
USENIX Association

Proceedings of the
5th Annual Linux

Showcase & Conference

Oakland, California, USA
November 5–10, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Adaptive Page Replacement to Protect Thrashing in Linux �

Song Jiang and Xiaodong Zhang
Department of Computer Science

College of William and Mary
Williamsburg, VA 23187-8795

Abstract

Analyzing the variations of page replacement imple-
mentations in recent Linux kernel versions of 2.0, 2.2,
and 2.4, we compare their abilities to deal with sys-
tem thrashing. We show that although the page imple-
mentation in Kernel 2.2 is relatively effective to protect
thrashing among the three versions, none of them have
adaptive ability, and thus the protection is limited. By
running several groups of memory-intensive application
programs on Kernel 2.2, we observe serious thrashing
when memory shortage attains a certain level.

We propose and implement a thrashing protection
patch in Linux kernels, which makes replacement pol-
icy responsively resolve excessive memory paging by
temporarily helping one of the active processes quickly
build up its working set. Consequently, thrashing could
be eliminated at the level of page replacement, so that
load controls at a higher level, such as process suspen-
sions/swapping can be avoided or delayed until it is truly
necessary. Our experiments show that our patch can sig-
nificantly reduce page faults and the execution time of
each individual thrashing process for several groups of
interacting programs. We also show that our method
introduces little additional overhead to program execu-
tions, and its implementation in Linux (or Unix) system
is straightforward.

1 Introduction

Linux adopts the clock algorithm, an LRU approxima-
tion, to conduct its page replacement. In a multipro-
grammed environment, the global LRU approximation
replacement algorithm selects an LRU page for replace-
ment throughout the entire user memory space of the
computer system. The risk of low CPU utilization in-
creases if the memory page shortage happens all over the

�This work is supported in part by the U.S. National Science Foun-
dation under grants CCR-9812187, EIA-9977030, and CCR-0098055.

interacting processes. For example, a process is not able
to access its resident memory pages when the process is
resolving page faults. These already obtained pages may
soon become LRU pages when memory space is be-
ing demanded by other processes. When the process is
ready to use these pages in its execution turn, these LRU
pages may have been replaced to satisfy requested allo-
cations of other processes. The process then has to re-
quest the virtual memory system to retrieve these pages
by replacing LRU pages of others. The page replace-
ment may become chaotic, and could cascade among the
interacting processes, eventually causing system thrash-
ing. Once all interacting processes are in the waiting
queue due to page faults, the CPU is doing little useful
work. This situation is affected by the following condi-
tions: (1) the size of memory space in the system, (2)
the number of processes, (3) the dynamic memory de-
mands of each process, and (4) the page replacement
algorithm. A robust page replacement algorithm allows
the system to keep enough processes active in memory
to keep the CPU busy. When a page replacement algo-
rithm fails to prevent thrashing, some operating systems,
such as FreeBSD and Solaris, employ the memory load
control mechanism to suspend, even swap out some pro-
cesses for a period of time. However, the memory load
control has its drawbacks. It introduces too much in-
tervention to the suspended/swapped processes. Some
processes even can not afford to stop for a certain time
period. After suspension or swapping out, the whole
memory space of the processes can be lost, thus more
efforts are needed thereafter in activation or swapping
in. Moreover, process swapping is an expensive opera-
tion for both systems and user programs [8].

The most destructive aspect of thrashing is that, al-
though thrashing may have been triggered by a brief,
random peak in workload (such as all of the users of a
system happening to press Enter at the same second),
the system might continue thrashing for an indefinitely
long time. Considering large variations of memory de-

mands from multiple processes and dynamic memory
demands in their lifetimes of the processes, page re-
placement algorithms should be robust enough to deal
with thrashing. Linux developers have tried to provide
a solution to address the issue by improving the page
replacement performance. Its main idea is to let one or
more memory-intensive processes release more memory
pages, in order to help others build up their working sets
and then make full use of CPU cycles. In this paper,
we first analyze the variations of page replacement in
Linux kernels on this aspect. Considering the conflict-
ing interests between CPU utilization and memory uti-
lization, we show the effectiveness of the effort in this
direction is limited. Our experiments also show serious
thrashing could be easily found in Linux kernels. We
propose a Linux patch to enhance the capability of re-
placement algorithms to eliminate the thrashing by dy-
namically monitoring system conditions and adjusting
replacement algorithms accordingly. We implement the
patch, and the resulting performance and its analysis are
provided to show its effectiveness.

