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Abstract

In a large client/server cluster system, file blocks are
cached in a multi-level storage hierarchy. Existing file block
placement and replacement are either conducted on each
level of the hierarchy independently, or by applying an LRU
policy on more than one levels. One major limitation of these
schemes is that hierarchical locality of file blocks with non-
uniform strengths is ignored, resulting in many unnecessary
block misses, or additional communication overhead. To ad-
dress this issue, we propose a client-directed, coordinated file
block placement and replacement protocol, where the non-
uniform strengths of locality are dynamically identified on
the client level to direct servers on placing or replacing file
blocks accordingly on different levels of the buffer caches. In
other words, the caching layout of the blocks in the hierar-
chy dynamically matches the locality of block accesses. The
effectiveness of our proposed protocol comes from achieving
the following three goals: (1) The multi-level cache retains
the same hit rate as that of a single level cache whose size
equals to the aggregate size of multi-level caches. (2) The
non-uniform locality strengths of blocks are fully exploited
and ranked to fit into the physical multi-level caches. (3) The
communication overheads between caches are also reduced.

1. Introduction

1.1. Hierarchical Caching and its Challenges

With the ever-widening gap between the speeds of pro-
cessors and hard disks, practitioners try to make a full use of
the available buffer caches along a file block retrieving route
for the purpose of satisfying the requests before they reach
disk surfaces. Besides the buffer caches at clients, the re-
quested blocks can also be cached at server buffer caches and
disk built-in caches, which form a multi-level buffer cache
hierarchy. For example, modern high-end disk arrays typi-
cally have several gigabytes of cache RAM. Though multi-
ple buffer resources are lined up and their aggregate size is

� This work is supported in part by the U.S. National Science Foundation
under grants CCR-0098055 and ACI-0129883.

increasingly large, the issue of how to make them work to-
gether effectively to deliver the expected performance com-
mensurate to the aggregate size of the distributed buffer
caches is still not well addressed. There are two new chal-
lenges related to this issue.

The first challenge comes from the weakened locality in
the low level buffer caches1. Caching works because of the
existence of locality, which is an inherent property of ap-
plication workloads. Only the first level buffer cache is ex-
posed with the original locality and has the highest poten-
tial to exploit it. Low level caches hold the misses from their
upper level buffer caches. In other words, the stream of ac-
cess requests from applications is filtered by the high level
caches before it arrives at the low level ones. Thus the ac-
cess stream seen by low level caches has weaker locality than
those available to the first level cache. The performance of
widely used locality-based replacements such as LRU can
be significantly degraded once these replacements are em-
ployed in the low level buffer caches. Muntz and Honeyman
[7] as well as Zhou et al [14] have observed the serious per-
formance degradation in their file server buffer cache studies.
In a work to investigate the cost-effectiveness of disk built-in
caches for desktop PCs, Zhu and Hu found that the built-in
caches contribute little more to the average response time re-
duction when its size exceeds 512KB with a client cache size
of 16MB [13]. The above cited work indicates applying a re-
placement independently at a low level buffer cache can lose
its chance to exploit the original locality. This motivates us
to make replacement decisions based on the original access
stream, which is only available at the first level cache.

The second challenge comes from the undiscerning re-
dundancy among levels of the buffer caches. Redundancy
means a block is cached and duplicated along its retrieval
route in more than one caches. Without a proper coordina-
tion among the levels, blocks could reside undiscerningly in
multiple buffer caches for a long period of time before they
become cold enough to be replaced by a local replacement
algorithm. The redundancy can cause the buffer cache hi-
erarchy seriously under-utilized. Even if the aggregate size

1 By low level buffer caches, we customarily refer to the caches not close
to the workload running clients. Similarly, high levels of buffer caches
are those close to the clients. Thus, the fi rst level buffer cache is the
client buffer cache with the highest level.
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of the multi-level buffer caches could hold the working set,
the hierarchy would behave as if it were as big as the single
level of cache with the largest size under some access pat-
terns. We propose to use an unified replacement scheme for
a multi-level cache hierarchy, which can determine an ap-
propriate place for a block to be cached (if it needs being
cached). Thus undiscerning redundancy can be eliminated.
The hierarchy can perform as an unified cache with the size
equivalent to the aggregate size, so that all the cache spaces
are fully utilized.

Wong and Wilkes [12] simply apply an unified LRU algo-
rithm in a two-level buffer cache: client and disk array built-
in buffer caches. The first portion of the LRU stack corre-
sponds to the client cache. The second portion of the LRU
stack corresponds to the disk array cache. Any blocks mov-
ing from the first portion into the second portion due to the
increased recency would incur a demotion, an operation that
transfers a block from the current level to its next low level
cache. Since any recently referenced blocks are brought into
the top of LRU stack, all newly referenced blocks are cached
in the first level cache. There is no explicit block placement
arrangement adapting to their access pattern. By demotion,
the blocks go back to the disk cache. Though their scheme
has an significant advantage over independent replacements,
a critical weakness exists: a large number of demotions. It
has been shown that the benefits can be nullified by them
once the I/O bandwidth is below a certain threshold [15].

