
LiU: Hiding Disk Access Latency for HPC

Applications with a New SSD-Enabled Data Layout

Dachuan Huang† Xuechen Zhang‡ Wei Shi♮† Mai Zheng† Song Jiang∗ Feng Qin†

†Dept. of Computer Science and Engineering ‡School of Computer Science

The Ohio State University Georgia Institute of Technology

♮ Dept. of Computer Science and Technology ∗Dept. of Electrical and Computer Engineering

Tsinghua University Wayne State University

Abstract—Unlike in the consumer electronics and personal
computing areas, in the HPC environment hard disks can
hardly be replaced by SSDs. The reasons include hard disk’s
large capacity, very low price, and decent peak throughput.
However, when latency dominates the I/O performance (e.g.,
when accessing random data), the hard disk’s performance can
be compromised. If the issue of high latency could be effectively
solved, the HPC community would enjoy a large, affordable
and fast storage without having to replace disks completely with
expensive SSDs.

In this paper, we propose an almost latency-free hard-disk-
dominated storage system called LiU for HPC. The key technique
is leveraging limited amount of SSD storage for its low-latency
access, and changing data layout in a hybrid storage hierarchy
with low-latency SSD at the top and high-latency hard disk at
the bottom. If a segment of data would be randomly accessed,
we lift its top part (the head) up in the hierarchy to the SSD
and leave the remaining part (the body) untouched on the disk.
As a result, the latency of accessing this whole segment can be
removed because access latency of the body can be hidden by the
access time of the head on the SSD. Combined with the effect
of prefetching a large segment, LiU (Lift it Up) can effectively
remove disk access latency so disk’s high peak throughput can
now be fully exploited for data-intensive HPC applications.

We have implemented a prototype of LiU in the PVFS parallel
file system and evaluated it with representative MPI-IO micro-
benchmarks, including mpi-io-test, mpi-tile-io, and ior-mpi-io, and
one macro-benchmark BTIO. Our experimental results show
that LiU can effectively improve the I/O performance for HPC
applications, with the throughput improvement ratio up to 5.8.
Furthermore, LiU can bring much more benefits to sequential-
I/O MPI applications when the applications are interfered by
other workloads. For example, LiU improves the I/O throughput
of mpi-io-test, which is under interference, by 1.1-3.4 times, while
improving the same workload without interference by 15%.

I. INTRODUCTION

Some mission-critical systems (e.g. [1]) and a few ex-

perimental prototype systems (e.g. Gordon [12]) pursue I/O

performance without much consideration of the cost. However,

for most HPC systems it is impractical to replace the hard

disks completely with SSDs, even when I/O performance is

important for their workloads. There are two main reasons.

First, data-intensive applications, which become increasingly

popular on today’s HPC systems, usually have a huge amount

of data as input. These data are stored in tens of thousands

of hard disks. Replacing all these disks with SSDs for high-

performance data access is too expensive. Second, the hard

disk has many advantages that match the needs of HPC well,

including large capacity, rapidly decreasing per-GB price, and

decent peak throughput when accessed sequentially.

On the other hand, the hard disk has its well-known

Achilles’ heel in performance, which is access latency. As long

as the requested data is not at the current position of the disk

head, the hard disk has to initiate time-consuming mechanical

operations, i.e., spend potentially long latency time, to relocate

the disk head before it can start data access. If substantial

amount of random requests are involved in the disk access, the

latency would turn a hard disk into a device of unacceptably

poor performance. If this latency issue cannot be effectively

addressed, then hard disks cannot meet the requirements of

HPC systems. As a result, we cannot benefit from disks’

appealing advantages.

Equipped with a limited amount of SSD space, we could

remove the latency associated with disk access for HPC

applications so that the overall performance can be competitive

again even compared purely with the SSD. While using

SSD for caching or using main memory for prefetching can

hide disk access time, which includes access latency, some

unique characteristics of HPC applications challenge these

conventional practices.

Recent studies [14], [20], [24] have proposed hybrid storage

systems in which SSD is used as a cache for the hard disk

to store small and frequently accessed data items, such as

small files and metadata. These approaches can be effective

for I/O requests that have strong temporal locality. However,

in the HPC environment, workloads often exhibit much weaker

temporal locality with one-time or limited times of access in

large data sets, making the caching strategy less attractive.

Prefetching can be effective in hiding disk latency if a long

sequence of data access can be accurately predicted. However,

in a HPC system multiple processes running on different

compute nodes simultaneously issue requests to different files

or different parts of a large file, it is difficult to prefetch in the

right order, and even if accurate prefetching can be initialized,

requests for data on different locations on the disk can still

incur significant latencies, which are hard to be hidden for an

I/O-intensive application. As a result, the disk latency problem

can still be a major obstacle that limits I/O performance in the

HPC systems.

This research is to provide a storage system that mainly

consists of hard disks and is made almost latency-free with

the use of a limited amount of SSDs. Instead of caching all

recently or frequently accessed data into the SSD, which could

consume exceedingly large amount of SSD space and may not

be necessary, we organize SSD and hard disk into a storage

hierarchy and change the data layout in the storage system. In

the hierarchy, the SSD logically stays above the disk. For a

segment of data that can be accessed together, we split it into

two sections, the head and the body. For the data segment that

is originally stored on the disk, we lift it up so that the head

section is placed in the SSD and the body section remains

in the disk. Because of this new data layout, the potential

long disk latency for accessing the segment can be eliminated

as described below: requests for the head and the body are

issued simultaneously to the SSD and the disk, respectively,

in an asynchronous fashion. The access of the head is served

by the SSD with minimal latency. The disk head relocation

time, or the latency, for accessing the body can be overlapped

with the access time of the head from the SSD. That is, right

after the head is served by the SSD, the body is ready to be

accessed at the disk and the only latency exposed to the user

of the segment is the very small SSD latency.

