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Abstract

The in-memory cache system is a performance-critical
layer in today’s web server architecture. Memcached is
one of the most effective, representative, and prevalent
among such systems. An important problem is memory
allocation. The default design does not make the best
use of the memory. It fails to adapt when the demand
changes, a problem known as slab calcification.

This paper introduces locality-aware memory alloca-
tion (LAMA), which solves the problem by first ana-
lyzing the locality of the Memcached requests and then
repartitioning the memory to minimize the miss ratio and
the average response time. By evaluating LAMA us-
ing various industry and academic workloads, the paper
shows that LAMA outperforms existing techniques in the
steady-state performance, the speed of convergence, and
the ability to adapt to request pattern changes and over-
come slab calcification. The new solution is close to op-
timal, achieving over 98% of the theoretical potential.

1 Introduction

In today’s web server architecture, distributed in-
memory caches are vital components to ensure low-
latency service for user requests. Many companies use
in-memory caches to support web applications. For ex-
ample, the time to retrieve a web page from a remote
server can be reduced by caching the web page in server’s
memory since accessing data in memory cache is much
faster than querying a back-end database. Through this
cache layer, the database query latency can be reduced as
long as the cache is sufficiently large to sustain a high hit
rate.

Memcached [1] is a commonly used distributed in-
memory key-value store system, which has been de-
ployed in Facebook, Twitter, Wikipedia, Flickr, and
many other internet companies. Some research also pro-
poses to use Memcached as an additional layer to ac-

celerate systems such as Hadoop, MapReduce, and even
virtual machines [2, 3, 4]. Memcached splits the mem-
ory cache space into different classes to store variable-
sized objects as items. Initially, each class obtains its own
memory space by requesting free slabs, 1MB each, from
the allocator. Each allocated slab is divided into slots of
equal size. According to the slot size, the slabs are cat-
egorized into different classes, from Class 1 to Class n,
where the slot size increases exponentially. A newly in-
coming item is accepted into a class whose slot size is
the best fit of the item size. If there is no free space in
the class, a currently cached item has to be first evicted
from the class of slabs following the LRU policy. In this
design, the number of slabs in each class represents the
memory space that has been allocated to it.

As memory is much more expensive than external
storage devices, the system operators need to maximize
the efficiency of memory cache. They need to know
how much cache space should be deployed to meet the
service-level-agreements (SLAs). Default Memcached
fills the cache at the cold start based on the demand. We
observe that this demand-driven slab allocation does not
deliver optimal performance , which will be explained
in Section 2.1. Performance prediction [5, 6] and op-
timization [7, 8, 9, 10, 11] for Memcached have drawn
much attention recently. Some studies focus on profil-
ing and modelling the performance under different cache
capacities [6]. In the presence of workload changing,
default Memcached server may suffer from a problem
called slab calcification [12], in which the allocation can-
not be adjusted to fit the change of access pattern as
the old slab allocation may not work well for the new
workload. To avoid the performance drop, the operator
needs to restart the server to reset the system. Recent
studies have proposed adaptive slab allocation strategies
and shown a notable improvement over the default allo-
cation [13, 14, 15]. We will analyze several state-of-the-
art solutions in Section 2. We find that these approaches
are still far behind a theoretical optimum as they do not
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exploit the locality inherent in the Memcached requests.
We propose a novel, dynamic slab allocation scheme,

locality-aware memory allocation (LAMA), based on
a recent advance on measurement of data locality [16]
described in Section 2.2. This study provides a low-
overhead yet accurate method to model data locality
and generate miss ratio curves (MRCs). Miss ratio
curve (MRC) reveals relationship between cache sizes
and cache miss ratios. With MRCs for all classes,
the overall Memcached performance can be modelled
in terms of different class space allocations, and it can
be optimized by adjusting individual classes’ alloca-
tion. We have developed a prototype system based on
Memcached-1.4.20 with the locality-aware allocation of
memory space (LAMA). The experimental results show
LAMA can achieve over 98% of the theoretical potential.

2 Background

This section summarizes the Memcached’s allocation de-
sign and its recent optimizations, which we will compare
against LAMA, and a locality theory, which we will use
in LAMA.

2.1 Memory Allocation in Memcached
Default Design In most cases, Memcached is demand
filled. The default slab allocation is based on the number
of items arriving in different classes during the cold start
period. However, we note that in real world workloads, a
small portion of the items appears in most of the requests.
For example, in the Facebook ETC workload [17], 50%
of the items occur in only 1% of all requests. It is likely
that a large portion of real world workloads have similar
data locality. The naive allocation of Memcached may
lead to low cache utilization due to negligence of data
locality in its design. Figure 1 shows an example to il-
lustrate the issue of a naive allocation. Let us assume
that there are two classes of slabs to receive a sequence
of requests. In the example, the sequence of items for
writing into Class 1 is “abcabcabc...”, and the sequence
into Class 2 is “123456789...”. We also assume that each
slab holds only one item in both classes for the sake of
simplicity, and there are a total of four slabs. If the ac-
cess rates of the two classes are the same, the combined
access pattern would be “a1b2c3a4b5c6a7b8c9...”. In
the default allocation, every class will obtain two slabs
(items) because they both store two objects during the
cold start period. Note that the reuse distance of any re-
quest is larger than two for both classes. The number
of hits under naive allocation would be 0. As the work-
ing set size of Class 1 is 3, the hit ratio of Class 1 will be
100% with an allocation of 3 slabs according to the MRC
in Figure 1(b). If we reallocate one slab from Class 2 to

