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Abstract— Searching efficiency is a decisive factor concerning
scalability in large-scale peer-to-peer (P2P) file sharing systems.
While flooding is the most commonly used and user-performance
oriented method to broadcast query across an unstructured P2P
network, it generates a large number of redundant messages. Our
study shows that more than 70% of messages are redundant using
flooding in a moderately connected network, which imposes an
increasingly excessive burden on the underlying infrastructure,
hindering the growth and scalability of P2P systems. To reduce
the use of flooding as well as its associated overhead, we utilize
the access trail left by a standard flooding, which is a collection
of P2P links used by non-redundant messages. Thus the multiple
queries following the flooding can be broadcasted along the
trail to achieve two goals: (1) The ability of flooding to achieve
short response time is maintained; (2) the cost of a broadcast
is minimized. Though the trail can be partially damaged in an
ad hoc system with constant peer arrivals and departures, we
used repeated trail refreshings and additional trail links to make
a trail consistently available for query broadcast. We call this
trail-based technique FloodTrail.

We evaluated the performance of FloodTrail for P2P sys-
tems for Web Contents sharing. Simulation results show that
FloodTrail could reduce flooding traffic by up to 57%, while
maintaining almost the same coverage as flooding.

I. INTRODUCTION

Recent music file sharing systems have spurred tremendous
interests in peer-to-peer (P2P) distributed systems. While
fully decentralized architectures such as what is adopted in
Gnutella provide potentially highly scalable systems, searching
efficiency is a decisive factor concerning scalability. Though
the query routing by flooding is very naive and often leads
to inefficient use of bandwidth, flooding is currently the most
widely used method to reach a large amount of peers in a short
period of time.

In a flooding, a peer sends a message to its neighbors, which
in turn forward it to all their neighbors except the message
sender. Each message has a globally unique message ID. A
message received by a peer that has the same message ID as
the one received previously is considered a redundant message
and will be discarded. Flooding is conducted in a hop by hop
fashion counted by Time-to-Live (TTL). A message starts off
with its initial TTL, which is decremented by one when it
travels across one hop. A message comes to its end either
because it becomes a redundant message or because its TTL

is decremented to 0. Excessive traffic overhead is a major
limit of flooding. When multiple messages with the same
message ID are sent to a peer by its multiple neighbors, all
but the first messages are considered as redundant messages.
These redundant messages are pure overhead: they increase
the network transferring and peer processing burden without
enlarging the propagating scope. However, because there are
no controls and no accurate information on network topologies
and locations of desired files in ad hoc, unstructured P2P
systems, the role of indiscriminate flooding is essential for
a rapid and reliable query broadcasting with a large coverage.

A flooding not only provides a large scope broadcasting, but
also leaves valuable trail information, which is largely ignored
in the previous research. Trail of a flooding is a collection of
P2P links, along which a message reaches a new peer, which
sees the query for the first time, during a flooding. Those links
that are used to transmit redundant messages in flooding are
excluded from trail. A trail generated by a flooding provides
an optimal multicast tree for a query broadcast from the
same peer as the one where the flooding is initiated, through
which a query can reach each peer in the shortest time and
without any redundant messages. So the trail can be used for
broadcasting the subsequent queries. We call the trail-based
broadcast technique FloodTrail. Actually, history information
about a flooding has been effectively utilized — a globally
unique message ID is kept in every peer that saw the query
for a certain period of time to recognize and discard redun-
dant messages. We assume the trail information can also be
recorded across the peers that have seen a query for its future
use. The main concern on the use of trail for broadcasting
comes from the transiency of P2P systems. A peer could join
in or depart from the ad hoc system, which could disrupt a
trail and make it unavailable for query broadcasting. In this
paper we will answer the following questions:

1) How to mend a trail in the face of constant peer arrivals
and departures?

2) How does the transiency of P2P systems affect the
performance of trail in terms of coverage and redundant
message reduction?

3) How to set the time length during which a trail is usable?



4) s the additional space overhead for storing trail infor-
mation in a peer acceptable?

Il. RELATED WORK

To address the flooding problem in Gnutella style P2P
systems, researchers and practitioners have proposed some
solutions. For example, the expanding ring [2] (or iterative
deepening [10]) initiates several successive flooding searches
with increasing TTLs. After each flooding, the requesting
peer has to wait for some period of time to collect response
messages. The continuation of a flooding depends on whether
enough responses have been received so far. These schemes
only work for queries for highly popular and widely duplicated
files. They even could generate more traffic than standard
flooding for less popular files due to its repeated use of
floodings. In some schemes, interest-based locality has been
assumed and exploited by abstracting hints from previous
(flooding) search [8], [6]. Their effectiveness depends on the
content distribution and user access patterns. Another prevalent
solution adopts super-peers to provide a partially centralized
location service [9]. These super-peers connect to each other
forming a pure Gnutella style network, where flooding is
used for query search. In summary, flooding is still a major
component in all these schemes, and its efficiency remains
as an issue to be addressed. LightFlood [1] directs queries
with small TTLs routing across a tree-like sub-overlay to
reduce excessive flooding traffic. However, LightFlood could
increase the broadcast delay, and it can not differentiate the
various bandwidth of links.