Figure 1 illustrates the effect of the latency hiding. Without

LiU, accessing a segment of data exposes a gap of latency

at the beginning of request service on the disk (Figure 1(a)),

while the ideal scenario is that the disk serves the request at the

disk’s peak throughput immediately after it receives the request

(Figure 1(c)). As shown in Figure 1(b), LiU leverages SSD’s

lower latency and higher throughput to fill the initial time

gap when the disk is relocating its head. Otherwise requester

cannot receive any data from the disk in this period. In addition

to the advantage on latency, LiU also has an advantage on

I/O throughput which could be potentially much larger than

what is illustrated in the figures. This is because a segment

can contain data to be accessed in the following multiple

requests. By accessing them together as one segment, rather

than multiple requests individually served on the disk, LiU can

further improve the disk’s efficiency.

The design of the new data layout scheme for the hybrid

storage system, as well as its implementation in a parallel

file system (PVFS2) are collectively called Lift-it-Up (LiU).

However, to be effective LiU has to address a number of

challenges in its design.

How to determine an appropriate segment size? There are

two requirements on the size. It must be large enough to fully

exploit the advantage of the hard disk’s sequential throughput.

In the meantime, it cannot be exceedingly large, because we

have to make sure that the accessed data would be needed

by the running programs in the future. An unnecessarily large

segment would lower this likelihood.

Fig. 1. A segment’s access time and real-time throughput during the access
when (a) LiU is not adopted, (b) LiU is adopted with the segment head served
at the SSD, and (c) an ideal latency-free disk is employed. In the figures, we
assume that the request for the segment is received at time 0, data start to be
available at time t1, the disk starts to make data available at time t2, and the
access is completed at time t3. As denoted, B1 and B2 are the disk’s and
SSD’s peak throughputs, respectively.

How to determine an appropriate head size? While a larger

head helps hide the disk latency for accessing the body access,

it consumes more SSD space and thus increases the system

cost. A head should has a well-calculated size to balance the

performance and the cost.

How to minimize the usage of the SSD space? We

should selectively lift segments up, or only segments that

are actively used or exhibit strong spatial locality are placed

on both the SSD level and the disk level in the hierarchy.

In other words, LiU needs to monitor data access patterns

and dynamically determine segments for lifting to maximize

performance benefit with minimal use of SSD space.

We summarize our contributions as follows:

• We propose a new storage hierarchy LiU for HPC systems

which is (almost) latency-free and has high throughput by

integrating the advantages of SSD (of very low latency)

and hard disk (of high throughput, large capacity, and low

cost).

• We design an intelligent data storage policy in the hierar-

chy, which could use minimal SSD space for the maximal

removal of disk latency. This is achieved by adaptively

changing data layout in the hierarchy to match workload

access pattern.

• We have built a prototype system of LiU, which is a

non-intrusive implementation as it only changes PVFS2

server-side code. It is highly portable and we do not see

any particular challenges to apply it to other parallel file

systems.

• We have evaluated LiU with representative MPI-IO

micro-benchmarks, including mpi-io-test, mpi-tile-io, and

ior-mpi-io, and one macro-benchmark, BTIO. Our exper-

imental results show that LiU improves the I/O perfor-

mance by up to 5.8 times.

The rest of this paper is organized as follows. Section II

describes the design of LiU, followed by the experimental

results presented in Section III. Section IV discusses related

works, and Section V concludes the paper.

II. THE DESIGN OF LiU

The objective of LiU is to eliminate disk latency by re-laying

out selected data segments onto disks and SSDs. This latency

is actually hidden by the SSD’s access time. In this section,

we will describe a design that not only has high-performance

but also is cost-effective and easy to be implemented. This is

achieved by adequately exploiting disk’s throughput advantage

and carefully using costly SSD space. To this end, there are

several issues to be addressed, including determining segment

size and its head size, selection of segments for lifting up, and

management of segments loaded into the DRAM buffer.

A. Positioning LiU in the Parallel File System

LiU is designed to be part of a parallel file system (e.g.,

PVFS2) for an optimized data layout and I/O request service.

A typical parallel file system has its client-side software on

the I/O nodes (or compute nodes where parallel programs

run) and its server-side software on the data nodes. Files are

striped across multiple data nodes with a fixed striping unit.

A metadata sever provides information about on which data

node(s) requested data are located. A client usually has to

contact the metadata server before issuing an I/O request to

the data node. If its requested data are distributed on more

than one data node, the client needs to issue multiple sub-

requests to the corresponding data nodes. On each data node,

the parallel file system relies on the local file system to access

data on the disk(s) attached to the node.

One design goal of LiU is simplicity. To this end, LiU is

implemented in the individual data nodes without coordination

among them. This choice can be justified by the LiU’s ability

of providing data access of much reduced latency. The ability

allows the client to see predictable and consistent service times

across sub-requests, which the client breaks a request into

and are issued to different data nodes, without communication

between clients and data nodes and coordination between data

nodes [23]. Specifically in PVFS2, on each data node there is

a server daemon, pvfs2-server, responsible for creating I/O

jobs (i.e., I/O requests). We instrument its code to add LiU’s

functional modules for optimized request scheduling and data

management.

In the design there are three modules at each data node.

They are responsible for re-laying out data and redirecting

requests, for buffering segments and measuring their access

locality, and for selecting segments for lifting, respectively.

Below we describe the design and considerations involved for

each of them.

B. Lifting a segment up

As we have mentioned, a selected data segment can have

its access latency removed by placing its head and body in the

SSD and the disk, respectively, or so-called being lifted up. For

an efficient segment management, LiU fixes the segment size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

Disk Latency (ms)

Disk Latency CDF with One-Byte Request

1G-random
10G-random

Fig. 2. Cumulative distribution function of disk latency

and uses segment as the basic unit to access any lifted data.

To implement this data re-laying out, we need to determine

the size of the head and the body and they have different

trade-offs.

First, the head’s size should be large enough to produce the

effect that the disk starts to read or write the requested data

at the disk’s peak throughput right upon receiving a request.

If we denote a request’s on-disk latency as t, and the disk’s

peak throughput as B, then the head size should be at least

B × t for hiding the disk latency. Assuming SSD has a much

smaller latency and higher throughput, the SSD would spend

a time less than t to finish accessing B × t amount of data.