2 Variations of Page Replacement
in Linux Kernel

Being an LRU approximation, the page replacement im-
plementation in Linux is based on the following frame-
work. The interacting processes are arranged in an or-
der to be searched for NRU (Not Recently Used) pages
when few free pages are available in the user space,
and/or they are demanded by interacting processes. The
system examines each possible process to see if it is a
candidate from which NRU pages can be selected for
replacement. The kernel will then check through all of
the virtual memory pages in the selected process. In
other words, it conducts its search for replaced pages in
a process by process, then a page by page fashion. How-
ever, at some level of competition for memory, different
implementations of this search can affect the memory
usage behavior.

There are two ways in which page replacement can
affect the possibility of thrashing. One is how many
NRU pages are allowed to take away from a process
continuously, another is how easily an NRU page can
be produced. When the accumulated size of working
sets of all active processes exceeds the available mem-
ory size, the amount of pages allowed to be replaced
continuously from a process once it is selected deter-
mines the distribution of memory shortage among the
processes. If only a small amount of NRU pages in
each process is allowed to replace at a time, the memory
shortage can spread all over the processes by searching

ready to go to next process
for next NRU page search

ready to go to next process
for next NRU page search

process with RSS > 0

p−>swap_cnt == 0 ?

p−>swap_cnt = RSS / MB

NRU page found ?

− − counter > 0 ?

p−>swap_cnt − −

succeed

Y

Y

Y

N

N

N

Y

try to find an NRU page from p

fail in finding an NRU page

N

Let p be the current swappable

p−>swap_cnt == 0 ?

Figure 1: Selecting NRU pages in Linux Kernel 2.0.

the victim page from one process to another. If the re-
placement policy allows a large amount of pages to be
evicted from a process once at a time, and it also has pre-
pared enough NRU pages for eviction, memory shortage
can concentrate on one or a few particular processes,
which helps others have their working set established
more easily. This alternative reduces the possibility of
thrashing. However, in such an arrangement, the chance
for the other processes to be searched for NRU pages
is reduced. Thus it becomes hard to distinguish active
pages in a working set from inactive pages in the other
processes. This arrangement may also prevent memory
space held by inactive pages from being reused by pro-
cesses lacking memory space. In the following analysis
of function swap out() of Kernel 2.0, 2.2 and 2.4, where
major steps regarding how to select a process for page
replacement are shown in the respective flow charts, we
can see the design challenge in page replacement poli-
cies.

2.1 Kernel 2.0

In Kernel 2.0, the NRU page contributions are pro-
portionally distributed among interacting processes (see
Figure 1). There is a “swapcnt” variable for each pro-
cess, which is initialized with a quantity (RSS/1MB)
proportional to its resident set size (RSS). Once an NRU
page is taken away from the process, its “swapcnt” will
be decreased by one. Only when its “swapcnt” be-
comes zero, or the searching for an NRU page fails in
resident space of the process, is the next process in the
process list examined. When a process with “swapcnt”
of zero is encountered, it will be re-initialized using the
same proportion rule. This strategy effectively balances
memory usage by making all the processes proportion-
ally provide NRU pages. Variable “counter” is used to
control how many processes are searched before find-
ing an NRU page. NRU pages are identified by “age”,
a variable associated with each page, which is increased
by 3 with the maximum threshold of 20 when it is refer-
enced, called page aging, and decreased by 3 each time
the page is examined. Once the “age” decreases to zero,
it will become an NRU page and ready to be replaced.
Page aging helps the kernel make careful distinction
among active and non-active pages. When a process is
forced to stay in the waiting queue for resolving page
faults, the pages in its working set are more resistant to
be replaced by page aging than by simply checking the
reference bit of each page. However this encourages the
process to spread the memory shortage burden to others,
even to those with low page fault rates, by protecting its
own working set.

A major disadvantage of this approach to select NRU
pages is its high potential for thrashing, resulting in low
CPU utilization. This is because when all the memory-
intensive processes are struggling to build its working
set under heavy memory loads, no one will be given a
priority for the purpose of thrashing protection.