Class 1, the working set of Class 1 can be fully cached
and every reference to Class 1 will be a hit. Although
the hit ratio of Class 2 is still 0%, the overall hit ratio
of cache server will be 50%. This is much higher than
the hit ratio of the default allocation which is 0%. This
example motivates us to allocate space to the classes of
slabs according to their data locality.

(a) Access detail for different allocation

(b) MRCs for Class 1&2

Figure 1: Drawbacks of default allocation

Automove The open-source community has imple-
mented an automatic memory reassignment algorithm
(Automove) in a recent version of Memcached [18]. In
every 10 seconds window, the Memcached server counts
the number of evictions in each class. If a class takes the
highest number of evictions in three consecutive moni-
toring windows, a new slab is reassigned to it. The new
slab is taken from the class that has no evictions in the
last three monitoring stages. This policy is greedy but
lazy. In real workloads, it is hard to find a class with no
evictions for 30 seconds. Accordingly, the probability
for a slab to be reassigned is extremely low.

Twitter Policy To tackle the slab calcification prob-
lem, Twitter’s implementation of Memcached (Twem-
cache) [13] introduces a new eviction strategy to avoid
frequently restarting the server. Every time a new item
needs to be inserted but there is no free slabs or expired
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ones, a random slab is selected from all allocated slabs
and reassigned to the class that fits the new item. This
random eviction strategy aims to balance the eviction
rates among all classes to prevent performance degrada-
tion due to workload change. The operator no longer
needs to worry about reconfiguring the cache server
when calcification happens. However, random eviction
is aggressive since frequent slab evictions can cause per-
formance fluctuations, as observed in our experiments in
Section 4. In addition, a randomly chosen slab may con-
tain data that would have been future hits. The random
reallocation apparently does not consider the locality.

Periodic Slab Allocation (PSA) Carra et al. [14] ad-
dress some disadvantages of Twemcache and Automove
by proposing periodic slab allocation (PSA). At any time
window, the number of requests of Class i is denoted as
Ri and the number of slabs allocated to it is denoted as
Si. The risk of moving one slab away from Class i is de-
noted as Ri/Si. Every M misses, PSA moves one slab
from the class with the lowest risk to the class with the
largest number of misses. PSA has an advantage over
Twemcache and Automove by picking the most promis-
ing candidate classes to reassign slabs. It aims to find
a slab whose reassignment to another class dose not re-
sult in more misses. Compared with Twemcache’s ran-
dom selection strategy, PSA chooses the lowest risk class
to minimize the penalty. However, PSA has a critical
drawback: classes with the highest miss rates can also
be the ones with the lowest risks. In this case, slab re-
assignment will only occur between these classes. Other
classes will stay untouched and unoptimized since there
is no chance to adjust slab allocation among them. Fig-
ure 2 illustrates a simple example where PSA can get
stuck. Assume that a cache server consists of three slabs
and every slab contains only one item. The global access
trace is “(aa1aa2baa1aa2aa1ba2)⇤”, which is composed
of Class 1 “121212...” and Class 2 “(aaaabaaaaaaba)⇤”.
If Class 1 has taken only one slab (item) and Class 2 has
taken two items, Class 1 would have the highest miss
rate and the lowest risk. The system will be in a state
with no slab reassignment. The overall system hit ratio
under this allocation will be 68%. However, if a slab
(item) were to be reassigned from Class 2 to Class 1,
the hit ratio will increase to 79% since the working set
size of Class 1 is 2. Apart from this weak point, in our
experiments, PSA shows good adaptability for slab cal-
cification since it can react quikly to workload changing.
However, since the PSA algorithm lacks a global per-
spective for slab assignment, the performance still falls
short when compared with our locality-aware scheme.

Facebook Policy Facebook’s optimization of Mem-
cached [15] uses adaptive slab allocation strategy to bal-

Figure 2: Drawbacks of PSA

ance item age. In their design, if a class is currently evict-
ing items, and the next item to be evicted was used at
least 20% more recently than the average least recently
used item of all other classes, this class is identified as
needing more memory. The slab holding the overall least
recently used item will be reassigned to the needy class.
This algorithm balances the age of the least recently used
items among all classes. Effectively, the policy approxi-
mates the global LRU policy, which is inherently weaker
than optimal as shown by Brock et al. using the footprint
theory we will describe next [19].