Our FloodT'rail technique utilizes the temporal locality
of floodings to directly reduce flooding cost. Many schemes
aiming at system scalability are expected to benefit from the
technique by integrating it into these schemes.

In the following section, we will describe FloodTrail tech-
nique in detail. In Section 4, we evaluate the technique through
real-life topology and content request traces. We also study the
performance implication of system transiency, and the length
of the period of time during which a trail is usable. Then
we discuss its additional overhead. We conclude the paper in
Section 5.

I1l. THE FLOODTRAIL TECHNIQUE

In the FloodTrail technique, each peer has a globally unique
peer ID. A query sending from a peer carries its peer ID.
Initially a peer floods its query across P2P network with a
flag called Flood. Any peer receiving a message with the flag
forwards the message to each of its neighbors except the one
from which it received the messages, just as what it does in
a standard flooding. And it marks each of its links to those
neighbors as a trail link. When one of its neighbors gets the
message and it is not the first one it received for the same
query, it sends back a small trail link invalidation message,
thus the peer receiving the returned message invalidates its
previously marked trail link. If the neighbor receives the
message and it is the first one for the query, it also marks
the link from which it gets the message as a trail link. In this
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Fig. 1. Illustration of the construction of a trail. Node 1 is the source node.
Solid lines are for trail links. Suppose that node 3 is connected into the
system via low-bandwidth connection (e.g. dial-up connection). Those lines
which are not darkened represent the low-bandwidth links. The messages
passing through these slow links subsequently become redundant ones, and
are excluded from the trail.

way the flooding generates a trail composed by trail links,
which is actually a tree rooted from the peer initiating the
query and covers all the peers covered by the flooding. Any
links transmitting redundant messages are excluded from the
trail. Because the links transmitting first arriving messages are
selected as trail links, the path from the root peer to a peer
along trail links is the shortest one between the two peers in
terms of transmitting time. Each peer can built a trail tree
rooted from itself through an initial flooding for its future
query broadcast. Figure 1 illustrates the construction of a trail
from a specific peer. From the figure we can see that (1) The
query broadcast through a trail takes only N messages to reach
N peers, and eliminates all the redundant messages in the ideal
case. (2) The shortest paths are selected for each destination
peers, and slow links are dynamically avoided.

However, in an ad hoc system, peers could constantly join
in or depart from the system network. For a relatively long
period of time, these moving peers are accumulated and could
significantly change the connections among peers. This leaves
many peers unreachable either because they are newly added
peers and not on the trail or because some peers on the path
from the root to those peers leave. So we set a timer at each
peer, which is reset right after the initiation of a flooding
for a trail construction. A peer’s trail is only valid for query
broadcast before the timer of the peer expires. The timer
expires after a certain period of time called window time. A
query will be flooded with a flood flag to construct a new trail
to replace the current one once the timer expires, which we
call trail refreshing. Repeated trail refreshings help reduce the
impact of major accumulated topology changes on the use of
trail. For minor topology changes within a window time, we do
the following maintenance work: (1) When a peer leaves, all
of its neighbors, which we call lost peers, designate all of their
links to their neighbors as trail links, and their corresponding
neighbors are notified. Thus these lost peers try their best
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Fig. 2. The hit ratios (the number of requests that can broadcasted across the
trail among the total requests) with various window times for request stream
R1 and R2.

to re-connect to other peers, possibly introducing redundant
messages. (2) When a peer joins, it is treated as a lost peer
and the link to each of its neighbors is marked as a trail link.
In this way any temporarily lost peers are re-connected to the
trail and are able to receive queries from the root peer.