2.2 Kernel 2.2

In order to address the limit in Kernel 2.0, Kernel 2.2
makes each identified process continuously contribute
its NRU pages until no NRU pages are available in the
process. Attempting to increase CPU utilization, this
strategy allows the rest of the interacting processes to
build up their working sets more easily by penalizing
the memory usage of one process at a time. Figure 2
shows how to select a process for page replacement in
the kernel.

In this kernel, the “swapcnt” variable for a process
can be thought as a “shadow RSS”, which becomes
zero when it fails to find an NRU page from the pro-
cess. After the “swapcnt”s of all the swappable pro-

assign == 1 ?

p−>RSS
p−>swap_cnt =

max_cnt = p−>swap_cnt ;
pbest = p;

all processes have
been searched ?

p−>swap_cnt > max_cnt ?

max_cnt = 0 ;
pbest = NULL;

assign = 0

pbest == NULL ?

swappable process

NRU page found?

−− counter > 0 ?

Y

N

Y

N

Y

N

Y

N

Y

N

Y

N

assign = 1

try to find an NRU page from p

fail in finding an NRU page

Let p be the next

succeed

Figure 2: Selecting NRU pages in Linux Kernel 2.2.

cesses become zeros, variable “assign” is set to 1, and
the “swap cnt”s are re-assigned with their RSS’s in the
second pass going through the process list in the inner
loop. This inner loop will select the swappable process
with the maximal RSS. Because the “swap cnt” of a pro-
cess remains unchanged until the NRU page search fails,
a process selected for replacement will continue to be
searched for NRU pages next time. Only after there is a
failure in finding NRU pages, does “swap cnt” become
0 and the process will not be selected next time. This
allows its NRU pages continuously to be replaced until
a failure on finding an NRU page in the process occurs.

In addition to the changes in the selection of processes
for NRU pages, there has been another major change in
this kernel. It eliminates page aging and only makes
use of the reference bit in the PTE (Page Table Entry) of

each page. The bit is set when the page is referenced and
reset when the page is examined. Thus, in this kernel the
pages with reference bits of 0s are NRU pages and ready
to be replaced. This implementation will produce NRU
pages more quickly for a process with a high page fault
rate. Both these changes in kernel 2.2 take an aggressive
approach to make an examined process contribute more
of its NRU pages than others, attempting to help other
interacting processes to establish their working sets to
fully utilize the CPU.

2.3 Kernel 2.4

The latest Linux kernel is version 2.4, which makes con-
siderable changes in the paging strategy. Many of these
changes target at addressing concerns on memory per-
formance that arises in Kernel 2.2. For example, with-
out page aging, NRU replacement in Kernel 2.2 can not
accurately distinguish the working set from incidentally
accessed pages. Thus, Kernel 2.4 has to reintroduce
page aging, just as Kernel 2.0 and FreeBSD do. How-
ever, the page aging could help processes with high page
fault rates to keep their working sets, causing other pro-
cesses to have serious page fault rate at the same time,
and trigger thrashing. In kernel 2.4, the “age” variable
in each page is decremented exponentially (the variable
is divided by 2 instead of subtracting a constant value)
when an unaccessed page is identified, which may be
slightly beneficial to the thrashing protection compared
with kernel 2.0.

To make memory more efficiently utilized, Kernel 2.4
reintroduces the method used in Kernel 2.0 for selecting
processes to contribute NRU pages (see Figure 3). Go-
ing through a process list each time, it walks only about
6% of the address space in each process to search NRU
pages before it goes to the next process. Similar to that
of Kernel 2.0, this method increases its possibility of
thrashing. However, before identifying a process in the
list, Kernel 2.4 first takes an extra NRU search of about
6% of the address space of the process that is allocating
memory to penalize it, which is the process encounter-
ing page faults in heavy memory load. This arrangement
is only slightly helpful to prevent thrashing.

Kernel 2.4 distinguishes the pages with age of zero
and those with positive ages by separating them into
non-active and active lists, respectively to prevent inef-
ficient interactions between page aging and page flush-
ing [9]. The NRU pages with reference bit zeros possi-
bly have positive ages, and are moved to the active list,
where page aging is conducted. This change does not
help protect the system against thrashing, because the
system still has no knowledge on which particular work-
ing sets of the processes should be protected when fre-

−− counter > 0 ? done
NY

of the process that is allocating memory
and move NRU pages into active list

of the process p and move NRU
pages into active list

walk about 6% of the address space

walk about 6% of the address space

let p be the next process

Figure 3: Selecting NRU pages in Linux Kernel 2.4.

quent page replacement takes place under heavy mem-
ory workload. Similar argument can be applied in BSD
and FreeBSD, where a system-wide list of pages forces
all processes to compete for memory on an equal basis.

