fail-
ure of the streaming server has little impact on the client,
and the media player only needs to buffer one segment for
a smooth playback. Further more, the streaming tasks can
be dispatched fairly and efficiently based on the information
in segment indices and the quality of the streaming servers.
Currently we only use the available bandwidth of the serv-
ing peer as the criterion to dispatch streaming tasks for load
balance, and always dispatch streaming tasks to client peers
first to decrease the proxy burden. We leave the dispatch op-
timization and data prefetching as a future work.

3.5. Fault Tolerance

When a peer fails, both the media data it caches and the
segment indices it maintains are lost. In PROP, each peer pe-
riodically checks the validation of the replica location links
in the segment indices it maintains and simply removes dead
links. The loss of segment indices can be recovered by us-
ing the recovery mechanism of distributed hash table, e.g.,
CAN supports multiple realities to improve routing fault tol-
erance [10].

When the proxy fails or is overloaded so that it can not
fetch data for clients, the requesting peer connects to the me-
dia server directly, fetches data and caches them locally un-
til the proxy is recovered. Since the indices of media seg-
ments are distributed in the P2P system, the content locating
mechanism still works and the system performance degrades
gracefully. Compared with the solution of maintaining a cen-
tral index in the proxy like the browser-aware proxy system
[14], our system not only removes the single point of fail-
ure, but also significantly reduces the burdens of index main-
tenance and segment locating on the proxy.

4. Performance Evaluation

By using trace-driven simulation, we have comparatively
evaluated the performance of our proposed system with dif-
ferent proxy cache sizes and different peer cache sizes and
showed the different roles of the proxy and peers. When the
total cache size of peers is zero, the system is equivalent to
a proxy caching system. When the cache size of the proxy
is zero, the system is equivalent to a client-based P2P sys-
tem without proxy caching. In the following evaluations, if
not specified, the default replacement policy on the proxy
is popularity-based, and the default replacement policy on
peers is utility-based for PROP system, or LRU for client-
based P2P system, respectively.

We use the following metrics in our evaluations. The ma-
jor metric, streaming jitter byte ratio, is defined as the data
that is not served to the client in time by the proxy and peers,
thus causing the potential playback jitter on the client side,
normalized by the total bytes the clients demand. The sec-
ond metric is the delayed start request ratio, which is de-
fined as the number of requests suffering startup delays, nor-
malized by the total number of requests. These two metrics
reflect the QoS of the media streaming to the client. The third
metric we use is the byte hit ratio, which is defined as the to-
tal bytes of media data served by the proxy and peers, nor-
malized by the total bytes of media data all peers consume.
Byte hit ratio represents the storage utilization and outgoing
network traffic reduction of the system.

4.1. Workload Summary

Trace # of # of # of Size � � Range Duration
name req. obj. peers (GB) (min.) (day)
REAL 11559 400 1663 24 - - 6-131 10
WEB 15188 400 376 51 4 0.47 2-120 1
PART 15188 400 376 51 4 0.47 2-120 1

Table 1. Workload Summary

Table 1 outlines the properties of the workloads. REAL
denotes the workload traces extracted from the server logs
of HP Corporate Media Solutions, covering the period from
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Figure 2. Performance evaluation on REAL workload. Left: Streaming jitter byte ratio; Middle: Delayed
start request ratio; Right: Byte hit ratio.
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Figure 3. Performance evaluation on WEB workload. Left: Streaming jitter byte ratio; Middle: Delayed
start request ratio; Right: Byte hit ratio.

May 1 through May 10, 2001. WEB and PART are two syn-
thetic workloads for media viewing in the Web environment,
where we assume the popularities of media objects follow
Zipf-like distribution (�� � ���

��

���
��� �� � ����� and

the request arrivals follow Poisson distribution (���� �� �
��� � ������ � � �� �� �����. WEB denotes complete view-
ing scenario while PART denotes partial viewing scenario in
the Web environment. In PART, 80% of the requests only
view 20% of the objects and then terminate.