1.2. Our Principles to Address the Challenges

To address the limitations in the unified LRU scheme, a
caching algorithm for block placement and replacement in
the multi-level buffer hierarchy should have two abilities:
(1) distinction of locality strengths; and (2) stability of the
distinction, which are also our two principles to address the
challenges. Regarding the distinction, if the algorithm can ac-
curately and responsively distinguish blocks with strong lo-
cality from those with weak locality2, then the stronger the
locality of blocks is, the higher level of cache they should
be placed on. The distinction of this hierarchical locality will
make high levels of caches contribute most to the hit rates,
which reduces the average access time because of their low
hit times. Since the arrangement of block caching positions is
based on the distinction of locality strengths, we need to re-
arrange the blocks once the locality strengths change, which
means to transfer blocks among levels. This incurs a com-
munication cost. Thus the stability of the distinctions is crit-
ical to keep a low communication cost introduced by an uni-
fied caching scheme.

2 By a block with strong locality, we mean it is highly likely to be ref-
erenced soon, and it contributes more to the hit rate by being cached
than the one with weak locality. The strengths of locality are quanti-
fi ed differently in different replacements, which we will discuss in the
next section.

2. Characterizing Non-uniform Locality
Strengths in Hierarchical Buffer Caching

2.1. Criteria to Distinguish Locality Strengths

Each replacement algorithm has its own defined criterion
to characterize locality strengths and to make distinctions
among them. Among these criteria, the one used in the op-
timal replacement algorithm, OPT, provides the most accu-
rate distinction of locality strengths among accessed blocks.
It uses the period of time between the current reference and
the next reference to a block, we call it next distance (ND),
to determine the locality strengths. Using the time of the last
reference to a block to predict the time of its next reference,
the LRU algorithm uses Recency (R), which is also its cur-
rent position in the LRU stack, to simulate ND. Both ND and
R of a block could change with every reference to any block.
When the stability of the locality strengths characterized by
ND or R is a concern, it is unclear where a block should be
cached to reduce the communication cost.

In the unified LRU replacement [12], when a block goes
down in the LRU stack with the ongoing references, it may
incur demotions once its recencies reach certain values. Had
it been known at what recency a block would be re-accessed
when the block was requested, we would have cached it di-
rectly on the level of cache corresponding to that recency,
thus the demotions could be avoided. This motivates us to
use this recency at which the block will be referenced next
time, which we call Next Locality Distance (NLD), to char-
acterize locality strengths. After a block is accessed, its NLD
will not change until its next reference. This helps to stabi-
lize the distinction of locality strengths. Because NLD rep-
resents a future access timing, it is not collectible on-line.
To simulate NLD in an on-line algorithm, we use Last Lo-
cality Distance (LLD), the recency at which a block was ac-
cessed last time. However, LLD of a block does not describe
the number of recent references after the last reference to the
block, which is reflected in its recency. To responsively cap-
ture the changes of locality scope (a hot block becomes cold,
or vice versa), we use recency to take place of LLD once re-
cency exceeds LLD. That is, we use the larger of LLD and R
to simulate NLD, called LLD-R. Using the LRU stack, Fig-
ure 1 illustrates the differences of ND, R, NLD, and LLD-R.

2.2. Comparisons of ND, R, NLD, and LLD-R on
Distinguishing Locality Strengths

Each of the four measures, ND, R, NLD, and LLD-R,
is associated with a replacement algorithm. A replacement
algorithm works in the way that it has its accessed blocks
ranked according to a certain measure, and selects the least
ranked block for replacement once a victim block is needed.
For example, the measure used by OPT is ND and the mea-
sure used by LRU is R. How well a measure satisfies the two
ability requirements — distinction of locality strengths and
the stability of the distinction, determines how well the cor-
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Figure 1. In the LRU stack, the positions (recencies) of
last access, next access and current time of a block are il-
lustrated. Before the current position of the block (R) ex-
ceeds last access position (LLD) (see left figure (a)), LLD-
R is LLD; after that (see right figure (b)), LLD-R is R to
make LLD-R more accurately simulate NLD. It also shows
that R and ND change with every reference.

responding replacement algorithm serves as an unified re-
placement algorithm for a multi-level cache hierarchy.

To understand and compare the two abilities of the
measures, we use six small-scale workload traces ( � 	 ,
 � �  � 	 � � � � � � , � � � � �  � 	 � � � � � , and  � � � � ) with rep-
resentative access patterns for the evaluation. The de-
scriptions for the traces can be found in [6]. These traces
represent the major access patterns common to the I/O re-
quests. Traces � 	 and 
 � �  � 	 � have a looping access
pattern, where all blocks are regularly and repeatedly ac-
cessed. Trace 	 � � � � � has a temporally-clustered access pat-
tern, where blocks accessed more recently are the ones
more likely to be accessed soon. It is an LRU-friendly pat-
tern. Trace � � � � �  has a spatially uniform distribution of
references across all the accessed blocks. This access pat-
tern is common in database applications. In trace � � � � only
a few blocks are frequently accessed. Formally, the proba-
bility of a reference to the � th block is proportional to � � � .
Zipf-like access patterns exhibited in trace � � � � are typi-
cal for file references in Web servers. Trace  � � � � has an
access pattern mixed with sequential, looping and proba-
bilistic references.