2.4 Why an adaptive replacement policy is
needed for thrashing protection?

The effort made in Kernel 2.2 tries to retain CPU utiliza-
tion by avoiding widely spreading page faults among
all the interacting processes. However, such an effort
increases the possibility of replacing fresh NRU pages
in the process being examined, while some NRU pages
in other interacting processes that have not been used
for long time continue to be kept in the memory. In
other words, this approach benefits CPU utilization at
the cost of lowering memory utilization. Unfortunately,
Kernel 2.4 increases the potential of thrashing and low-
ering CPU utilization while it tries to address the weak-
ness in its predecessor. The difficulty in the implementa-
tion of replacement algorithm calls for a solution which
(1) makes memory resource be efficiently used when
CPU utilization is not a concern; and (2) changes its re-
placement behavior to help system recover from thrash-
ing when CPU utilization is low. An adaptive replace-
ment policy adjusting its behavior to the system condi-
tions such as CPU utilization and page fault rates, can
achieve both goals at the same time. Our solution is
a kernel patch which adjusts existing replacement im-
plementation based on dynamically monitoring system
conditions, making adaptive page replacement.

3 The Design and Implementation
of Thrashing Protection Patch

The main idea of the patch is quite simple and intuitive.
Once multiple “CPU cycle eager” processes but with
high page fault rates and low CPU utilization coexist,
the patch will make a temporal tuning on the page re-
placement to help one of the processes to establish its
working set and let it consume CPU cycles. Otherwise,
the patch is almost dormant and adds little intervention
to the original system.

Our patch implementation on Kernel 2.2 consists of
two kernel utilities: detection and protection routines.
The detection routine is used to dynamically monitor the
page fault rate of each process and the CPU utilization
of the system. The protection routine will be awakened
to adjust the page replacement when the CPU utiliza-
tion is lower than a predetermined threshold, and when
the page fault rates of more than one interacting pro-
cess exceed a threshold. It then grants a privilege to an
identified process which will only contribute a limited
number of NRU pages. The detection routine also mon-
itors if the identified process has lowered its page fault
rate to a certain degree. If so, its privilege will be dis-
abled. This action will retain the memory utilization by
treating each process equally.

There are four predetermined parameters used in the
patch:

1. CPU Low: the lowest CPU utilization the system
can tolerate.

2. CPU High: the targeted CPU utilization for the
patch to achieve.

3. PF Low: the targeted page fault rate 1 of the iden-
tified process for the patch to achieve.

4. PF High: the page fault rate threshold for a process
to potentially cause thrashing.

We add one global linked list, high PF proc, in the ker-
nel to record interacting processes with high page fault
rates. A process enters the list when its page fault rate
exceeds “PF High”, and exits from the list when its page
fault rate lowers below “PF Low”.

The kernel memory management has the following
three states with dynamic transitions:

1. normal state: In this state, no monitoring activi-
ties are conducted. The system deals with page

1In our experiments only those page faults that are revolved by
loading pages from the swap files in disk are counted, because they are
the most appropriate factors to reflect the effect of memory shortage
on processes.

Monitoring
StateState

Normal Protection
State

CPU utilization > CPU_High

CPU utilization < CPU_Low &&
length(high_PF_proc) >= 2length(high_PF_proc) > 1

length(high_PF_proc) = 1
PageFaultRate(protected process) < PF_Low

Figure 4: Dynamic transitions among normal, monitor-
ing, and protection states in the improved kernel system.

faults exactly as the original Linux kernel does.
The system keeps track of the number of page
faults for each process and places the processes
with page fault rates higher than “PF High” into
“high PF proc”.

2. monitoring state: In this state, the detection rou-
tine is awakened to start monitoring the CPU uti-
lization and the page fault rates of processes in
the linked list. If the protection condition is sat-
isfied, the detection routine will select a process in
“high PF proc” for protection and go to the pro-
tection state. The system returns to the normal
state when there is no more than one processes in
“high PF proc”.