IV. PERFORMANCE EVALUATION

We use trace-driven simulations for performance evaluation.
In order to investigate the feasibility and performance potential
of the FloodTrail technique, we used Web proxy workloads
which reflect user access patterns for Web content, which is
envisioned being shared in a P2P Web content distribution
system [8]. The Web proxy trace we used is composed of
one-day traces from five of Boeing’s firewall proxies [12]. We
selected two one-hour traces for our experiments, which is the
median session duration reported for P2P systems [7]. The
first request trace, R1, was collected from 5PM to 6PM, and
contains 8,283 client nodes and 838,150 requests. The second
trace, R2, was collected from 10AM to 11AM, and contains
22,126 client nodes and 1,989,785 requests. Each entry of the
traces contains a request time and a request client. To simulate
the performance of Gnutella, we used Gnutella connectivity
graphs collected in early 2001 [11]. All graphs have a bimodal
power-law degree distribution. We selected two graphs with
different average degrees and each with its number of peers
similar to the number of clients in a request stream trace. The
first one has 8,351 peers with an average degree of 2.78. The
second one, T2, has 22,509 peers with an average degree of
4.77. We randomly map the clients in stream R1 to graph T1,
and the clients in stream R2 to graph T2. In all broadcasts,
we used a maximum query TTL of 7, which is the application
default for many Gnutella clients.

A. The Impact of Window Time on Trail Broadcast

As we have mentioned, trail broadcast is used within a
window time, which is after a trail is refreshed by an initial
flooding and before a timer is expired. Thus window time
is directly related to the number of times for which trail

broadcasts can be used. We denote the ratio of the number
of requests for which trail broadcasts can be used and total
requests in a stream as the hit ratio for a given window time.
Figure 2 shows the hit ratios with a large range of window
times from 2 seconds to 40 seconds for request stream R1
and R2. From the figure we see that hit ratio rises rapidly
with small window times. For example, a window time of 10
seconds makes 73% of requests eligible for trail broadcasts,
and only 27% of requests have to use standard floodings in
stream R1. In the current music file sharing P2P systems, users
usually experience the cycle like multiple trial queries, file
selection and download, and listening. So we expect clustering
of query requests during the live session of a user, which would
generate a high hit ratio for a moderate window time. High hit
ratio provides a large potential for our FloodTrail technique
to exploit for broadcast cost reduction.

B. The Impact of Transiency on Trail Broadcast

In this section we study the impact of peer ar-
rivals/departures on the performance of trail broadcasts. Even
though we add trail links for lost peers due to peer depar-
tures, some lost peers could be beyond the coverage of a 7-
hop broadcast. Thus the coverages of trail broadcasts could
be reduced with peer departures. The number of redundant
messages could increase due to the introduction of trail links
for lost peers and newly arriving peers.

To simulate the behavior of peer moving and keep the size
of a graph fixed, we add a peer with the same degree as the
one removed into the graph once we remove a peer in the
graph. The neighbors of the added peer are randomly selected
from the peers in the graph. For each peer in a graph, we
first generated a trail rooted from the peer through a flooding,
then broadcasted a query across the trail, which could be
updated thereafter due to peer arrivals/departures. We collected
the coverage of the broadcasts initiated from every peers and
their traffic, which is the number of messages forwarded, and
reported their averages in Figure 3 for graphs T1 and T2
with various number of moving peers. We have tested a large
range of number of moving peers, from 0.1% to 4.9% of total
peers in a graph. Actually the upbound of 4.9% is largely
exaggerated, and we would not expect a stable P2P system
changed that much in a window time of a couple of seconds.

The coverage of a trail broadcast without a moving peer is
the same as that of a standard flooding. From the figures we
can see that the coverage reduction due to moving peers is very
limited. For example, the coverage is reduced by only 4.8%,
8.8% and 12.3%, respectively for graph T1, and by only 3.9%,
6.8% and 9.8%, respectively for graph T2, when 1%, 2%, and
3% of total peers are moved. The reason for the small coverage
reductions is that moving peers are randomly selected, a peer
close to the trail tree leaves has much higher probability to
be chosen than a peer close to the tree root, because the
number of peers close to a root is small. The traffic of a trail
broadcast without a moving peer is the same as the number
of its covered peers, because there are no redundant messages
in the process of broadcast. We observed that the traffic could
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Fig. 3. Average coverage and corresponding traffic for trail broadcasts with various number of moving peers for connection graphs T1 and T2. For comparison,
the average coverage and traffic of a standard flooding are 5,925 peers and 10,719 messages for T1, 22,426 peers and 84,136 messages for T2.

be increased with the increasing of moving peers. If we use
ratio of coverage and traffic to characterize traffic efficiency,
the traffic efficiency is 98.6%, 97.0% and 98.1%, respectively
for graph T1, and is 93.6%, 89.7% and 84.9%, respectively
for graph T2, when 1%, 2%, and 3% of total peers are moved.
Though the efficiency is decreased with the increase of moving
peers, they are much better than the efficiency for a standard
flooding, namely 55.3% for T1 and 26.7% for T2. We obseverd
that the efficiency of T2 is lowered more than that for T1, this
is because of its high average degree and more trail links added
for lost and new peers.

In summary, trail broadcast is robust in retaining its sig-
nificant performance merits over a standard flooding even
with a largely transient P2P system, and significantly reduces
broadcast traffic.