We maintain an ascendingly ordered list for each mea-
sure. Once there is a reference to a block, the measure value
of the block, and possibly the measure values of other blocks
are changed, and the list is updated to maintain the order. We
divide the full length of each list into 10 segments of equal
size. We collect the number of references to each segment to
observe the locality strength distinction. We also collect the
block movements across each of the segment boundaries to
observe the stability of the distinctions when the list is up-
dated with references.

Figure 2 shows the reference rate distributions in the list
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Figure 2. Reference ratios to each of the segments (the
ratios of the number of references to a segment to the
number of all references in a workload). It also shows the
accumulative reference rates for the first N segments in
each workload, where N is 1 through 10.

for each measure. Each of the measures orders accessed
blocks in its list and places the blocks with small values at
the head of the list. A good distinction of locality strengths
should generate a reference rate distribution with more hits
appearing in the head portion of the list than those in its tail
portion. Assuming each of the segments corresponds to a
level of cache, we can observe the hit rate on each level of
cache. From the figure we have the following observations:

(1) ND gives the best reference rate distribution. The
higher (closer to the list head, and with a 	  � � � � � seg-
ment number in Figure 2) a segment is, the higher reference
rate the segment achieves for ND. This reflects the strong
ability of ND to accurately make the distinction of locality
strengths. Actually, the distribution generated by ND is opti-
mal considering optimality of the OPT algorithm. While high
segments are mapped on the high levels of caches, which
have small hit times, such a distribution helps reduce the av-
erage access time. However, R gives the worst distribution,
though it attempts to directly simulate (predict) ND. This is
most obvious for the workload with a looping access pat-
tern: � 	 and 
 � �  � 	 � . Most of their references go to the low
segments (after Segment 9 in � 	 , and after Segment 3 for
 � �  � 	 � ). R only performs well on the workloads with an
LRU-friendly access pattern, such as 	 � � � � � .

(2) NLD performs well for all the workloads with vari-
ous access patterns. This reflects its ability to make consis-
tently accurate distinction. Except for trace � � � � �  , LLD-R
performs very closely to NLD, though it does not depend on
future knowledge. Without looking ahead, all the on-line al-
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ND R NLD LLD-R
Ability to distinguish

locality strengths strong weak strong strong
Stability of distinctions weak weak strong strong

On-line measures no yes no yes

Table 1. Comparisons of the four measures.

gorithms could perform the same as RANDOM replacement
for trace � � � � � � at most, which randomly selects a block
for replacement and has a hit rate proportional to the cache
size. Both LLD-R and R obtain such a distribution for the
trace.

(3) For the two on-line measures, LLD-R produces sig-
nificantly better locality distinctions than R for workloads

� � , � 	 
 � � � � ,  
 � � , and � � 	 � 
 . For LRU-friendly workload
� � � 
 � � , both R and LLD-R perform very well, and R per-
forms a little better than LLD-R.

Figure 3 shows block movement ratios of the number of
block movements at each of the segment boundaries to the
number of all references for each of the four measures. For
example, the first point from the left on a curve represents the
ratio of the number of times that the blocks cross the bound-
ary between the first and second segments to that of all ref-
erences. A small movement ratio means a high stability for
the distinction of locality strengths. When the segments are
mapped to the levels of caches and a boundary corresponds
to the separation of two adjacent levels of caches, a move-
ment ratio determines the communication overhead in uni-
fied caching. Then we have the following observations:

(1) ND and R have the highest movement ratios, which
have been expected because of their volatility. Compara-
tively, NLD and LLD-R have much lower movement ratios.

(2) The ratio gaps between NLD (resp. LLD-R) and ND
(resp. R) are especially pronounced with the looping pat-
tern trace � 	 
 � � � � . However, even for the LRU-friendly
workloads like � � � 
 � � and  
 � � , the gaps are still consider-
ably large. This demonstrates that an on-line unified caching
based on LLD-R can promise a much smaller additional
communication cost than that based on R.

(3) The ratios of LLD-R are smaller than those of NLD in
most cases.

Table 1 summarizes the four measures distinguishing lo-
cality strengths, showing that using LLD-R is a desired basis
to building an unified caching protocol.

3. The Unified and Level-aware Caching
(ULC) Protocol

3.1. An Executive Summary

We have shown that the position of a block in the list or-
dered by LLD-R provides a strong hint for placing the block
on a level corresponding to its list position, or not caching

it at all3. This also assures us that the block would still stay
there with a high probability when the block is accessed next
time. Effectively using the hint, we propose a multi-level
buffer placement and replacement protocol, called Unified
and Level-aware Caching (ULC) protocol to effectively ex-
ploit hierarchical locality. Based on the access patterns and
available cache sizes on each level, ULC running at the first
level client dynamically ranks the accessed blocks into lev-
els

� �
,

� �
, ..., and

� � � �
according to their LLD-R positions,

thus directing them to be placed (cached) at level
� �

cache,
level

� �
cache, ..., or not cached at any levels at the time of

the retrieval, respectively. The size of the first level cache de-
termines the number of

� �
blocks, those with the smallest

LLD-R values, and the same relationship holds for other lev-
els of caches. Low level buffer caches are not responsible
for extracting locality from the filtered request stream pre-
sented to them any more. Every block request from the high
level buffer cache carries a level tag, so the low level caches
only take their actions accordingly. If the attached level tag
matches its level number, this level will cache the retrieved
block. Otherwise, the block is discarded after it is sent to its
next upper level cache. When the block positions need ad-
justing, the client sends block demotion instructions to low
level caches, which lets a block originally residing in a cache
be demoted into its next low level cache. Our client-directed
protocol attempts to answer the following questions: (1) how
to exploit the locality in the entire buffer cache hierarchy
thoroughly and consistently; (2) how to make the exploited
locality usable by all buffer caches in the hierarchy; and (3)
how to minimize the overhead of the protocol.