3. protection state: The protection routine will mark
the selected process and let its “swap cnt” reset to
0 no matter whether a replaced page has been suc-
cessfully found, which let the process contribute at
most one page continuously and help it quickly es-
tablish its working set. In the protection state, the
detection routine keeps monitoring the CPU uti-
lization and the page fault rate of each process in
the list. The detection routine is deactivated and
the protection state transfers to the monitoring state
as soon as the protected process obtains low page
fault rate, and/or the CPU utilization has been suf-
ficiently improved.

Figure 4 describes the dynamic transitions among the
three states, which gives a complete description of the
patch. When the system is normal (no page faults oc-
cur), detection and protection routines are not involved.
The patch only adds limited operations for each page
fault and checks several system parameters with the in-
terval of one second. So, overhead involved in detection
and protection is trivial compared with the CPU over-
head to deal with page faults.

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200 250 300 350 400

N
u

m
b

e
r

o
f

m
e

m
o

ry
 p

a
g

e
s

Execution time (second)

bit-r

MAD
RSS

Figure 5: Memory usage pattern of program bit-r.

4 Performance Measurements

Our experiments are conducted on a Pentium II of 400
MHz with available user space 384 MBytes and an IBM
Hercules disk. The operating system is Red Hat Linux
release 6.1 with the kernel 2.2.14. The predetermined
threshold values are set as follows: CPU Low = 40%,
CPU High = 80%, PF High = 10 page faults/second,
PF Low = 1 page fault/second. We also instrumented
the kernel to adjust the available user memory so that
different memory constrains can be formed to facilitate
our experiments.

We have selected the following 3 both memory-
intensive and CPU-intensive application programs:

� bit-reversals, (bit-r): This program conducts data
reordering operations which are required in many
Fast Fourier Transform (FFT) algorithms.

� LU decomposition, (LU): This is a standard matrix
LU decomposition program for solving linear sys-
tems.

� C compiler, (gcc): This is an optimized C compiler
from SPEC2000.

The memory usage patterns of the three programs are
plotted by memory-time graphs for their isolated execu-
tions in Figure 5, 6, 7. In the memory-time graph, the
x axis represents the execution time sequence, and the y
axis represents two memory usage curves: the memory
allocation demand (MAD), the resident set size (RSS),
both can be obtained directly in the kernel data structure
of task struct. In our current implementation, the pro-
cess we selected for protection among the candidates is
the one with least (MAD - RSS), which is possibly easy
to attain its full working set.

We first ran two groups of the interacting programs,
gcc + bit-r with 31% memory shortage and LU-1 + LU-
2 with 35% memory shortage, where LU-1, LU-2 are

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 20 40 60 80 100

N
u

m
b

e
r

o
f

m
e

m
o

ry
 p

a
g

e
s

Execution time (second)

LU

MAD
RSS

Figure 6: Memory usage pattern of program LU.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 50 100 150 200 250

N
u

m
b

e
r

o
f

m
e

m
o

ry
 P

a
g

e
s

Execution time (second)

SPEC2000 gcc

MAD
RSS

Figure 7: Memory usage pattern of program gcc.

two executions of program LU, on the original Kernel
2.2.14. Then we ran the same groups on the kernel with
our thrashing protection patch, where all the other ex-
perimental settings are the same. We present the mem-
ory usage measured by MAD and RSS of these experi-
ments in Figures 8, 9, 10, and 11.

Figures 8 and 10 show that there were serious thrash-
ing in Kernel 2.2, even though it takes considerable
thrashing protection into account in its implementation.

The program gcc has two spikes in MAD and RSS
due to its dynamic memory allocation demands and ac-
cesses (see Figure 7). In Figure 8, the first spike of gcc
made the RSS curve of bit-r dropped sharply at the 165th
second without causing thrashing. However, the second
RSS spike of gcc, which just has only 7% more mem-
ory demand, incurred thrashing. Program gcc began to
loose its pages at about 450th second before it could es-
tablish its working set, shown by the decreasing of its
RSS curve. After that, both programs exhibited fluc-
tuating RSS curves and started thrashing. During most
of the thrashing period, both of them were in the waiting
queue for the resolving of their page faults, leaving CPU

0

10000

20000

30000

40000

50000

60000

70000

0 200 400 600 800 1000

N
u

m
b

e
r

o
f

m
e

m
o

ry
 p

a
g

e
s

Execution time (second)

gcc in the interaction

MAD
RSS

0

10000

20000

30000

40000

50000

60000

70000

0 200 400 600 800 1000

N
u

m
b

e
r

o
f

m
e

m
o

ry
 p

a
g

e
s

Execution time (second)

bit-r in the interaction

MAD
RSS

Figure 8: The memory performance of gcc and bit-r during the interactions with the original Linux Kernel 2.2.