C. The Performance of FloodTrail for Web Content Requests

We ran the Web content request streams R1 and R2 on con-
nection graphs T1 and T2, respectively. Because the reported
median session duration for P2P systems is one hour, and
both R1 and R2 are one-hour traces, we assume that during
each request stream, a peer would arrive once and depart
once. We also assume the arrivals and departures are randomly
distributed along the one-hour period. We define moving rate
as the number of peers moved in a second in percentage of
the number of total peers. As before we add a peer into the
network once a peer departs to maintain a graph of fixed size.
A peer moving includes a peer departure and a peer arrival.
So we estimate the moving ratio is 1/3600 x 100% = 0.028%
for a second in the scenario. To stress the robustness of the
FloodTrail technique, we also tested moving ratios of 0.05%,
0.1%, 0.15%, 0.2%, and 0.25% for a second. We selected
three representative window times: 5, 10 and 15 seconds. The
experimental results are depicted in Table I.

In the table, we observed that (1) Increasing window times
could increase hit ratios and the use of trail floodings, which
could provide a smaller coverage with peer moving in/out.

However, the reduction of coverage is trivial. Meanwhile the
reduction of traffic is significant. For example, the average
coverage of R1 on T1 is reduced by only 0.4%, but its traffic
is reduced by 11.4% when the window time is increased from 5
to 15 seconds for the moving rate of 0.028%. (2) The coverage
reduction due to the increasing of moving rates is moderate,
which shows the robustness of the FloodTrail technique in the
face of the transiency of ad hoc systems. (3) The coverages are
very close to those of the 7-hop standard floodings, which are
5,925 and 22,426 in graphs T1 and T2, respectively. However,
the traffic is significantly reduced, and the reduction for high
degree graphs is even large. For example, the average traffic
of 7-hop standard flooding is 10,719 and 84,136 in graphs T1
and T2, respectively. With the moving rate of 0.028% and the
window time of 10 seconds, traffic is reduced by 27.1% for
R1 on T1, and by 53.2% for R2 on T2.

D. Space Overhead of Trail Flooding

While trail flooding can greatly reduce traffic overhead
caused by redundant messages, it needs peers in the system to
store trail information. Actually the additional space overhead
distributed among all peers is small and acceptable in practice.
If one bit is used to indicate whether a link is on the trail of
a root peer, it takes only 4 bytes for a peer with a degree of
32 to remember trail information for a root peer. For a system
whose 7-hop flooding coverage is around 40K peers, the peer
takes only about 160KByte to remember trail information
for peers in its neighborhood. In fact, we expect this space
overhead is comparable with that used for message ID in a
standard flooding, which practically imposes little burden on
P2P system participants.

V. CONCLUSION

By utilizing the trail a standard flooding leaves, and care-
fully managing the trail in the face of constant peer arrivals and
departures, we designed the FloodTrail technique to reduce the
large overhead of popular flooding searches. We evaluated it
through simulations with real-life topology and request stream



TABLE |
COVERAGE AND TRAFFIC VARIANCE

Window Time(s) | Hit Rate 0.028% 0.05% 0.10% 0.15% 0.20% 0.25%
T1+R1 5 60.4% 5916/7817 5910/7813 5894/7804 5876/7792 5860/7781 5843/7770
T1+R1 10 73.2% 5903/7187 5886/7176 584477149 5847/7978 5763/7096 5720/7066
T1+R1 15 78.4% 5890/6924 5859/6903 5794/6860 5832/8304 5661/6771 5592/6722
T2+R2 5 59.0% 22409/47689 | 22388/47713 | 22339/47759 | 22298/47808 | 22258/47860 | 22217/47908
T2+R2 10 72.4% 22374/39404 | 22322/39454 | 22220/39575 | 22211/39624 | 22009/39797 | 21902/39898
T2+R2 15 77.9% 22336/36012 | 22261/36097 | 22097/36286 | 22086/36365 | 21755/36615 | 21589/36763

Note: Average coverage in number of peers and average traffic in number of forwarded messages of a query in FloodTrail for various peer moving rates,
which are shown as a pair of numbers in that order. For example, “5916/7817” means the average coverage is 5916 peers and the average traffic is 7817
messages for request stream R1 on graph T1 when there are 0.028% of total peers moving in a second and the window time is 5 seconds.

traces. Simulation results show that the FloodTrail technique
is effective and consistent to significantly reduce flooding
traffic, while keeping the merits of standard flooding such as
large coverage and low response time across a large range of
moving rates and window times. We believe FloodTrail can
effectively serve as a basic flooding technique for file search
in unstructured P2P systems

Currently, we are investigating the feasibility of adaptively
customizing window time to each peer’s request behavior
pattern, as well as its performance potentials.
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