For REAL workload, we set the bandwidth between the
proxy and media server as the clients’ available bandwidths
in the trace, ranging from 0 bps to 6.248 Mbps. The me-
dia encoding bandwidth in REAL workload ranges from 6.9
Kbps to 2.055 Mbps. For synthetic workloads, we choose
the bandwidth between the proxy and media server randomly
from 0.5 to 2 times the encoding bandwidth of correspond-
ing media objects. We assume the bandwidth of the intranet
is broad enough for media streaming. We also assume each
peer is online randomly, and can serve at most 5 clients at
the same time. Each peer’s cache size is proportional to the
size of media content it accessed. For client-based P2P sys-
tem model without proxy caching, each peer fetches media
data individually while it caches its accessed data and pub-

lishes them in the system in the same way as our proposed
system.

4.2. Performance Results

4.2.1. Overall performance Figure 2 shows the perfor-
mance results of the three different system models (PROP,
proxy caching, and client-based P2P system) on the REAL
workload. We selected the proxy cache size as 10%, 3%, and
1% of all accessed media data in the workload, and ranged
the total peer cache size from 0 to about 3 times the total ac-
cessed media data. In each figure, “no proxy caching” de-
notes the performance results of the client-based P2P sys-
tem. The vertical axis denotes the performance results of the
proxy caching system since the total peer cache size is zero.
The results in Figure 2 show that our proposed system can
significantly improve the QoS of media streaming and the
byte hit ratio with the increase of peer cache size. For ex-
ample, compared with the proxy caching system, our system
can reduce up to 87% streaming jitter bytes as shown in Fig-
ure 2 (left), reduce up to 82% delayed start requests as shown
in Figure 2 (middle), and increase the byte hit ratio up to 2.4
times as shown in Figure 2 (right). This is because more me-
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Figure 4. Performance evaluation on PART workload. Left: Streaming jitter byte ratio; Middle: Delayed
start request ratio; Right: Byte hit ratio.
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Figure 5. Proxy load changes. Left: with REAL workload; Middle: with WEB workload; Right: with PART
workload.

dia data can be cached in the system due to the more storage
contributed by peers, and thus improves both the byte hit ra-
tio and QoS of media streaming correspondingly.

Figure 2 also shows that the proxy plays an important role
in P2P media streaming system. The QoS and the byte hit ra-
tio are improved significantly with the increase of the proxy
cache size. Compared with client-based P2P system, our pro-
posed system with a proxy capable of caching 1% of all me-
dia data can reduce up to 93% of streaming jitter bytes, up to
88% of delayed start requests, and the byte hit ratio can be
as high as 85%, as shown in Figure 2 (left), 2 (middle), and
2 (right) respectively. In our system, the streaming perfor-
mance can be effectively improved as we increase the proxy
size. The reason is that a peer is not a dedicated server. It
comes and leaves randomly and can only serve a small num-
ber of clients simultaneously. Thus, it is possible that a client
can not be served immediately by peers that cache the re-
quested data. On the other hand, the proxy provides a perma-
nent cache and dedicated service to all clients; it takes over
the streaming service when the peers are not capable of pro-
viding the streaming service, ensuring the quality of media
streaming and reducing the outgoing bandwidth cost.

Figure 3 and Figure 4 show the performance results with

the WEB workload and the PART workload respectively.
As shown in these figures, the performances with these two
workloads have similar trends to that with the REAL work-
load. The performance with workload WEB is slightly better
than that with workload PART, which seems strange since
there are more access localities in workload PART. This is
because in WEB workload, the total amount of bytes con-
sumed by all clients is about 2.8 times greater than that in
PART workload while the total media objects are nearly the
same as that in PART workload.