Unfortunately, the latency t can vary from one request to

another widely. Furthermore, a request’s latency is usually

not predictable because it depends not only on the location

of this request but also on where the disk head currently is,

which depends on the last request just served by the disk.

Because of the I/O request scheduling internal and external

to the disk, LiU has to assume that the disk head is at a

random position in a large range and accordingly the latency

is a random number within a certain range. Accordingly, we

choose a t that is the 80 percent of all latency values collected

during a profiling run of a micro-benchmark, which repeatedly

issues one-byte request for data randomly located in a disk

region. As an example, Figure 2 shows two latency CDF

curves, with requests for data in the 1 GB and 10 GB files,

respectively. Assuming a long-term workload characteristics,

we can choose an appropriate curve to determine the latency.

In our prototyped system we choose the curve with 10 GB

file access and determine the t as 12 ms. Additionally, we

measured that the disk peak throughput B on our platform

is 70 MB/s. Therefore, the head size should be 70 MB/s ×

12 ms = 0.84 MB and we choose 1 MB as the head size for

management convenience.

Second, the body size should be large enough to take

advantage of the hard disk’s peak throughput. As data accessed

by one request must be sequential on the disk, a larger

request means a more sequential access and a throughput

closer to the peak one. However, an exceedingly large body

and segment, even if with a fixed head size, has the risk that

 0

 10

 20

 30

 40

 50

 60

 70

32K 64K 128K256K512K 1M 2M 4M 8M 16M 32M 64M 128M

T
hr

ou
gh

pu
t (

M
B

/s
)

Sizes of Random Requests (Bytes)

Disk Throughputs with Different Request Sizes

Fig. 3. Disk throughput with different sizes of random requests

only a fraction of the data in a segment are actually requested

by user programs before the segment is being evicted (see

Section II-D) and the disk bandwidth can be wasted. To make

a tradeoff, we need to identify a sufficiently small segment

that can enable a throughput close to the peak one. To this

end, we ran a micro-benchmark that issues fixed-size read

requests with randomized offsets in a 20 GB file in one of our

experimental disks. Figure 3 shows the disk throughput with

difference request sizes. From the figure we can see that before

the request size reaches around 4 MB, the throughput goes up

quickly with increasingly large requests. However beyond this

point, the trend of throughput improvement diminishes. For

this reason we choose the body size of a segment as 4 MB,

or the total segment size as 5 MB.

To lift up a segment, we copy its head to the SSD. By

copying instead of moving, LiU can conveniently change the

layout of the segment to its original, or de-lift the segment,

when the segment is no longer actively used.

C. Re-Shaping I/O Traffic

For any lifted segment of strong access locality, or of a

locality value larger than a pre-defined threshold (more details

provided later), if a read request asking for its data but the data

has not been loaded in the buffer yet, LiU holds on the request.

And then LiU issues an asynchronous I/O request to the disk

for the segment’s body. Expecting the request to the disk would

take a relatively long service time, LiU immediately sends a

request to the SSD for the head. In this way, SSD can quickly

stream the requested data into the buffer while the disk is still

moving its disk head to the segment body. After the segment

is retrieved into the buffer, LiU uses the data in the buffer to

serve the read request.

With this data access schedule, a segment can be efficiently

loaded in the buffer in an almost latency-free manner. If the

initial read request that triggers the segment access asks for

all or a major part of data in the segment, the request’s latency

is largely eliminated. Otherwise, if there are many requests,

each for a portion of data contained in the segment, arriving

later than the initial request or possibly after the segment

is buffered, their latencies are also reduced or eliminated.

Because LiU requires existence of a strong locality to conduct

the segment-based access, the above scenarios are highly likely

to occur and the average latency of the involved requests can

be significantly reduced. However, there still can be a few

of high-latency requests, including the aforementioned initial

request, as the access of the segment can take a relatively long

time. To address the issue, LiU adopts two optimizations to

reduce latency for requests arriving before the entire segment

is in the buffer. First, if a request is only for data in the head

and the data is not being accessed by another request, LiU

immediately issues this request to the SSD. Second, instead

of sending one large request to the disk for the body, LiU

evenly divides the body into a number of sections, which is

four by default in its prototype, and sends multiple smaller

asynchronous requests, each for one section, to the disk.

Without having to wait for the entire body to be ready in the

buffer, a process can obtain its data as long as the section(s)

containing the data are loaded.

For a write request, LiU relies on the system’s write-back

policy to buffer dirty data and initiate batched writes to the

disk for a high I/O throughput. For any written data that is

located in a lifted segment, LiU re-directs them to the SSD.

For a segment that is being de-lifted, LiU flushes its head in

SSD back to disk, if it’s not changed, then de-lifting operation

is to simply delete the head in SSD. To avoid any consistency

issue, LiU flushes the system buffer before it starts to lift up

a new segment.

D. Buffering Segments and Measuring Access Locality

Although SSD stores relatively small share of data in the

hybrid storage managed by LiU (20% of lifted segments in our

prototype), the demand on its capacity can still be substantial if

it indiscriminately lifts every segment on the disk. To address

the issue, LiU lifts only selected segments. There is one

important factor involved in the selection. The access of the

segment must have strong locality. That is to say, when a

segment is loaded into the buffer, all or most of its data must

be actually requested by processes before the data leave the

buffer.

LiU maintains a buffer for storing recently loaded segments.

The buffer has two purposes. One is to provide the caching

space for segment data. This is especially important in a

parallel execution environment, as requests for the data in

a segment can be issued by different processes of an MPI

program and accordingly arrive at different times. For an

efficient use of the buffer, LiU applies the LRU algorithm

to decide the victim segment for replacement if no space is

available for a newly loaded one. The other is to measure

the spatial locality, which is quantified in this paper as the

percentage of a segment’s data that has been requested by

users’ processes after the segment is loaded into the buffer and

before it is evicted out of the buffer. As segment is the unit

for LiU to access the lifted data in the storage, a weak locality

means wasting I/O bandwidth as well as buffer space. To

measure the locality, LiU flags the data in a segment when they

are requested and calculate the segment’s locality, a percentage

value, when the segment is replaced.