3.2. A Detailed Description

In Section 2.2 we have shown the LLD-R measure is a
promising basis on which to build a multi-level caching pro-
tocol. However, an implementation exactly based on LLD-
R ranking criterion will take at least O(log � ) time, where �
is the number of distinct accessed blocks. This is the cost
of block ordering. In order to develop an efficient algorithm
with the time complexity � � � � , we transform the process to
determine the position of a block in LLD-R ordered list into
two separate steps: (1) When a block gets accessed, its re-
cency is 0, so its LLD-R is LLD, which is the recency at
which it was just accessed. We use the LLD to determine in
which segment the block will be cached at the time of re-
trieval. (2) Once a block is assigned into a specific segment,
we use R to determine its position in the segment. Each seg-
ment corresponds to a level of cache, and the size of the seg-
ment is the same as that of the cache.

As is shown in Figure 4, the recently accessed blocks are
maintained in an unified LRU stack, simplified as � � 
 � 	 


-
� � � � � . These blocks could be cached in any level of buffer
caches, or even not cached4. For each level of buffer cache

3 Those requested blocks that should not be cached in the fi rst level cache
are still brought into the client for reference, but will not be cached
there. i.e. these blocks will be quickly replaced from the client after the
reference.
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Figure 3. Movement ratio curves showing the ratios between the number of block movements on a position of ordered lists
and that of total references for four measures on 3 workloads. The figures for � � , � � � � � �

and
� � 	 
 �

can be found in [6].

there is a yardstick block in � � � � � �
� � � � � , which is the

block cached in that level of the cache and has the maxi-
mal recency among blocks cached in that level. We call them� �

,
� �

, ...,
� 

for level
� �

,
� �

, ...,
� 

cache, respectively.
The size of � � � � � �

� � � � � actually is determined by the po-
sition of

� 
, the last yardstick, which always sits in the bot-

tom of � � � � � �
� � � � � . Any blocks with recencies larger than

that of
� 

will be removed from � � � � � �
� � � � � and become

an
� � � �

block, which is not cached in any level of caches.
Only when a block gets accessed with the recency between
the recencies of

� � � �
and

� �
does the block become

� �
block,

which means it will be cached in the level
� �

cache. All of
blocks cached on the same level can be viewed as an LRU
stack, called

� � � �
, where the order of blocks is determined

by their recencies in � � � � � �
� � � � � and its size does not ex-

ceed the size of that level of cache. The block to be replaced
on level

� �
is the bottom block of stack

� � � �
. For the re-

quested blocks that are neither cached in
� �

cache nor going
to be cached there because their LLDs are larger than the re-
cency of

� �
, we set up a small LRU stack called � � � 	 � � �

to temporarily store these blocks, so that they can be quickly
replaced from the

� �
cache.

There are two structures for the buffer cache hierarchy.
One is the single-client structure, in which there is only one
client connected to one server5, and another is the multi-
client structure, in which more than one clients share the
same server, and blocks requested by different clients are
shared in the server. There are two additional challenges
for the multi-client ULC protocol: (1) How to cache shared
blocks in server buffer caches, which could carry different
level tags set by different clients. (2) How to allocate server
cache buffers to different clients.

3.2.1. The Single-client ULC Protocol The single-client
ULC algorithm runs at the client, which holds the first level

4 In a protocol implementation, only some metadata, such as a block iden-
tifi er and two statuses used in the ULC protocol, are stored in the stack
for each block, not the block itself.

5 Here we call the high level buffer cache, client, and low buffer cache,
server, when we discuss two adjacent levels.

10

8

8

5

3

3

5

2 2

7

7

6

6

9

9

12

12

11

11

LRU1 LRU2 LRU3

L2 block

L3 block

Lout block

Y1

Y2

Y3

Yardstick
L1 block

uniLRUstack

4

4

1

Figure 4. An example to show the data structure of ULC
for a 3-level hierarchy. The blocks with their recencies less
than that of yardstick � � are kept in

� � � � � � � 
 � � � . The
level status (

� �
,

� �
or

� � ) of a block is determined by its
position between two yardsticks where it was accessed
last time. Its recency status (

� �
,

� �
or

� � ) is determined
by its position between two yardsticks where it sits cur-
rently. To decide which block should be replaced in each
level, the blocks in the same level can be viewed to be or-
ganized in a separate LRU stack (

� � � �
,

� � � �
, or

� � � � ),
and the bottom block is for replacement.

cache. It has the knowledge of the size of the buffer cache on
each level. For each block in � � � � � �

� � � � � , there are two
associated statuses: level status and recency status. Level sta-
tus indicates at which level the block is cached, such as

� �
,� �

, ...,
� 

, or
� � � �

. When a block gets accessed, we need to
know its recency to determine its level status, as the recency
is going to be its LLD. It takes at least O( � ) time to main-
tain the exact recency information for all blocks, where �
is the aggregate size of the buffer caches. Actually we only
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need to know the recencies of whatever two yardsticks the re-
cency lies in. Thus we maintain a recency status

� �
for each

block, which means its recency is between the recencies of
yardsticks

� � � �
and

� �
(or just less than

� �
if � is 1). The

cost to maintain recency statuses is O( � ), which will be ex-
plained.