The policies of default Memcached, Twemcache, Au-
tomove, and PSA all aim to equalize the eviction rate
among size classes. The Facebook policy aims to equal-
ize the age of the oldest item in size classes. We call
the former performance balancing and the latter age bal-
ancing. Later in the evaluation section, we will compare
these policies and show their relative strengths and weak-
nesses.

2.2 The Footprint Theory
The locality theory is by Xiang et al., who define a metric
called footprint and propose a linear time algorithm to
measure it [16] and a formula to convert it into the miss
ratio [20]. Next we give the definition of footprint and
show its use in predicting the miss ratio.

The purpose of the footprint is to quantify the locality
in a period of program execution. An execution trace is
a sequence of memory accesses, each of which is rep-
resented by a memory address. Accesses can be tagged
with logical or physical time. The logical time counts the
number of accesses from the start of the trace. The phys-
ical time counts the elapsed time. An execution window
is a sub-sequence of consecutive accesses in the trace.

The locality of an execution window is measured by
the working-set size , which is the amount of data ac-
cessed by all its accesses [21]. The footprint is a function
fp(w) as the average working-set size for all windows of
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the same length w. While different window may have
different working-set size, fp(w) is unique. It is the ex-
pected working-set size for a randomly selected window.

Consider a trace abcca. Each element is a window
of length w = 1. The working-set size is always 1, so
fp(1) = 5/5 = 1. There are 4 windows of length w = 2.
Their working-set sizes are 2, 2, 1, and 2. The average,
i.e., the footprint, is fp(2) = 7/4. For greater window
lengths, we have fp(3) = 7/3 and fp(w) = 3 for w = 4,5,
where 5 is the largest window length, i.e., the length of
the trace. We also define fp(0) = 0.

Although the footprint theory is proposed to model lo-
cality of data accesses of a program, the same theory can
be applied in modeling the locality of Memcached re-
quests where data access addresses are replaced by the
keys. The linear time footprint analysis leads to linear
time MRC construction and thus a low-cost slab alloca-
tion prediction, as discussed next.

3 Locality-aware Memory Allocation

This section describes the design details of LAMA.

3.1 Locality-based Caching
Memcached allocates the memory at the granularity of
a slab, which is 1MB in the default configuration. The
slabs are partitioned among size classes.

For every size class, Memcached allocates its items in
its collection of slabs. The items are ordered in a prior-
ity list based on their last access time, forming an LRU
chain. The head item of the chain has the most recent
access, and the tail item the least recent access. When all
the allocated slabs are filled, eviction will happen when
a new item is accessed, i.e. a cache miss. When the tail
item is evicted, its memory is used to store the new item,
and the new item is re-inserted at the first position to be-
come the new head.

In a web-service application, some portion of items
may be frequently requested. Because of their frequent
access, the hot items will reside near the top of the LRU
chain and hence be given higher priority to cache. A
class’ capacity, however, is important, since hot items
can still be evicted if the amount of allocated memory is
not large enough.

A slab may be reassigned from one size class to an-
other. The SlabReassign routine in Memcached releases
a slab used in a size class and gives it to another size
class. The reassignment routine evicts all the items that
are stored in the slab and removes these items from the
LRU chain. The slab is now unoccupied and changes
hands to store items for the new size class.

Memcached may serve multiple applications at the
same time. The memory is shared. Since requests are

pooled, the LRU chain gives the priority of all items
based on the aggregate access from all programs.

3.2 MRC Profiling

We split the global access trace into different sub-traces
according to their classes. With the sub-trace of each
class, we generate the MRCs as follows. We use a hash
table to record the last access time of each item. With this
hash table, we can easily compute the reuse time distri-
bution rt , which represents the number of accesses with a
reuse time t. For access trace of length n, if the number of
unique data is m, the average number of items accessed
in a time window of size w can be calculated using Xi-
ang’s formula [16]:

fp(w) = m− 1
n−w+1

(
m

Â
i=1

( fi −w)I( fi > w)

+
m

Â
i=1

(li −w)I(li > w)

+
n−1

Â
t=w+1

(t −w)rt) (1)

The symbols are defined as:

• fi: the first access time of the i-th datum

• li: the reverse last access time of the i-th datum. If
the last access is at position x, li = n+1−x, that is,
the first access time in the reverse trace.

• I(p): the predicate function equals to 1 if p is true;
otherwise 0.

• rt : the the number of accesses with a reuse time t.

Now we can profile the MRC using fp distribution.
The miss ratio for cache size of x is the fraction of reuses
that have an average footprint smaller than x:

MRC(x) = 1−
Â{t| f p(t)<x} rt

n
(2)

3.3 Target Performance

We consider two types of target performance: the total
miss ratio and the average response time.