Apparently a segment of weak locality should not be loaded

into the buffer at all, even if it has been lifted. However, such

segment also needs to have its locality evaluated because its

locality could rise and accordingly may need to be loaded in

its next access. To this end, LiU monitors access of un-loaded

segments, including un-lifted segments and lifted segments

with sufficiently weak locality. When data in such a segment

is requested, LiU treats it as a ghost segment (with only

metadata created) and manages it in the same way as regular

(i.e., buffered) segments in the LRU replacement. In the LRU

algorithm for managing the segment buffer, an LRU stack,

named as the buffer stack, is maintained. A regular segment

at the bottom of the buffer stack is replaced. With the ghost

segments in the stack (possibly interleaved with the regular

segments in the stack), the stack size can be larger than the

buffer size in terms of segment count. After a regular segment

is evicted, LiU continuously removes ghost segments if they

are at the bottom of the buffer stack. This is because ghost

segments that are even less active (or less recently used) than

the least recently used (LRU) regular segment are of less

interest. At the time of the removal, the locality value of a

ghost segment is calculated and will be used in the LiU’s

module for determining which segments should be lifted as

well as be loaded into the buffer in their next accesses.

III. PERFORMANCE EVALUATION AND

ANALYSIS

We have implemented a prototype system of LiU on

PVFS2 [7] (version 2.8.2), a production parallel file system.

To evaluate LiU, we have conducted the experiments on a

cluster, which consists of seven compute nodes and six data

nodes. Each compute node has a 1.6 GHz dual-core Pentium

processor, 1 GB DRAM, and an 80 GB SATA hard drive.

Each data node is equipped with a 2.13 GHz Intel Core-2 Duo

processor, 1 GB DRAM, and two 160 GB Western Digital

hard drives (Model#: WD1602ABKS-18N8A0) and one 32

GB OCZ SSD (Model#: OCZ-ONYX). The two disks on data

nodes are used for OS and PVFS2 storage space, respectively.

While the DRAM memory is of relatively small size, it is not

a concern in the evaluation as 256MB memory is sufficient

for being used as LiU’s buffer (see Section III-E) and the

benchmarks are not memory-intensive. Compute nodes and

data nodes are connected via one Gigabit Ethernet Switch.

Both compute nodes and data nodes are installed with CentOS

of the Linux kernel version 2.6.18. Additionally, we installed

MPICH2-1.4.1p1 on compute nodes and PVFS2-2.8.2 on

compute nodes and data nodes. We used the default unit size

of PVFS2, i.e., 64 KB, to stripe file data over six data nodes.

A. The Benchmarks

We evaluated LiU with three micro-benchmarks (i.e., mpi-

io-test, ior-mpi-io, and mpi-tile-io), and one macro-benchmark

BTIO. These MPI-IO benchmarks cover a wide spectrum

of parallel I/O access patterns (at each data node), varying

 0

 50

 100

 150

 200

 250

 300

 350

mpi-io-test(r)
mpi-tile-io(r)

ior-mpi-io(r)
mpi-io-test(w)

mpi-tile-io(w)
ior-mpi-io(w)

I/O
 T

hr
ou

gh
pu

ts
 (

M
B

/s
)

Workloads

Vanilla-PVFS2
LiU

Fig. 4. I/O throughput for different MPI-IO benchmark programs. Each
benchmark is configured as both read and write.

from sequential accesses (e.g., mpi-io-test) to non-sequential

accesses (e.g., ior-mpi-io and BTIO), from contiguous accesses

(e.g., mpi-io-test) to non-contiguous accesses (e.g., mpi-tile-

io), from read accesses to write accesses, and from requests

that are aligned with 64 KB striping units (e.g., mpi-io-test

and ior-mpi-io) to requests with different sizes (e.g., mpi-tile-

io and BTIO). Next we will briefly introduce each benchmark.

Mpi-io-test, included in PVFS2 software package, is an

MPI-IO benchmark jointly developed by Clemson University

and Argonne National Laboratory [4]. In this benchmark, each

MPI process accesses a contiguous chunk of the file in one iter-

ation. A barrier is used to synchronize each iteration across all

processes. The following iteration of all the processes accesses

the next contiguous chunk of the file. In our experiments, the

I/O request size from each process is 64 KB.

Mpi-tile-io is from Parallel I/O Benchmarking Consor-

tium [6]. This benchmark logically views a data file as a

two dimensional sets of tiles and two adjacent tiles can be

configured as partially overlapped in both dimensions. Each

MPI process is responsible for accessing one tile via non-

contiguous file accesses. In our experiments, there are 14 tiles,

64 byte per element, and 16 elements shared between adjacent

tiles in the X and Y dimensions.

Ior-mpi-io is a program in the ASCI Purple Benchmark

Suite developed at Lawrence Livermore National Labora-

tory [3]. In this benchmark, each of the n processes accesses

a contiguous 1/n portion of the entire file. Each process

continuously issues sequential I/O requests with a fixed size.

While the requests within a process is sequential, in each

data node, the requests from different MPI processes are non-

sequential since they belong to different parts of the data file.

In our experiments, the I/O request size from each process is

64 KB.

BTIO is an I/O-intensive Fortran program from NAS parallel

benchmarks [5]. It is implemented as a solver of 3D com-

pressible Navier-Stokes equation. The program is compiled

with ROMIO/MPIIO library for its on-disk data access. After

computation in each time step, BTIO writes a large amount

of data to storage using small non-contiguous I/O requests.

When computation is completed, all the data are read back

for result sanity tests.

For all of the above benchmarks, the file accesses can be set

as either read or write. In our experiments, we ran 14 processes

on compute nodes, two on each node, and used a 10 GB data

file to accommodate all benchmarks’ read needs. To avoid the

effect of the page cache in OS kernel, write experiments had a

relatively large data set, compared to read experiments. More

details about the read/write data size for each benchmark are

presented in the Section III-B.

B. Micro-benchmark Results

We first evaluate LiU with each MPI micro-benchmark

by running one instance alone, i.e., without interference. In

particular, we measured the I/O throughput when running one

instance of the MPI benchmark program with the original

PVFS2 (the baseline) and with LiU (the enhanced PVFS2),

respectively. Figure 4 shows the results for all the benchmarks.