Initially, if level
� �

is not full and the levels that are higher
than it are full, any requested

� � � �
blocks get level status

� �

and reside in level
� �

. If all the caches are full, any blocks
accessed when they are not in � � � � � �

� � � � � are given level
status

� � � �
. There are two circumstances for a block not in

� � � � � �
� � � � � . One is that the block is accessed for the first

time, another is that block has not been accessed for a long
period of time so that it leaves � � � � � �

� � � � � from the bot-
tom. For these blocks their level status is

� � � �
, and recency

status is
� � � �

.
We define an operation for yardsticks in � � � � � �

� � � � �
called

�
� � 	

� � � � � � 	 � � � � 
 � � � , which moves a yardstick
from the current yardstick block with level status

� �
in the di-

rection towards the stack top to the next block with level sta-
tus

� �
. All the blocks it passes including the current yard-

stick block change their recency status from
� �

to
� � � �

.
When a yardstick block changes its position in � � � � � �

-
� � � � � , we need to conduct yardstick adjustment to ensure the
yardstick is on the block with correct recency status and with
the largest recency among the blocks on the level. Demoting
a block into a low level cache is equivalent to moving the bot-
tom block of local stack

� � � �
into

� � � � � �
, which is sorted

on their recencies in � � � � � �
� � � � � . To place the block at

the correct recency position in
� � � � � �

, we define another
operation for a demoted block called � � 
 � � � � �

�
� � � � � � �  ,

which searches in the direction towards the stack bottom in
� � � � � �

� � � � � for next block with a higher level status.
There are two types of requests in ULC, which are sent

from the client to the low level caches to coordinate various
levels of caches to work under an unified caching algorithm.

1. Retrieve( � � � � � ) ( � � � ): retrieve block � from level
� �

,
and cache it on level

� �
when it passes level

� �
on its

way to level
� �

.

2. Demote( � � � � � ) ( � 	 � ): demote block � from level
� �

into level
� �

.

If there is a reference to block � with level status
� �

and
recency status

� �
, there are only two cases we need to deal

with: � 
 � and � � � . The case � 	 � is not possible be-
cause block � is demoted to level

� � � �
before � is larger

than � . When block � is referenced, it is moved to the top of
� � � � � �

� � � � � and its recency status becomes
� �

. This also
makes it stay in the top of stack

� � � �
. If � � � , block � goes

to stack � � 
 � � � �
in the client and is going to be replaced

soon from the client cache. Then for each of the two cases,
we act as follows: (1) � 
 � . Block � remains in its current
level of cache with the same level status (Retrieve( � � � � � )).
(2) � � � . Because block � will be moved from level

� �

and cached at level
� �

(Retrieve( � � � � � )), a space needs to
be freed at level

� �
. We demote the yardstick block

� �
to

its next low level cache, whose yardstick block may have to

be demoted in turn if its status level is higher than
� �

. Yard-
stick adjustment and demotion searching are conducted here.

3.2.2. The Multi-client ULC Protocol When there are
multiple clients sharing one server, the cache buffers in the
server are no longer solely used by one client. In the sin-
gle client ULC protocol, the number of the blocks with
level status

� �
(also called

� �
blocks), or the size of stack� � � �

, is determined by the size of level
� �

cache. If the
buffers at level

� �
are shared by multiple clients, an al-

location policy is needed on level
� �

for the perfor-
mance of the entire system. To obtain best performance,
it is known that allocation should follow the dynamic par-
tition principle: each client should be allocated a num-
ber of cache blocks that varies dynamically in accor-
dance with its working set size. Experience has shown
that global LRU performs well by approximating the dy-
namic partition principle [3]. Thus we use a global LRU
stack called  � � �

in the server to facilitate the alloca-
tion operation. The block order in  � � �

is determined
by the block recencies, which are determined by the tim-
ings of requests from clients requiring a block be cached in
the server. The bottom block of  � � �

is the one to be re-
placed when a free buffer is needed. For each block in
 � � �

we record its owner — the client most recently re-
questing the block be cached in this server. A block is
cached on the highest level among all the clients’ di-
rection. If there is only one client, the bottom block of
 � � �

is always the yardstick block
� �

in � � � � � �
-

� � � � � , and also is the bottom block of stack
� � � �

in the
client. Because the server cache buffer is shared among
the clients, the bottom block of

� � � �
could have been re-

placed in the server. If this is the case, it is equivalent
to shrinking the cache size of the server dedicated to the
client. So when a block is replaced from  � � �

, a mes-
sage is sent to its owner client so that a yardstick adjust-
ment can occur there. Correspondingly, the size of

� � � �

is decreased by one. The owner notifications of block re-
placements can be delayed until the next requested block
is sent to its owner client without affecting its correct-
ness. Then they are piggybacked on the next retrieved block,
thus saving extra messages. Figure 5 shows an example to il-
lustrate the multi-client case.