If Class i has taken Si slabs, and Ii represents the num-
ber of items per slab in Class i. Then there should be
Si ⇤ Ii items in this class. The miss ratio of this class
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should be MRi = MRCi(Si ⇤ Ii). Let the number of re-
quests of Class i be Ri. The total miss ratio is calculated
as:

Miss Ratio =
Ân

i=1 Ri ⇤MRi

Ân
i=1 Ri

=
Ân

i=1 Ri ⇤MRCi(Si ⇤ Ii)

Ân
i=1 Ri

(3)
Let the average request hit time for Class i be Th(i),

and the average request miss time (including retrieving
data from database and setting back to Memcached) be
Tm(i). The average request time ARTi of Class i now can
be presented as:

ARTi = MRi ⇤Tm(i)+(1−MRi)⇤Th(i) (4)

The overall ART of the Memcached server is:

ART =
Ân

i=1 Ri(ARTi)

Ân
i=1 Ri

(5)

We target the overall performance by all size classes
rather than equal performance in each class. The metrics
take into account the relative total demands for different
size classes. If we consider a typical request as the one
that has the same proportional usage, then the optimal
performance overall implies the optimal performance for
a typical request.

3.4 Optimal Memory Repartitioning
When a Memcached server is started, the available mem-
ory is allocated by demand. Once the memory is fully
allocated, we have a partition among all size classes.
LAMA periodically measures the MRCs and repartitions
the memory.

The optimization problem is as follows. Given the
MRC for each size class, how to divide the memory
among all size classes so that the target performance is
maximized, i.e., the total miss ratio or the average re-
sponse time is minimized?

The repartitioning algorithm has two steps:

Step 1: Cost Calculation First we split the access
trace into sub-traces based on their classes. For each sub-
trace T [i] of Class i, we use the procedure described in
Section 3.2 to calculate the miss ratio M[i][ j] when al-
located j slabs, 0  j  MAX, where MAX is the total
number of slabs. We compute the cost for different opti-
mization targets.

To minimize total misses, Cost[i][ j] is the number of
misses for Class i given its allocation j as follows:

Cost[i][ j] M[i][ j]⇤ length(T [i]).
To minimize ART, Cost[i][ j] is the average access time

of Class i as follows:

Cost[i][ j] (M[i][ j]⇤Tm[i]+
(1−M[i][ j])⇤Th[i])⇤ length(T [i])

Algorithm 1 Locality-aware Memory Allocation

Input: Cost[][] // cost function, could be OPT MISS or
OPT ART

Input: Sold [] // number of slabs in each class
Input: MAX // total number of slabs

1: function SLABREPARTITION(Cost[][],Sold [],MAX)
2: F [][] +•
3: . F [][] minimal cost for Class 1..i using j slabs
4: for i  1..n do
5: for j  1..MAX do
6: for k  0.. j do
7: Temp  F [i−1][ j− k]+Cost[i][k]
8: . Give k slabs to Class i.
9: if Temp < F [i][ j] then

10: F [i][ j] Temp
11: B[i][ j] k
12: . B[][] saves the slab allocation.
13: end if
14: end for
15: end for
16: end for
17: Temp  MAX
18: for i  n..1 do
19: Snew[i] B[i][Temp]
20: Temp  Temp−B[i][Temp]
21: end for
22: MRold  0
23: MRnew  0
24: for i  n..1 do
25: MRold  MRold +Cost[i][Sold [i]]
26: MRnew  MRnew +Cost[i][Snew[i]]
27: end for
28: if MRold −MRnew > threshold then
29: SlabReassign(Sold [],Snew[])
30: end if
31: end function

Step 2: Repartitioning We design a dynamic pro-
gramming algorithm to find new memory partitioning (
Algorithm 1). Lines 4 to 16 show a triple nested loop.
The outermost loop iterates the set of size classes i from
1 to n. The middle loop iterates the number of slabs j
from 1 to MAX. The target function, F [i][ j], stores the
optimal cost of allocating j slabs to i size classes. The
innermost loop iterates the allocation for the latest size
class to find this optimal value.

Once the new allocation is determined, it is compared
with the previous allocation to see if the performance im-
provement is above a certain threshold. If it is, slabs are
reassigned to change the allocation. Through this pro-
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cedure, LAMA reorganizes multiple slabs across all size
classes. The dynamic programming algorithm is similar
to Brock et al. [19] but for a different purpose.

The time complexity of the optimization is O(n ⇤
MAX2), where n is the number of size classes and MAX
is the total number of slabs.

In order to avoid the cost of reassigning too many
slabs, we set N slabs as the upper bound on the total reas-
signment. At each repartitioning, we choose N slabs with
the lowest risk. We use the risk definition of PSA, which
is the ratio between reference rate and number of slabs
for each class. The re-allocation is global, since multi-
ple candidate slabs are selected from possibly many size
classes. In contrast, PSA selects a single candidate from
one size class.

The bound N is the maximal number of slab reassign-
ments. In the steady state, the repartitioning algorithm
may decide that the current allocation is the best possi-
ble and does not reassign any slab. The number of actual
reassignments can be 0 or any number not exceeding N.

Algorithm 1 optimizes the overall performance. The
solution may not be fair, i.e., different miss ratios across
size classes. Fairness is not a concern at the level of
memory allocation. Facebook solves the problem at a
higher level by running a dedicated Memcached server
for critical applications [17]. If fairness is a concern,
Algorithm 1 can use a revised cost function to discard
unfair solutions and optimize both for performance and
fairness. A recent solution is the baseline optimization
by Brock et al. [19] and Ye et al. [22].