0

10000

20000

30000

40000

50000

60000

70000

0 100 200 300 400 500 600 700

#
 P

a
g

e
s

exe time(sec)

gcc in the interaction

MAD
RSS

0

10000

20000

30000

40000

50000

60000

70000

0 100 200 300 400 500 600 700

#
 P

a
g

e
s

exe time(sec)

gcc in the interaction

MAD
RSS

Figure 9: The memory performance of gcc and bit-r during the interactions with thrashing protection.

idle. Comparatively, in the same kernel with thrashing
protection, the second spike of gcc went smoothly with-
out visible thrashing (see Figure 9). Once monitor fa-
cility detected the sign of thrashing, protection routine
changed the behavior of replacement policy: gcc was
selected to reduce its contribution of pages for replace-
ment, thus quickly built its working set. After gcc fin-
ished its second spike, the released memory went to bit-
r. Thus CPU was able to retain its utilization for almost
the whole time. Our measurements show that with our
patch the slowdown of gcc is reduced from 3.63 to 1.97,
the slowdown of bit-r is reduced from 2.69 to 1.81. The
number of page faults reductions for gcc and bit-r are
95.7% and 49.8% respectively.

In Figure 10, both processes LU-1, LU-2 have the
same memory usage pattern and started their executions

at the same time. Thus frequent climbing slopes of RSS
incurred memory frequent reallocations, and triggered
fluctuating RSS curves, leading to inefficient memory
usage and low CPU utilization. The dynamical memory
demands from the processes caused the system to stay
in the thrashing state for most of the time. However,
when our protection patch is in effect, the protected pro-
cess LU-1 can run very smoothly (see Figure 11), its
RSS curve is much same as the one in the isolated ex-
ecution (see Figure 6). This shows that our patch can
responsively adapt replacement behavior to the dynam-
ically changing demand of memory load from multiple
processes, thus keep high CPU utilization. Our mea-
surements show that the slowdown of LU-1 relative to
its isolated execution time is reduced from 3.57 to 1.63,
the slowdown of LU-2 is reduced from 3.40 to 2.18. The

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200 250 300 350 400

N
u

m
b

e
r

o
f

m
e

m
o

ry
 p

a
g

e
s

Execution time (second)

LU-1 in the interaction

MAD
RSS

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200 250 300 350 400

N
u

m
b

e
r

o
f

m
e

m
o

ry
 P

a
g

e
s

Execution time (second)

LU-2 in the interaction

MAD
RSS

Figure 10: The memory performance of gcc and vortex during the interactions with the original Linux Kernel 2.2.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200 250

#
 P

a
g

e
s

exe time(sec)

LU-1 in the interaction

MAD
RSS

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200 250

#
 P

a
g

e
s

exe time(sec)

LU-2 in the interaction

MAD
RSS

Figure 11: The memory performance of gcc and vortex during the interactions with thrashing protection.

number of page faults reductions for LU-1 and LU-2 are
99.4% and -39.6% respectively. Though the number of
page faults of LU-2 is increased, its execution time is
still greatly reduced, which is partly because of the in-
creased I/O bandwidth when its peer process LU-1 has
greatly reduced its page faults due to the protection.

5 Related work

Improvement of CPU and memory utilization has been
a fundamental consideration in the design of operating
systems. Studies of page replacement policies have a
direct impact on memory utilization, which have contin-
ued for several decades. The goal of an optimal page re-
placement is to achieve efficient memory usage by only
replacing those pages not used in the near future when

available memory is not sufficient, reducing the num-
ber of page faults. In a single-programming environ-
ment, these proposed methods address both concerns of
CPU and memory utilization since any extra page faults
due to low memory utilization will make the CPU stall.
However system thrashing associated with the concur-
rent execution in a multiprogramming can not be fully
covered by the work on this aspect due to the conflict-
ing interests between CPU and memory utilization men-
tioned in Section 2.4.