4. Performance Evaluation

This section presents our trace-driven simulation re-
sults. We compare ULC with two other multi-client caching
schemes: independent LRU, simplified as � � 	

� � �
, which

is a commonly used scheme, and unified LRU, simplified as
� � � � � �

, an LRU-based unified caching protocol[12].

4.1. Performance Metric

We use average block access time, �  � � , to evaluate the
performance of various protocols. This metric measures the
average time required to access a block perceived by ap-
plications. The access time is determined by the hit rates
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Figure 5. An example to explain how a requested block is cached in the server cache, and how the allocation scheme adjusts
the size of the server cache used by various clients in a multi-client two-level caching structure. Originally in (a) server stack

� � � �
holds all the

� �
blocks from clients 1 and 2, which are also in their

� � � �
stacks, respectively. Then block 9 is accessed

in client 1. Because block 9 is between yardstick � �
and � �

in its
� � � � � � 	 
 � �  , it turns into

� �
block and needs to be cached

in the server. Because the server cache is full, the bottom block of � � � �
, block 14, is replaced, which will be notified to its

owner, client 2, through a piggyback on the next retrieved block going to client 2 (delayed notification). After the server buffers
re-allocation (b), the size of server cache for client 1 is increased by 1 and that for client 2 is decreased by 1. So the clients and
the server cooperate to make the server cache efficiently allocated with the aim of high performance for the entire system.

and miss penalties at different levels of the caching hierar-
chy, as well as other communication costs. Generally, we
can estimate � � � � for an n-level cache hierarchy as follows:
� � � � � �

�
� � � � � � � � � �

� � � � �
� � � � �

� � � � �
where � �

is the
hit rate at level

� �
cache, � �

is the time it takes to access
the cache at level

� �
, � �

� � �
is the miss rate for the cache hi-

erarchy (equivalent to � � �
�
� � � � �

), � � is the cost for the
miss, and � � � �

� � � � �
is the demotion cost for block place-

ments required by an unified replacement protocol. If we as-
sume the demotion cost for a block from level

� �
to

� � � �

is � �
�
, and the demotion rate between level

� �
and

� � � �
is

� �
�
, then � � � �

� � � � � � �
� � �
� � � � �

� � �
�
. We do not consider

the situation where demotions are delayed, thus their costs
could be hidden from applications, for two reasons: (1) De-
motions are highly possible to occur in a bursting fashion, es-
pecially for an LRU-based unified replacement, where 50%,
even around 90% of the references incur demotions. A small
number of dedicated buffers have difficulty in buffering the
delayed blocks, thus its performance is unpredictable. (2) Re-
serving a large number of buffers for delayed demotions ac-
tually reduces the cache size and would hurt the hit rates.

4.2. Simulation Environment

In our trace-driven simulation experiments we assume 8
KB cache block. We use five large scale traces to drive the
simulator, including two synthetic traces: � � � � � � and � � 	 

and five other real-life workload traces. We have described

the two synthetic traces in Section 2. Here we significantly
increase the scale of these two traces: � � � � � � accesses
65536 unique blocks with a 512MB data set. It contains
about 65M block references. � � 	 
 accesses 98304 unique
blocks with a 768MB data set. It contains about 98M block
references. The three real-life traces used for the single-client
simulation are described as follows:

1. httpd was collected on a 7-node parallel web-server for
24 hours. [9]. The size of the data set served was 524
MB which is stored in 13,457 files. A total of about
1.5M HTTP requests are served, delivering over 36 GB
of data. We aggregate the seven request streams into a
single stream in the order of the request times for the
single client structure study.

2. dev1 is an I/O trace collected over 15 consecutive days
on a Redhat Linux 6.2 desktop [2]. It contains text ed-
itor, compiler, IDE, browser, email, and desktop envi-
ronment usage. It has around 100K references. The size
of the data set it accessed is around 600M.

3. tpcc1 is also an I/O trace collected while running the
TPC-C database benchmark with 20 warehouses on
Postgres 7.1.2 with Redhat Linux 7.1[2]. It has around
3.9M references. The data set size is around 256M.

We also select three traces for multi-client simulation.
One of them is the original � � � 	 � trace with seven access
streams, each for one client. The other two multi-client traces
are as follows:
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1. openmail was collected on a production e-mail system
running the HP OpenMail application for 25,700 users,
9,800 of whom were active during the hour-long trace
[12]. The system has 6 HP 9000 K580 servers running
HP-UX 10.20. The size of the data set accessed by all
six clients is 18.6G.

2. db2 was collected by an 8 node IBM SP2 system run-
ning an IBM DB2 database that performed join, set and
aggregation operations for 7,688 seconds [9]. The to-
tal data set size is 5.2GB and it is stored in 831 files.

For all the simulation experiments, we use the first one
tenth of block references in the traces to warm the system
before the measurements were collected.