3.5 Performance Prediction
We can also predict the performance of the default Mem-
cached. Using Equation1 in Section 3.2, we can obtain
the average footprint of any window size. For a stable ac-
cess pattern, we define the request ratio of Class i as qi.
Let the number of requests during the cold start period be
M. The allocation for Class i by the default Memcached
is the number of items it requests during this period .
We predict this allocation as fpi(M ⇤ qi). The length M
of the cold-start period, i.e., the period during which the
memory is completely allocated, satisfies the following
equation:

n

Â
i=1

fpi(M ⇤qi) =C (6)

Once we get the expected items (slabs) each class can
take, the system performance can be predicted by Equa-
tion 3. By predicting M and the memory allocation for
each class, we can predict the performance of default
Memcached for all memory sizes. The predicted allo-
cation is similar to the natural partition of CPU cache

memory, as studied in [19]. Using the footprint the-
ory, our approach delivers high accuracy and low over-
head. This is important for a system operator to deter-
mine how many caches should be deployed to achieve
required Quality of Service (QoS).

4 Evaluation

In this section, we evaluate LAMA in detail, includ-
ing describing the experimental setup for evaluation and
comprehensive evaluation results and analysis.

4.1 Experimental setup

LAMA Implementation We have implemented LAMA
in Memcached-1.4.20. The implementation includes
MRC analysis and slab reassignment. The MRC analysis
is performed by a separate thread. Each analysis samples
recent 20 million requests which are stored using a circu-
lar buffer. The buffer is shared by all Memcached threads
and protected by a mutex lock for atomic access. During
the analysis, it uses a hash table to record the last access
time. The cost depends on the size of the items being
analyzed. It is 3% - 4% of all memory depending for
the workload we use. Slab reassignment is performed
by dynamic programming as shown in Section 3.4. Its
overhead is negligible, both in time and in space.

System Setup To evaluate LAMA and other strategies,
we use a single node, Intel(R) Core(TM) I7-3770 with
4 cores, 3.4GHz, 8MB shared LLC with 16GB memory.
The operating system is Fedora 18 with Linux-3.8.2. We
set 4 server threads to test the system with memory ca-
pacity from 128MB to 1024MB. The small amount of
memory is a result of the available workloads we could
find (in previous papers as described next). In real use,
the memory demand can easily exceed the memory ca-
pacity of modern systems. For example, one of our work-
loads imitates the Facebook setup that uses hundreds of
nodes with over 64GB memory per node [17].

We measure both the miss ratio and the response time,
as defined in Section 3.4. In order to measure the latter,
we set up a database as the backing store to the Mem-
cached server. The response time is the wall-clock time
used for each client request by the server, including the
cost of the database access. Memcached is running on lo-
cal ports and the database is running from another server
on the local network.

Workloads Three workloads are used for different as-
pects of the evaluation:

• The Facebook ETC workload to test the steady-
state performance. It is generated using Muti-
late [23], which emulates the characteristics of the
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ETC workload at Facebook. ETC is the closest
workload to a general-purpose one, with the high-
est miss ratio in all Facebook’s Memcached pools.
It is reported that the installation at Facebook uses
hundreds of nodes in one cluster [17]. We set the
workload to have 50 million requests to 7 million
data objects.

• A 3-phase workload to test dynamic allocation.
It is constructed based on Carra et al. [14]. It has
200 million requests to data items in two working
sets, each of which has 7 million items. The first
phase only accesses the first set following a gener-
alized Pareto distribution with location q = 0, scale
f = 214.476 and shape k = 0.348238, based on
the numbers reported by Atikoglu et al. [17]. The
third phase only accesses the second set following
the Pareto distribution q = 0, f = 312.6175 and
k = 0.05. The middle, transition phase increasingly
accesses data objects from the second set.

• A stress-test workload to measure the over-
head. We use the Memaslap generator of libmem-
cached [24], which is designed to test the through-
put of a given number of server threads. Our setup
follows Saemundsson et al. [6]: 20 million records
with 16 byte keys and 32 byte values, and random
requests generated by 10 threads. The proportion
of GET requests to SET is 9:1, and 100 GETs are
stacked in a single MULTI-GET request.

4.2 Facebook ETC Performance
We test and compare LAMA with the policies of default
Memcached, Automove, PSA, Facebook, and Twitter’s
Twemcache (described in Section 2). In our experiments,
Automove finds no chance of slab reassignment, so it has
the same performance as Memcached. LAMA has two
variants: LAMA OPT MR, which tries to minimize the
miss ratio; and LAMA OPT ART, which tries to mini-
mize the average response time. Figures 3 and 4 show
the miss ratio and ART over time from the cold-start to
steady-state performance. The total memory is 512MB.