In this set of experiments, each benchmark was configured

both read and write.

For read experiments, as shown in Figure 4, LiU improves

the read throughput of the file system for all the benchmarks

by 15% to 5.8 times, with an average of 3.8 times. This

indicates that LiU is effective in improving the I/O throughput

of the file system by hiding disk latency. Additionally, this

experimental result reveals that LiU has different performance

gains for different file access patterns. To better understand the

reasons, we further collect the LBNs (logical block numbers)

accessed on the disk and latency of serving each request

for two benchmarks with different I/O access patterns (one

random and one sequential access patterns).

For the ior-mpi-io benchmark, LiU improves the I/O

throughput by 5.5 times for read (the total input size is 2.2GB).

The data access pattern for this benchmark is that each process

accesses a continuous chunk of file. Therefore, the disk head

moves among these chunks when multiple requests arrive from

different MPI processes. Figure 5 shows the order of LBNs

accessed with the original PVFS2 and with LiU, respectively.

Under the original PVFS2, the disk serves the requests for

14 different contiguous chunks of the data file and the disk

head heavily alternates among these chunks (shown in Figure 5

(a)). On the contrary, LiU clusters the disk accesses within one

contiguous chunk and has fewer requests issued to the disk.

This is mainly because LiU accesses disks at the granularity

of segment (5 MB in our prototype).

Furthermore, for the ior-mpi-io benchmark, we investigate

the latency of servicing each request (i.e., the difference

between the times when a request arrives and when the request

is responded within PVFS2 or WM on a data node). Figure 6

shows the latency of each request with the original PVFS2

and with LiU, respectively. As shown in Figure 6 (a), the

latencies of all requests in the original PVFS2 vary from near

zero to 250 milliseconds, and most latencies are at around

100 milliseconds. After applying LiU, the latencies of all the

requests drastically reduced, i.e., most requests have near zero

and some at around 15 milliseconds. This indicates that LiU

can effectively hide disk latency.

For the mpi-io-test benchmark, LiU improves the I/O

throughput by 15% in read (the total input size is 5.1G).

As mentioned in Section III-A, different MPI processes in

this benchmark simultaneously access a contiguous region of

the data file at each iteration and two consecutive iterations

access two consecutive regions. This essentially is a sequential

I/O access pattern. So the accessed LBNs are sequentially

increasing with both the original PVFS2 and LiU (due to space

limitation, we didn’t show the LBN figure here). Therefore,

the average disk seek distance is expected equally small for

both PVFS2 and LiU with such workload. This indicates that

LiU brings less significant performance gains on sequential

I/O accesses than that on random accesses.

For write performance, LiU has improvements of 6% and

3% for mpi-io-test and mpi-tile-io, respectively (the total write

size is 20G for mpi-io-test and 7.6G mpi-tile-io). Note that

LiU only writes 80% data into the disk and writes 20% data

into the SSD simultaneously, so the theoretical improvement

is 25% if we only consider the amount of data written to

disks. However, some segments that are flushed to disk may

be brought back to the buffer for further writing since the large

segment (5 MB in our prototype) is not fully modified. As

a result, the write performance improvement in LiU cannot

achieve the theoretical value. In ior-mpi-io benchmark, the

write performance improvement is 45% which is surprisingly

larger (the total write size is 20G). This is mainly because

of its unique access pattern. Figure 7 shows the disk access

addresses during the execution time from 62.5 to 62.7 seconds,

when running ior-mpi-io with the original PVFS2 and LiU,

respectively. Without LiU, the 14 processes simultaneously

access their individual data. We can see from Figure 7 (a)

that the disk head moves back and forth. The root cause is

the limited queue size of the OS disk scheduler [24], resulting

in that only part of these requests can be sorted and merged

for spatial locality. In contrast, from Figure 7 (b), we can

observe that LBN addresses almost grow in one direction while

running in LiU. This indicates that LiU helps minimize the disk

head movement.

C. Macro-benchmark Results

In this section we evaluated LiU with the BTIO macro-

benchmark, which has interleaved computation and I/Os dur-

ing its execution. We ran the program using 8, 16, and 25

processes, with problem sizes coded as both B and C in the

benchmark, which generated a data set of 1.7 GB and 4.9

GB, respectively, using non-collective I/O operations. Most

I/O requests are small non-contiguous writes. As shown in

Figure 8 with LiU I/O throughput for B and C increased

by 31% and 12%, respectively, on average. The decreased

performance advantage is because the LiU buffer size did not

change as problem size was increased from B to C, which

could result in more misses on the buffer accordingly.

From Figure 8 we can also observe that under problem size

B the improvement ratio of I/O throughput became larger

 1.112e+08

 1.114e+08

 1.116e+08

 1.118e+08

 1.12e+08

 1.122e+08

 1.124e+08

 0 10 20 30 40 50

Lo
gi

c
B

lo
ck

 N
um

be
r

Time (Seconds)

 1.112e+08

 1.114e+08

 1.116e+08

 1.118e+08

 1.12e+08

 1.122e+08

 1.124e+08

 0 1 2 3 4 5 6 7 8

Lo
gi

c
B

lo
ck

 N
um

be
r

Time (Seconds)

(a) (b)

Fig. 5. Disk addresses (LBNs) of data accesses on disks of data node 1. (a) Running ior-mpi-io with the original PVFS2, and (b) running ior-mpi-io with
LiU.

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50

R
eq

ue
st

 S
er

vi
ce

 T
im

e
(M

ill
is

ec
on

ds
)

Wall Time (Seconds)

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8

R
eq

ue
st

 S
er

vi
ce

 T
im

e
(M

ill
is

ec
on

ds
)

Wall Time (Seconds)

(a) (b)

Fig. 6. Latency of each request on data node 1. (a) Running ior-mpi-io with the original PVFS2, and (b) running ior-mpi-io with LiU.

as process count increased from 9 to 25 with LiU. More

specifically, when 25 processes were used, the I/O throughput

increased by 42%, compared with 31% when 16 processes

were used and 20% when 9 processes were used. The reason

is that in the same problem size I/O request size is accord-

ingly reduced when process count becomes larger. Therefore,

without LiU the disk has to perform more frequent seeks when

serving random requests of smaller size. In comparison, with

the help of LiU as more such requests are completed in the

LiU buffer, rather than on the disks, disk seeks are significantly

reduced. We also present the total execution time of BTIO

benchmark in Table I, as the number of processes increased.