4.3. Comparisons of Multi-level Schemes in a
Three-level Structure

To demonstrate the ability of multi-level caching schemes
(ULC, indLRU, and uniLRU) to make distinctions of local-
ity strengths as well as the ability to keep their stability, we
test them in a three-level caching hierarchy for the five sin-
gle client traces, simulating a scenario where the block trans-
fer route consists of a client, a server and its disk array con-
taining a large RAM cache. For a common local network
environment, we assume the cost to transfer an 8KB block
between the client and the server through LAN is 1ms, the
cost between the server and the RAM cache in the disk array
through SAN is 0.2ms, and the cost of a block from a disk
into its cache is 10ms [12]. We assume the cache sizes of
the client, the server, and the disk array are 100MB each for
traces � � � � � � , � � � 	 , �


 
 � � , and � � � � , and the cache sizes
are 50MB each for trace 
 �   � due to its comparatively small
data set. We report the hit rates in each of the three levels, de-
motion rates on each boundary, and average access time for
each workload with the three multi-level caching schemes in
Figure 6.

Confirming the experimental results in [12], we ob-
serve that there are significant performance improve-
ments of uniLRU over indLRU for all the five traces, from
17% to 80% reduction on average access time (see the
third graph). Actually these are the results of two com-
bined effects of uniLRU: (1) increasing the cache hit rates;
(2) generating additional demotion cost. UniLRU elimi-
nates the redundancy in the hierarchy, making the low lev-
els of caches contribute to the hit rate just as if they stayed
in the first level. For example, in a random access pat-
tern, the contribution of a cache to the hit rate should be
proportional to its size. However, the second and third lev-
els of caches gain much lower hit rates (1.7% and 0.3% re-
spectively) than that of first level cache (19.5%) for trace

� � � � � � in indLRU (see the first graph). The unified re-
placement scheme uniLRU makes the low levels of caches
much better utilized. Their hit rates (19.6% and 19.5% re-
spectively) are almost the same as that of first level cache
(19.5%). However this improvement comes with a con-
siderably high price: high demotion rates. For example,

in trace � � � � � � uniLRU has a first boundary demo-
tion rate 80.5%, which means 80.5% of block references ac-
company “write-backs” to the server. Furthermore, it has a
60.9% demotion rate at the second boundary (see the sec-
ond graph). The worst case for the demotion rates of
uniLRU is trace 
 �   � , which has a looping access pat-
tern. Its first boundary demotion rate is 100%! This is be-
cause uniLRU has little power to predict the level where
an accessed block will be accessed. For a looping ac-
cess pattern, blocks are accessed at a large recency equal
to the loop distance, which implies almost all the blocks
of 
 �   � are accessed after they are demoted into the sec-
ond level of cache. So the hit rate of the second level
cache is very high (92.5%) and 44.7% of the average ac-
cess time is spent on the demotion. According to the require-
ment on the ability of distinguishing locality strengths for a
multi-level caching scheme, the distribution that the level

� �

hit rate (0.03%) is much less than the
� �

hit rate (92.5%) un-
der uniLRU shows a bad case.

Compared with uniLRU, ULC protocol has an access-
time-aware hit rate distribution along the levels of caches:
more hits appearing on upper levels. For example, the hit
rates of the level

� �
,

� �
, and

� �
are 50.3%, 45.1%, and

3.4%, respectively for trace 
 �   � . And such a distribution
is achieved without paying high costs of demotions. For ex-
ample, the two boundary demotion rates of 
 �   � are 1.4%
and 1.3%, respectively (see the second graph). It is also
shown that ULC has significant demotion rate reductions
over uniLRU for all 5 traces. This explains why the propor-
tion of demotion cost in the average access time for ULC is
much smaller (from 1% to 8.3% with an average of 4.1%)
than that for uniLRU (from 12.6% to 44.7% with an aver-
age of 21.5%) (see the third graph). The access time break-
downs also show that ULC still performs significantly better
than uniLRU except for trace � � � � � � , even if we assume the
demotions could be moved off the critical path for response
time. Actually this is an unrealistic assumption. The exper-
iments on the client-server system running a TPC-C bench-
mark show that demotions can significantly delay the net-
work and lower the system throughput [15]. In summary, our
ULC achieves from 11% to 71% reduction on average ac-
cess time with an average of 34.6% over that of uniLRU.

4.4. Comparisons of Caching Schemes for Multi-
client Workloads

Because the performance of uniLRU scheme can signif-
icantly deteriorate due to buffer competition and data shar-
ing among clients for the multi-client structure, Wong and
Wilkes also proposed two adaptive cache insertion policies to
supplement their primitive scheme [12]. Among their three
multi-client traces �


 
 � � , � � � � � � � � , and � �
�
, �


 
 � � is the
one with data sharing. While they did not state which ver-
sion of their unified LRU schemes should be used for a spe-
cific workload, we ran all the versions and report the best
results for comparisons. For the multi-client scheme evalu-
ation, we include Multi-Queue (MQ), a replacement algo-
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Figure 7. Average access times of multi-client traces � � � � �
,

� � �
�

�
�

� �
, and

� � �
with various server cache sizes. Among them

� � � � �
is with 7 clients,

� � �
�

�
�

� �
is with 6 clients, and

� � �
is with 8 clients. Each client contains 8MB, 1GB, or 256MB respectively.

rithm dedicated for second level buffer caches[14]. To over-
come LRU’s weakness with weak locality, MQ sets up mul-
tiple queues and uses access frequencies to determine which
queue a block should be in. In the client-server caching hier-
archy, the environment that MQ is designed for, we use MQ
in the server and use LRU in the client independently.