4.2.2. Proxy Load Changes To evaluate the collaboration
and coordination between the proxy and the P2P overlay, we
have measured and observed the proxy load changes of our
proposed system with different proxy cache sizes and peer
cache sizes. The proxy load includes the total amount of
bytes it serves peers and the total amount of bytes it fetches
from the media server. Figure 5 (left), 5 (middle), and 5
(right) show the proxy load for the three workloads REAL,
WEB, and PART respectively. In the figures, the proxy load
is normalized by two times the total bytes all peers consume,
the maximal possible load on the proxy. Increasing the cache
size of peers can significantly reduce the proxy load due to
the streaming service provided by peers in the system. The
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Figure 6. Replacement policy comparisons on REAL workload. Left: Streaming jitter byte ratio; Middle:
Delayed start request ratio; Right: Byte hit ratio.
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Figure 7. Replacement policy comparisons on WEB workload. Left: Streaming jitter byte ratio; Middle:
Delayed start request ratio; Right: Byte hit ratio.
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Figure 8. Replacement policy comparisons on PART workload. Left: Streaming jitter byte ratio; Middle:
Delayed start request ratio; Right: Byte hit ratio.

proxy load reduction is up to 72% for REAL workload com-
pared with the proxy caching system, as shown in Figure 5
(left). We also observe that the proxy load decreases with the
increase of the proxy cache size. This is because when the
proxy’s cache size increases, more media data can be cached,
which reduces the outgoing fetching load on the proxy.

4.2.3. Replacement Policy To evaluate the efficiency of re-
source management of our proposed system, we compared
the performance of our global replacement policies with that
of LRU replacement policy. Due to the page limit, we only
present the comparison between the utility-based policy and
LRU policy for peers, and only show the results without
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proxy caching for REAL workload and the results with proxy
caching 5% of the total accessed media data for PART and
WEB workloads. For other proxy cache sizes, similar perfor-
mance results are achieved.

Figures 6, 7, and 8 compare the performance of the sys-
tem using our utility-based peer replacement policy with that
of the system using the LRU peer replacement policy, for
the three workloads REAL, WEB, and PART, respectively.
In both systems, the proxy uses the popularity-based replace-
ment policy if it exists. We can see the streaming jitter bytes
and delayed start requests of the utility-based replacement
policy decrease much faster than that of the LRU replace-
ment policy, while the byte hit ratio of the utility-based pol-
icy increases much faster than that of the LRU policy, in-
dicating our utility-based replacement policy is significantly
more effective than LRU policy. For REAL workload, com-
pared with the system using LRU, the system using utility-
based policy can reduce up to 36% streaming jitter bytes and
up to 42% delayed start requests, and the improvement of
byte hit ratio is as high as 59%, as shown in Figure 6 (left),
6 (middle) and 6 (right) respectively. For workload PART,
the streaming jitter reduction and the delayed start request
reduction is up to 41% and 56%, respectively, and the im-
provement of byte hit ratio is up to 19%. The byte hit ratio
improvement in REAL workload is higher than that in PART
and WEB workloads because there is no proxy caching in
this case, showing the important role of proxy in PROP sys-
tem. The utility-based replacement policy can greatly reduce
delayed start requests with only a small cache size in each
peer because the initial segments of media objects are gener-
ally more popular than the latter segments and have greater
possibility to be cached. On the contrary, the initial segments
are more likely to be replaced by LRU, with the progress
of media viewing. At the same time, utility-based peer re-
placement policy takes into account both the popularities and
the numbers of replicas of cached segments to maximize the
storage utilization, therefore reduces the outgoing bandwidth
consumptions and improves the QoS of media streaming.

5. Conclusion

Existing Internet streaming media delivering techniques
are either based on a client-server model, such as proxy
caching and server replications by CDNs, or based on a
client-based P2P structure. The disadvantage of the client-
server model is its limited scalability and high cost, while
the disadvantage of a client-based P2P system is its unreli-
able quality of streaming media delivery due to the dynamic
nature of peers. Our proposed system addresses these two
limitations. Although there is a proxy in the system, our sys-
tem structure is not centralized, because the proxy is a mem-
ber of the P2P system managed by the distributed hash ta-
ble. However, the proxy also plays an important and unique
role to ensure the quality of media delivery due to its dedi-
cated and stable nature. The collaboration and coordination
between the proxy and client-based P2P system make the en-
tire streaming media system both performance-effective and

cost-effective. The proxy can also be used for other purposes
to enhance the security of the system, such as to add the func-
tions of anonymous communications and firewalls.
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