In the multiprogramming context, mainly there are
two methods to eliminate thrashing. One is local re-
placement, another is load control. A local replacement
requires that the paging system select pages for a pro-
gram only from its allocated memory space when no
free pages can be found in their memory allotments. Un-

like the global replacement policy, the local policy needs
a memory allocation scheme to satisfy the need of each
program. Two commonly used policies are equal and
proportional allocations, which can not capture dynam-
ically changing memory demand of each program [2].
As a result, the memory space may not be well utilized.
On the other hand, an allocation dynamically adapting to
the demand of individual programs will shift the scheme
to the global replacement. The VMS [5] is a represen-
tative operating system using a local replacement pol-
icy. The memory is partitioned into multiple indepen-
dent areas, each of which is localized to a collection of
processes that compete with one another for memory.
Unfortunately, this scheme can be difficult to administer
[6]. Researchers and system practitioners seem to have
agreed that a local policy is not an effective solution for
virtual memory management. Our patch is built on the
global replacement policy of Linux.

A commonly used load control mechanism is to sus-
pend/reactivate, even swapping out/in processes to free
more memory space after the thrashing is detected. The
4.4 BSD operating system[8], AIX system in the IBM
RS/6000[4], HP-UX 10.0 in HP 9000 [3] are the exam-
ples to adopt this method. In addition, HP-UX system
provides a “serialize()” command to run the processes
once at a time after thrashing is detected. Compared
with load control, our patch works to the same objec-
tive but not through action on the whole processes, in-
stead through adaptively adjusting page replacement al-
gorithms. Memory allocation scheduling at this level al-
lows us to carefully consider the tradeoff between CPU
and memory utilization.

6 Conclusion

We have investigated the risk of system thrashing in
page replacement implementations by examining the
Linux kernel code of versions 2.0, 2.2, and 2.4, and run-
ning interacting memory-intensive programs in a Linux
system. Our study indicates that this risk is hard to avoid
in a non-adaptive replacement implementation due to
the conflicting interests of requirements on CPU and
memory utilizations. We have proposed and imple-
mented a patch to enhance the existing replacement pol-
icy into an adaptive one in the Linux kernel to prevent
the system from thrashing among interacting processes,
and to improve the CPU utilization under heavy memory
load. Conducting experiments and performance evalu-
ation, we show that our method can effectively provide
thrashing protection without negative effects to overall
system performance for three reasons: (1) the privilege
is granted only when a thrashing problem is detected; (2)
although the protected process could lower the memory

usage of the rest of the interacting processes for a short
period of time, the system will soon become stable by
the protection; and (3) Our patch is simple to implement
with little overhead in the Linux kernels.

In our current experiment we always select the pro-
cess which most possibly has the least memory short-
age, because we intent to put least effort to fulfill our
protection goal. However, this scheme may allow the
same process to be protected more often than others.
This may incur fairness concern. A simple solution is
to let the protection privilege alternate among all the ac-
tive processes. We would like include this in our future
work.

Acknowledgments: We thank Phil Kearns for provid-
ing a kernel programming environment. We appreciate
Bill Bynum for reading the paper and for his sugges-
tions.

References

[1] M. Beck, et. al., Linux Kernel Internals, Second
Edition, Addison-Wesley, 1998.

[2] E. G. Coffman, Jr., and T. A. Ryan, “A study of
storage partitioning using a mathematical model
of locality”, Communications of the ACM, Vol. 15,
No. 3, 1972, pp. 185-190.

[3] HP Corporation, HP-UX 10.0 Memory Manage-
ment White Paper, January 1995.

[4] IBM Corporation, AIX Versions 3.2 and 4 Perfor-
mance Tuning Guide, April 1996.

[5] L. J. Kenah and S. F. Bate, VAX/VMS Internals
and Data Structures, Digital Press, Bedford, MA,
1984.

[6] E. D. Lazowska and J. M. Kelsey, Notes on Tun-
ing VAX/VMS, Technical Report 78-12-01. Dept.
of Computer Science, Univ. of Washington, Dec.
1978.

[7] S. Maxwell, Linux Core Kernel Commentary,
CoriolisOpen Press, 1999.

[8] M. K. McKusick, K. Bostic, M. J. Karels, J. S.
Quarterman, The Design and Implementation of
the 4.4 BSD Operating System, Addison Wesley,
1996.

[9] R. van Riel, “Page replacement in Linux 2.4 mem-
ory management”, Proceeding of USENIX Annual
Technical Conference, (FREENIX track), Boston,
Massachusetts, June 2001.