Compared with the vanilla system, LiU helps PVFS2 file

system become more scalable in seamlessly combining disk,

SSD, and memory buffer.

D. Sequential Workload with Interferences

While LiU provides moderate performance improvement for

running one instance of sequential-access benchmarks alone,

will it be helpful if the sequential workload is interfered

by other workloads? This section answers the question with

two sets of experiments. In the first set of experiments, we

of Processes 9 16 25

Time w/o LiU(s) 588 613 523

Time w/ LiU(s) 585 579 501

TABLE I
EXECUTION TIMES OF BTIO BENCHMARK AS PROCESS CONCURRENCY

INCREASED FROM 9, 16 TO 25 WITH C PROBLEM SIZE. BOTH RESULTS

WITHOUT AND WITH LiU ARE SHOWN, RESPECTIVELY.

ran a sequential-access workload mpi-io-test, together with

another sequential-access workload, i.e., the second instance

of the same benchmark mpi-io-test. In the second set of

experiments, we ran a sequential-access workload mpi-io-test,

together with a random-access workload ior-mpi-io. In both

sets, we ran two instances of the same or different benchmarks

with 14 processes and both instances access different data files.

Additionally, in both sets, we measured the throughput of the

first sequential-access workload mpi-io-test with the original

PVFS2 and with LiU, respectively. Note that the interfering

workload would not terminate until the target workload mpi-

io-test finishes the job.

Table II summarizes the experimental results. Compared

 1.01e+08

 1.015e+08

 1.02e+08

 1.025e+08

 1.03e+08

 62.5 62.55 62.6 62.65 62.7

Lo
gi

c
B

lo
ck

 N
um

be
r

Time (Seconds)

 5.45e+07

 5.5e+07

 5.55e+07

 5.6e+07

 5.65e+07

 62.5 62.55 62.6 62.65 62.7

Lo
gi

c
B

lo
ck

 N
um

be
r

Time (Seconds)

(a) (b)

Fig. 7. Disk addresses (LBNs) of write accesses in the time period from 62.5 second to 62.7 second on the disk of data node 1. (a) Running ior-mpi-io

write with the original PVFS2, and (b) running ior-mpi-io write with LiU

 0

 10

 20

 30

 40

 50

 60

9 16 25

I/O
 T

hr
ou

gh
pu

ts
 (

M
B

/s
)

Processes

Vanilla-PVFS2(B)
LiU(B)

Vanilla-PVFS2(C)
LiU(C)

Fig. 8. I/O throughput of the BTIO benchmark when they are executed
without LiU (Vanilla-PVFS2) or with LiU, and with different number of
processes and problem sizes.

mpi-io-test Throughput (MB/s)
Interfered? w/o LiU w/ LiU Ratio

None 264.7 304.5 1.15 X

by mpi-io-test 124.8 261.6 2.10 X

by ior-mpi-test 47.6 164.1 3.45 X

TABLE II
PERFORMANCE OF mpi-io-test THAT IS WITHOUT INTERFERENCE,

INTERFERED BY A SEQUENTIAL-ACCESS WORKLOAD, AND INTERFERED

BY A RANDOM-ACCESS WORKLOAD, RESPECTIVELY.

with the original PVFS2, LiU improves the I/O performance

for mpi-io-test by 15%, 1.1 times, and 2.45 times, in the

configurations of no interferences, being interfered by a

sequential-access workload, and being interfered by a random-

access workload, respectively. This indicates that a sequential

workload can benefit a lot more from LiU when it is interfered

by a concurrently-running workload. The benefit becomes

more significant when the interference is more severe.

We further collected the average disk seek distance in

terms of LBN difference and average latency of I/O requests

mpi-io-test Seek Distance (millions) Latency (millisec)
Interfered? w/o LiU w/ LiU w/o LiU w/ LiU

None 0.4 0.2 4.4 1.0

by mpi-io-test 11.6 0.5 9.7 1.4

by ior-mpi-io 15.1 2.5 42.1 4.9

TABLE III
TOTAL DISK SEEK DISTANCE AND AVERAGE LATENCY OF mpi-io-test THAT

IS WITHOUT INTERFERENCE, INTERFERED BY SEQUENTIAL-ACCESS

WORKLOAD, AND INTERFERED BY A RANDOM-ACCESS WORKLOAD,
RESPECTIVELY.

issued by mpi-io-test in the experiments under the three

configurations, i.e., no interference, interfered by two different

types of workloads. Table III shows the results. With the

moderate interference introduced by a sequential workload

mpi-io-test, the average seek distance and latency of the

sequential workload under the original PVFS2 become worse,

increased by 28 times and 1 time, respectively. However, with

severe interferences introduced by a random workload, the

average seek distance and latency of the sequential workload

become much worse, increasing by 37 times and 8.5 times,

respectively. In contrast, with the help of LiU, the degradation

of the average seek distance and the average latency of the

sequential workload is modest, i.e., 1.5-11 times, and 40%-

3.9 times, respectively. This is because LiU exploits SSD to

serve the head and load the entire segment at a time, which

effectively hides the disk latency and enjoys the disk peak

performance.

E. Impact of Buffer Sizes

We further conducted another set of experiments on the

impact of buffer sizes. In the experiments, we measured the

I/O throughput of the benchmarks with the original PVFS2 and

with LiU, respectively, under the varying sizes of the buffer.

Figure 9 shows the results using two different types of bench-

marks, i.e., mpi-io-test with sequential-access patterns and ior-

mpi-test with random access patterns. For the sequential work-

load mpi-io-test, the I/O throughput improvement provided by

 0

 50

 100

 150

 200

 250

 300

32 64 128 256 512

T
hr

ou
gh

pu
t (

M
B

/s
)

Buffer Sizes (MB)

Disk Throughputs with Different Buffer Sizes

mpi-io-test
ior-mpi-io

Fig. 9. Performance impact of the buffer size on LiU.