The default Memcached and PSA are designed to bal-
ance the miss ratio among size classes. LAMA tries to
minimize the total miss ratio. Performance optimization
by LAMA shows a large advantage over performance
balancing by Memcached and PSA. If we compare the
steady-state miss ratio, LAMA OPT MR is 47.20% and
18.08% lower than Memcached and PSA. If we compare
the steady-state ART, LAMA OPT ART is 33.45% and
13.17% lower.

There is a warm-up time before reaching the steady
state. LAMA repartitions at around every 300 seconds
and reassigns up to 50 slabs. We run PSA at 50 times

the LAMA frequency, since PSA reassigns 1 slab each
time. LAMA, PSA and Memcached converge to the
steady state at the same speed. Our implementation of
optimal allocation (Section 4.6) shows that this speed is
the fastest.

The Facebook method differs from others in that it
seeks to equalize the age of the oldest items in each
size class. In the steady state, it performs closest to
LAMA, 5.4% higher than LAMA OPT MR in the miss
ratio and 6.7% higher than LAMA OPT ART in the av-
erage response time. The greater weakness, however, is
the speed of convergence, which is about 4 times slower
than LAMA and the other methods.

Twemcache uses random rather than LRU replace-
ment. In this test, the performance does not stabilize as
well as the other methods, and it is generally worse than
the other methods. Random replacement can avoid slab
calcification, which we consider in Section 4.5.

Next we compare the steady-state performance for
memory sizes from 128MB to 1024MB in 64MB in-
crements. Figures 5 and 6 show that the two LAMA
solutions are consistently the best at all memory sizes.
The margin narrows in the average response time when
the memory size is large. Compared with Memcached,
LAMA reduces the average miss ratio by 41.9% (22.4%–
46.6%) for the same cache size, while PSA and Face-
book reduce the miss ratio by 31.7%(9.1%–43.9%) and
37.6%(21.0%–47.1%). For the same or lower miss
ratio, LAMA saves 40.8% (22.7%–66.4%) memory
space, PSA and Facebook save 29.7%(14.6%–46.4%)
and 36.9%(15.4%–55.4%) respectively.

Heuristic solutions show strength in specific cases.
Facebook improves significantly over PSA for smaller
memory sizes (in the steadstate). With 832MB and larger
memory, PSA catches up and slightly outperforms Face-
book. At 1024MB, Memcached has a slightly faster ART
than both PSA and Facebook. The strength of optimiza-
tion is universal. LAMA maintains a clear lead against
all other methods at all memory sizes.

Compared to previous methods on different memory
sizes, LAMA converges among the fastest and reaches
a greater steady-state performance. The steady-state
graphs also show the theoretical upper bound perfor-
mance (TUB), which we discuss in Section 4.6.

4.3 MRC Accuracy

To be optimal, LAMA must have the accurate MRC. We
compare the LAMA MRC, obtained by sampling and
footprint version, with the actual MRC, obtained by mea-
suring the full-trace reuse distance. We first show the
MRC in individual size classes of Facebook ETC work-
load. There are 32 size classes. The MRCs differ in most
cases. Figure 7 shows three MRCs to demonstrate. The

7



64 2015 USENIX Annual Technical Conference USENIX Association

Figure 3: Facebook ETC miss ratio from cold-start to
steady state

Figure 4: Average response time from cold-start to
steady state

Figure 5: Steady-state miss ratio with different memory sizes

Figure 6: Steady-state average response time when using different amounts of memory

three curves have different shapes and positions in the
plots, which means that data locality differs in differ-
ent size classes. The shape of the middle curve is not
entirely convex, which means that the traditional greedy
solution, i.e. Stone et al. [25] in Section 5, cannot always
optimize, and the dynamic-programming method in this
work is necessary.

Figure 7 shows that the prediction is identical to the
actual miss ratio for these size classes. The same accu-
racy is seen in all size classes. Table 1 shows the overall
miss ratio of default Memcached for memory sizes from
128MB to 1024MB and compares between the predic-
tion and the actual. The steady-state allocation prediction
for default Memcached uses Equation 6 in Section 3.5.
The prediction miss ratio uses Equation 4 based on pre-

dicted allocation. The actual miss ratio is measured from
each run. The overall miss ratio drops as the memory
size grows. The average accuracy in our test is 99.0%.
The high MRC accuracy enables the effective optimiza-
tion that we have observed in the last section.

4.4 LAMA Parameters

LAMA has two main parameters as explained in Sec-
tion 3.4: the repartitioning interval M, which is the num-
ber of items accesses before repartitioning; and the reas-
signment upper bound N, which is the maximal number
of slabs reassigned at repartitioning. We have tested dif-
ferent values of M and N to study their effects. In this
section, we show the performance of running the Face-

8
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Figure 7: MRCs for class 1&5&9

Table 1: prediction miss ratio vs. real miss ratio

Capacity Real Prediction Accuracy

128MB 87.56% 88.21% 99.26%
256MB 74.68% 75.40% 99.05%
384MB 62.34% 62.63% 99.54%
512MB 50.34% 50.83% 99.04%
640MB 39.36% 39.52% 99.60%
768MB 29.04% 29.27% 99.21%
896MB 20.18% 20.61% 97.91%

1024MB 13.36% 13.46% 99.26%

book ETC workload with 512MB memory.
Figure 8 shows the dynamic miss ratio over the time.