Figure 7 shows that for all the workloads ULC achieves
the best performance. For most of the time, indLRU has the
worst performance. However, there are two cases where in-
dLRU beats uniLRU or MQ. One case is MQ with large
server cache sizes for trace �

� � � � . When server cache sizes
become large enough, LRU’s inability of dealing with weak
locality becomes less destructive. However, as a frequency-
based replacement, MQ’s shortcoming of slowness to re-
spond to pattern changes becomes obtrusive. Another case
is uniLRU with small cache sizes for trace � �

�
. This is be-

cause � �
�

contains looping access patterns. LRU is not ef-

fective on a workload with this pattern until all blocks in
the looping scopes can be held in the cache. Carefully ex-
amining detailed experiment reports indicates that both in-
dLRU and uniLRU achieve very low hit rates (6.9% and
7.9%, respectively for the two levels of caches, compared
with that of MQ (12.3%) and that of ULC (35.1%). Thus it
is the large demotion cost of uniLRU (with an average de-
motion rate 88.6% for the 8 clients, compared with that of
ULC (7.2%)) that makes the difference. With the increase of
the cache size, some looping scopes are covered by the com-
bined two-level caches, but not by a single level, which ex-
plains why the performance of uniLRU starts exceeding that
of indLRU when the server cache size reaches 1GB. How-
ever, the performance of uniLRU is worse than that of MQ
because of its looping access pattern. For the traces �

� � � �
and � � � � � � � 	 , uniLRU beats MQ by eliminating data re-
dundancy.
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5. Related Work and Discussions

Addressing the challenges of replacements in buffer
caching hierarchy, researchers have mainly tried these
two approaches: (1) re-designing low level cache replace-
ment; (2) extending existing replacement into an unified hi-
erarchy replacement through coordination. The Multi-Queue
(MQ) [14] and Unified LRU [12] are two representatives of
these two approaches, respectively. To reduce the high traf-
fic caused by demotions in Unified LRU, Chen et al [15] pro-
posed to re-load evicted blocks from disks rather than from
clients. Our technique deals with the reduction of demo-
tions by effectively utilizing history access patterns.

Jiang and Zhang [5] propose the LIRS replacement al-
gorithm to address the performance degradation of LRU on
workloads with weak localities. They use a LIRS stack to
track the recencies of accessed blocks. The blocks with small
recencies at which they get accessed, are kept in the cache.
This single-level cache replacement motivates us to investi-
gate if the last locality distance, LLD, can be effectively used
to exploit hierarchical locality, so that blocks with different
locality strengths can be arranged into correct cache levels.

The work on cooperative caching [4, 8, 10] is to coordi-
nate the buffer caches of many client machines distributed
on a LAN to form a fourth level in the network file system’s
cache hierarchy. Besides local cache, server cache, server
disk, data can also be cached in another client’s cache. Some
associated issues include idle cache availability, consistent
sharing. Our ULC protocol is intended for the conventional
file buffer cache hierarchy, while the characterization of non-
uniform locality is expected to enhance the effectiveness of
data placements in the cooperative caching.

As far as the cache hierarchy between processor and mem-
ory is considered, the interaction of replacements at various
levels and its performance implication do not pose a problem.
Multi-level inclusivity between

� �
,

� �
, ..

� �

cache could be
accepted as a principle to simplify the cache coherence pro-
tocol [1]. This is because a lower level cache is more than ten
times larger than its upper level cache. With this large differ-
ence, the size reductions of useful caches due to data redun-
dancy have only limited negative performance impact on the
low level caches. In contrast, the sizes of buffer caches in the
hierarchy do not follow this regularity: a client buffer cache
could even be larger than the second level cache.

We assume ULC works in a trusted environment. Though
it is a client-directed protocol, ULC does not increase the vul-
nerability of servers. This is because even with independent
caching schemes, a client still has the opportunity to abuse
server buffers by sending extra requests to servers to keep its
blocks in the server.

The underlying algorithms on almost all the existing file
systems are LRU or its variants. ULC basically inherits their
data structure – LRU stack. The operation costs associated
with the stacks are � � � � time with each reference request.
Regarding space cost used for the stacks, we need 17 bytes
(8 bytes for file identifier and block offset, 8 bytes for two
pointers in a double linked list, and 1 byte for statuses) for

a block in the client, which only represents 0.2% of an 8
Kbytes block. The metadata in the shared server cache needs
additional one or two bytes for recording block owner. The
stack sizes on other levels except the first one are determined
by their cache sizes. Thus a server with a 1GB cache only
uses 2.2MB for its metadata. The first level cache has to hold

� � � � � �
� � � � � , whose actual size is determined by the work-

ing set size of applications running on the client. The rela-
tively cold blocks (with low level statuses) can be trimmed
from the stack without compromising the ULC locality dis-
tinction ability if needed to save space cost. E.g. an 8.5MB
metadata in the client can support a workload working set
up to 4GB. This is highly affordable in a system endeavor-
ing for improved file I/O performance through large caches.

6. Conclusions

An effective caching scheme for multi-level cache hierar-
chy is important to the performance of applications because
increasingly more applications rely on the hierarchy for their
file accesses. For this purpose we have proposed the ULC
caching protocol with the distinguished performance mer-
its: (1) It significantly reduce average block access time per-
ceived by applications; (2) It can be implemented efficiently
with a cost comparable with that of LRU.
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