LiU is not sensitive to the buffer size. For example, LiU with a

32 MB buffer can achieve similar I/O throughput as that with

a 512 MB buffer for mpi-io-test. This is because mpi-io-test

accesses the data sequentially, thus has strong space locality

and weak temporal locality. On the contrary, the random

workload ior-mpi-io running on top of LiU is more sensitive

to the buffer size. For example, LiU with a 32 MB buffer

can only achieve one third of the I/O throughput with a 128

MB buffer. When the buffer size contains the working set of

the workload, the further improvement via LiU is minimal.

Considering various types of workloads and the burden on the

system, we choose a reasonable buffer size, i.e., 256 MB, in

our prototype system.

IV. RELATED WORKS

LiU uses SSD’s very low latency to help remove hard-disk’s

high latency and accelerate I/O-intensive HPC applications

that have their data on the hybrid storage hierarchy. LiU is

most effective with requests issued by different processes and

exhibiting strong spatial access locality. In this section we

discuss prior works in the literature primarily on hiding disk

latency and on incorporation of SSD for improving disk-based

storage systems.

A. Reducing Disk Latency

Disk latency has a major impact on the I/O throughput of

workloads accessing non-contiguous data on the disk. Many

techniques have been proposed in each layer of the I/O stack

to hide the latency.

Asynchronous I/O [18] allows computing processes to pro-

ceed beyond an unfinished I/O call. If there is no dependence

between data requested in the I/O call and the execution

following it, I/O time could be hidden behind the computation

time. For data-intensive scientific applications, researchers

developed in-situ [10] execution or DataStager [9], where

the input/output data can be asynchronously loaded/unloaded

into/out of compute nodes or a staging area. Applying data

asynchronous access usually requires programmers’ or users’

involvements.

Furthermore, another widely used technique for hiding disk

latency is I/O prefetching [16], [11], [22], which predicts

data to be accessed according to prior I/O activities and

fetches them into memory buffer cache before they are actually

requested. While prediction accuracy is critical to the effec-

tiveness of the prefetching, Chang et al. [13], [17] proposed

to generate I/O prefetching hints for higher accuracy using

speculative execution of programs. This technique relies on the

support of operating system on execution roll-back because

speculation may prove to be wrong. For parallel program

executions, Chen et al. [15] developed a pre-execution-based

prefetching scheme to hide I/O latency. More recently, Zhang

et al. [25] proposed a data-driven execution mode to make

prefetch requests more efficiently served on the disk.

Compared with LiU, in addition to their requirements on

manual efforts, accurate prediction, or complicated system

engineering, a critical disadvantage of these approaches is their

reliance on process’s computation for hiding I/O latency. In

the context of I/O intensive computing, the I/O time can well

dominate the entire program execution time and there could be

relatively little computation time for hiding the latency, which

makes them less effective. In contrast, LiU uses SSD’s I/O

time to hide the disk latency. Furthermore, it does not require

any supports from the programmers, libraries, and compiler

and does not change process execution method. This makes

LiU a latency-reduction technique more effective in the I/O-

intensive computing and easier to implement and deploy.

B. Using SSD in Storage Systems

Because of SSD’s clear performance advantage over hard

disks, SSD-based storage systems are widely applied in both

enterprise and high-performance computing. In these applica-

tions, SSD provides either a caching space or a storage space.

Being conscious of its relatively high cost and small ca-

pacity, SSD is usually used as a cache of data stored on the

hard disks. Srinivasan et al. designed Flashcache [21], which

is a block-level cache between DRAM and hard disks and

is managed by using a cache replacement algorithm such as

FIFO or LRU. Liu et al. [19] used SSD as a cache to support

virtual memory by allowing actively used memory pages to

be swapped to the SSD. iTransformer [24] extends the disk

scheduling queue on the SSD, so that requested data can be

buffered in the queue on the SSD for more aggressive schedul-

ing to recover spatial locality, which could have been lost with

a high I/O concurrency. Recently, a scheme, iBridge [26], was

designed to use SSD for caching and serving unaligned data in

a cluster of data nodes to improve disk efficiency. In contrast,

LiU is not a conventional scheme for caching any actively

used data in the SSD, which could quickly use up the limited

SSD space and incur frequent data replacements in the SSD.

It stores only the head of a segment, even when the entire

segment is actively requested. This makes the SSD space more

efficiently used and the on-disk data more efficiently accessed.

If the SSD is used as a storage device, efforts are usually

made on selecting only performance-critical data to store on

it. Chen et al. [14] proposed a hybrid storage system, Hystor,

which is comprised of both SSD and hard disk. It selects

actively used metadata and small files to be stored on the

SSD. I-CASH [20] is another hybrid storage framework based

on data-delta pairs to store only changes of file blocks on the

SSD by exploiting the spatial locality of data access. Fusion

Drive developed at Apple. Inc is another example for using

SSD in a hybrid storage [2]. It stores the most frequently

accessed files on the faster flash storage and leaves less used

files on the hard disk. However, there are complaints that some

very frequently accessed large files are not stored on the flash

drive [8]. Understandably if a decision is about whether an

entire file is moved to the flash or not, a compromise has to

be made to leave large files on the disk even if they are actively

used due to constraint on the SSD space. LiU overcomes the

difficulty by placing only necessary data (the heads) on the

SSD. In this way, accessing of large files can be accelerated

without fully caching them. To remove I/O bottleneck in data-

intensive scientific computing, a few systems use SSD as the

only device in their storage subsystems, e.g. Gordon [12].

Though LiU also identifies actively used data for accelerated

access, it does not simply move them to the SSD. Instead, it

lifts them up to make a balanced use of the disk and the SSD,

so advantages of both can be well exploited.