In all cases, the miss ratio converges to a steady state.
Different M,N parameters affect the quality and speed of
convergence. Three values of M are shown: 1, 2, and 5
million accesses. The smallest M shows the fastest con-
vergence and the lowest steady-state miss ratio. They are
the benefits of frequent monitoring and repartitioning.
Four values of N are shown: 10, 20, 50, and 512. Con-
vergence is faster with a larger N. However, when N is
large, 512 especially, the miss ratio has small spikes be-
fore it converges, caused by the increasing cost of slab re-
assignment. For fast and steady convergence, we choose
M = 1,000,000 and N = 50 for LAMA.

4.5 Slab Calcification
LAMA does not suffer from slab calcification. Partly
to compare with prior work, we use the 3-phase work-
load (Section 4.1) to test how LAMA adapts when the
access pattern changes from one steady state to another.
The workload is the same as the one used by Carra et
al. [14] using 1024MB memory cache to evaluate the per-
formance of different strategies. Figure 9 shows the miss
ratio over time obtained by LAMA and other policies.
The two vertical lines are phase boundaries.

LAMA has the lowest miss ratio in all three phases. In
the transition Phase 2, the miss ratio has 3 small, brief in-
creases due to the outdated slab allocation based on the
previous access pattern. The allocation is quickly up-
dated by LAMA repartitioning among all size classes. In

Figure 8: Different combinations of the repartitioning in-
terval M and the reassignment upperbound N

Figure 9: Miss ratio over time by different policies

LAMA, the slabs are “liquate” and not calcified.
Compared with LAMA, the miss ratio of the default

Memcached is about 4% higher in Phase 1, and the
gap increases to about 7% in Phase 3, showing the ef-
fect in Phase 3 of the calcified allocation made in Phase
1. PSA performs very well but also sees its gap with
LAMA increases in Phase 3, indicating that PSA does
not completely eradicate calcification. Facebook uses
global LRU. Its miss ratio drops slowly, reaches the level
of PSA in Phase 2, and then increases fairly rapidly.
The reason is the misleading LRU information when the
working set changes. The items of the first set stay a long
time in the LRU chain. The random eviction by Twem-
cache does not favor the new working set over the previ-
ous working set. There is no calcification, but the perfor-

9
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Table 2: Cost of MRC measurement in LAMA compared
to reuse distance (RD)

Size Length RD MRC LAMA MRC cost
class (millions) (secs) (secs) reduction

1 1.5953 3.6905 0.1159 96.85%
2 1.8660 4.5571 0.1378 96.97%
3 2.1091 5.2550 0.1597 96.96%
4 2.1140 5.3431 0.1598 97.00%
5 2.0646 5.2025 0.1554 97.01%
6 2.0875 5.2588 0.1585 96.98%
7 1.8725 4.6751 0.1404 96.99%
8 1.5546 3.7395 0.1131 96.97%
9 1.3022 3.0752 0.0932 96.96%

mance is significantly worse than others (except for the
worst of Facebook).

4.6 Theoretical Upper Bound
To measure the theoretical upper bound (TUB), we first
measure the actual MRCs by measuring the full-trace
reuse distance in the first run, compute the optimal slab
allocation using Algorithm 1, and re-run a workload to
measure the performance. The results for Facebook ETC
were shown in Figures 5 and 6. The theoretical upper
bound (TUB) gives the lowest miss ratio/ART and shows
the maximal potential for improvement over the default
Memcached. LAMA realizes 97.6% of the potential in
terms of miss ratio and 92.1% in terms of ART.

We have also tested the upper bound for the 3-phase
workload. TUB shows the maximal potential for im-
provement over the default Memcached. In this test,
LAMA realizes 99.2% of the potential in phase 3, while
the next best technique, PSA, realizes 41.5%. At large
memory sizes, PSA performs worse than the default
Memcached. It shows the limitation of heuristic-based
solutions. A heuristic may be more or less effective
compared to another heuristic, depending on the context.
Through optimization, LAMA matches or exceeds the
performance of all heuristic solutions.

4.7 LAMA Overhead
To be optimal, LAMA depends on accurate MRCs for
all size classes at the slab granularity. In our imple-
mentation, we buffer and analyze 20 million requests be-
fore each repartitioning. In Table 2, we list the overhead
of MRC measurement for Facebook ETC for the first 9
size classes. MRC based on reuse distance measurement
(RD MRC), takes 3 to 5.4 seconds for each size class.
LAMA uses the footprint to measure MRC. The cost is
between 0.09 and 0.16 second, a reduction of 97% (or
equivalently, 30 times speedup). In our experiments, the

repartitioning interval is about 300 seconds. The cost of
LAMA MRC, 0.1 second per size class, is acceptable for
online use.