V. CONCLUSIONS

In this paper, we propose LiU, a hybrid and almost latency-

free storage system for accelerating I/O-intensive HPC appli-

cations. It achieves this goal by leveraging limited amount

of SSD storage for its low-latency access and hard disk of

large capacity for its high peak throughput. Based on the

above ideas, We implement a prototype system of LiU in

PVFS2. Our evaluation of LiU with representative MPI-IO

micro-benchmarks, including mpi-io-test, mpi-tile-io and ior-

mpi-io, and one macro-benchmark BTIO show that LiU can

effectively improve the I/O performance for HPC applications,

improving the throughput up to 5.8 times. Furthermore, LiU

can bring much more benefits to sequential-I/O MPI applica-

tions when the applications are interfered by other workloads.

For example, LiU improves the I/O throughput of mpi-io-test

that is under interference by 1.1-2.5 times, while improving

the same workload without interference by 15%.

VI. ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers

for their helpful feedback. This research is partially supported

by NSF grants CCF#0845711 (CAREER), CNS#1117772,

CNS#1217948, CCF#0953759 (CAREER) and CCF#1218358.

REFERENCES

[1] Flash disks: Enabling mission-critical systems. http://www.cotsjournal
online.com/articles/view/100052.

[2] Fusion drive. http://en.wikipedia.org/wiki/Fusion Drive.
[3] IOR: Parallel filesystem I/O benchmark. https://github.com/chaos/ior.
[4] mpi-io-test source code. http://mirror.anl.gov/pvfs2/tests/mpi-io-test.c.
[5] NAS Parallel Benchmarks, NASA Ames Research Center. http://www.

nas.nasa.gov/Software/NPB.
[6] Parallel I/O Benchmarking Consortium. http://www.mcs.anl.gov

/research/projects/pio-benchmark.

[7] Parallel Virtual File System, Version 2. http://www.pvfs.org/.

[8] Update on apple ‘fusion’: Writes are fast, no smart migration. http://mac
performanceguide.com/blog/2012/20121108 3-Fusion-MacMini.html.

[9] Hasan Abbasi, Matthew Wolf, Greg Eisenhauer, Scott Klasky, Karsten
Schwan, and Fang Zheng. Datastager: Scalable data staging services
for petascale applications. In International ACM Symposium on High
Performance Distributed Computing, HPDC’09, 2009.

[10] Janine C. Bennett, Hasan Abbasi, Peer-Timo Bremer, Ray Grout, Attila
Gyulassy, Tong Jin, Scott Klasky, Hemanth Kolla, Manish Parashar,
Valerio Pascucci, Philippe Pebay, David Thompson, Hongfeng Yu, Fan
Zhang, and Jacqueline Chen. Combining in-situ and in-transit processing
to enable extreme-scale scientific analysis. In Proceedings of the
International Conference on High Performance Computing, Networking,

Storage and Analysis, SC’12, 2012.

[11] Surendra Byna, Yong Chen, Xian-He Sun, Rajeev Thakur, and William
Gropp. Parallel I/O prefetching using MPI file caching and I/O
signatures. In High Performance Computing, Networking, Storage and

Analysis, SC’08, 2008.

[12] Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. Gordon:
Using flash memory to build fast, power-efficient clusters for data-
intensive applications. In the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS’09, 2009.

[13] F. Chang. Using speculative execution to automatically hide I/O latency.
In Carnegie Mellow Ph.D Dissertation, CMU-CS-01-172, 2001.

[14] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Hystor: Making
the best use of solid state drives in high performance storage systems.
In Proceedings of the international conference on Supercomputing, ICS
’11, 2011.

[15] Yong Chen, Surendra Byna, Xian-He Sun, Rajeev Thakur, and William
Gropp. Hiding I/O latency with pre-execution prefetching for parallel
applications. 2008.

[16] Xiaoning Ding, Song Jiang, Feng Chen, Kei Davis, and Xiaodong
Zhang. DiskSeen: Exploiting disk layout and access history to enhance
I/O prefetch. In Proceedings of the 2007 USENIX Annual Technical
Conference, USENIX’07, 2007.

[17] K. Fraser and F. Chang. Operating system I/O speculation: How two
invocations are faster than one. In Proceedings of the 2003 USENIX

Annual Technical Conference, USENIX’03, 2003.

[18] M. Tim Jones. Boost application performance using asynchronous
I/O. http://www.ibm.com/developerworks/linux/library/l-async/?ca=dgr-
lnxw02aUsingPOISIXAIOAPI.

[19] Ke Liu, Xuechen Zhang, Kei Davis, and Song Jiang. Synergistic
coupling of SSD and hard disk for QoS-aware virtual memory. In 2013

IEEE International Symposium on Performance Analysis of Systems and

Software, ISPASS’13, 2013.

[20] J. Ren and Q. Yang. I-CASH: Intelligently coupled array of SSD and
HDD. In the 17th IEEE Symposium on High Performance Computer

Architecture, 2011.

[21] M. Srinivasan and P. Saab. Flashcache: a general purpose writeback
block cache for linux. https://github.com/facebook/flashcache.

[22] Fengguang Wu, Hongsheng Xi, Jun Li, and Nanhai Zou. Linux
readahead: less tricks for more. In Proceedings of the Linux Symposium,
volume 2, 2007.

[23] Xuechen Zhang, Kei Davis, and Song Jiang. IOrchestrator: Improving
the performance of multi-node I/O systems via inter-server coordina-
tion. In Proceedings of the 2010 ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and Analysis,
SC’10, 2010.

[24] Xuechen Zhang, Kei Davis, and Song Jiang. iTransformer: Using SSD
to improve disk scheduling for high-performance I/O. In Proceedings of

the IEEE International Parallel and Distributed Processing Symposium,
IPDPS’12, 2012.

[25] Xuechen Zhang, Kei Davis, and Song Jiang. Opportunistic data-driven
execution of parallel programs for efficient I/O service. In Proceedings of
the IEEE International Parallel and Distributed Processing Symposium,
IPDPS’12, 2012.

[26] Xuechen Zhang, Ke Liu, Kei Davis, and Song Jiang. iBridge: Improving
unaligned parallel file access with solid-state drives. In Proceedings of

the IEEE International Parallel and Distributed Processing Symposium,
IPDPS’13, 2013.