We have shown that LAMA reduces the average re-
sponse time. A question is whether the LAMA overhead
affects some requests disproportionally. To evaluate, we
measure the cumulative distribution function (CDF) for
the response time of LAMA and the default Memcached.
The results are shown in Figure 10. The workload is ETC
workload, and the memory size is 1024MB.

Figure 10: CDFs of request response latency

99.9% of the response times in LAMA are the same
or lower than default Memcached. LAMA reduces the
latency from over 512ms to less than 128ms for the next
0.09% requests. The latency is similar for the top 0.001%
longest response times. The most significant LAMA
overhead is the contention on the mutex lock when mul-
tiple tasks record their item access in the circular buffer.
This contention and the other LAMA overheads do not
cause a latency increase in the statistical distribution.
LAMA’s improved performance, however, reduces the
latency by over 75% for 90% of the longest running re-
quests.

Figure 11: Throughput vs. number of threads

In this last experiment, we evaluate the throughput us-
ing stress test described in Section 4.1. The purpose is

10
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to test the degradation when LAMA is activated. We re-
peat each test 10 times and report the average through-
put. Figure 11 shows the overall throughput as different
number of threads are used. Although the throughput of
LAMA is lower than the default Memcached in the stress
test, the average degradation is only 3.14%. In compar-
ison, the Memcached performance profiler MIMIR [6],
which we will introduce in Section 5, brings 8.8% degra-
dation for its most accurate tracking. In actual use,
LAMA is activated at the beginning and whenever the
request pattern changes. Once LAMA produces the op-
timal partition, there is only the benefit and no overhead,
as long as the system performance maintains stable.

5 Related Work

We have discussed related techniques on memory allo-
cation in Section 2. Below we discuss additional related
work in two other areas.

MRC Measurement Fine-grained MRC analysis is
based on tracking the reuse distance or LRU stack dis-
tance [26]. Many techniques have been developed to re-
duce the cost of MRC profiling, including algorithmic
improvement [27], hardware-supported sampling [28,
29], reuse-distance sampling [30, 31, 32], and parallel
analysis [33, 34, 35]. Several techniques have used MRC
analysis in online cache partitioning [36, 37, 29], page
size selection [38], and memory management [39, 40].
The online techniques are not fine-grained. For exam-
ple, RapidMRC has 16 cache sizes [29], and it requires
special hardware for address sampling.

Given a set of cache sizes, Kim et al. divided the
LRU stack to measure their miss ratios [40]. The cost is
proportional to the number of cache sizes. Recently for
Memcached, Bjornsson et al. developed MIMIR, which
divides the LRU stack into variable sized buckets to ef-
ficiently measure the hit ratio curve (HRC) [6]. Both
methods assume that items in cache have the same size,
which is not the case in Memcached.

Recent work shows a faster solution using the footprint
(Section 2.2), which we have extended in LAMA (Sec-
tion 3.2). It can measure MRCs at per-slab granularity
for all size classes with a negligible overhead (Section 4).
For CPU cache MRC, the correctness of footprint-based
prediction has been evaluated and validated initially for
solo-use cache [16, 20]. Later validation includes opti-
mal program symbiosis in shared cache [41] and a study
on server cache performance prediction [42]. In Section
4.3, we have evaluated the prediction for Memcached
size classes and shown a similar accuracy.

MRC-based Cache Partitioning The classic method
in CPU cache partitioning is described by Stone et
al. [25]. The method allocates cache blocks among N
processes so that the miss-rate derivatives are as equal
as possible. They provide a greedy solution, which allo-
cates the next cache block to the process with the great-
est miss-rate derivative. The greedy solution is of lin-
ear time complexity. However, the optimality depends
on the condition that the miss-rate derivative is mono-
tonic. In other words, the MRC must be convex. Suh
et al. gave a solution which divides MRC between non-
convex points [43]. Our results in Section 4.3 show that
the Memcached MRC is not always convex.

LAMA is based on dynamic programming and does
not depend on any assumption about MRC curve prop-
erty. It can use any cost function not merely the miss
ratio. We have shown the optimization of ART. Other
possibilities include fairness and QoS. The LAMA opti-
mization is a general solution for optimal memory par-
titioning. A similar approach has been used to partition
CPU cache for performance and fairness [22, 19].

6 Conclusion

This paper has described LAMA, a locality-aware mem-
ory allocation for Memcached. The technique measures
the MRC for all size classes periodically and repartitions
the memory to reduce the miss ratio or the average re-
sponse time. Compared with the default Memcached,
LAMA reduces the miss ratio by 42% using the same
amount of memory, or it achieves the same memory uti-
lization (miss ratio) with 41% less memory. It outper-
forms four previous techniques in steady-state perfor-
mance, the convergence speed, and the ability to adapt
to phase changes. LAMA predicts MRCs with a 99% ac-
curacy. Its solution is close to optimal, realizing 98% of
the performance potential in a steady-state workload and
99% of the potential in a phase-changing workload.
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