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Abstract

Effectively utilizing disk caches is critical for deliver-
ing and sharing data in data-grids considering the large
sizes of requested files and excessively prolonged file trans-
mission time. An essential component in the disk cache
management is its replacement policy that determines
which file(s) are least valuable and should be evicted to
create space for incoming files. Though a large number of
replacement algorithms for data objects of different sizes
have been proposed recently in the domain of Web-caching
and disk caching in data grids, they inherit the shortcom-
ings of the LRU and LFU replacements in characteriz-
ing access patterns. In order to address this limit, we pro-
pose a technigque to measure relative file access locality
strength — how soon a file is to be re-accessed before being
evicted compared with other files. When we estimate the
in-cache re-access probability, we take the disk space con-
sumed by accessed files as well as disk cache size into con-
sideration. Using a relative locality strength estimation,
we are able to accurately rank the value of each file for be-
ing cached, and select the file(s) with least values for re-
placement.

Our stimulation results show that our proposed policy
is the most effective one among existing policies in inter-
preting access patterns, and consistently achieves perfor-
mance improvement measured by hit ratios and byte hit
ratios.

1. Introduction

Every year a huge amount of scientific data are gen-
erated by simulations or collected from large scale ex-
periments and used by researchers around the world.
While accesses to these data in data grids become the
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main bottleneck in data-intensive applications, a mid-
dleware called storage resource manager (SRM) in data
grids is developed to address the issue. SRM manages
large capacity disk caches in a dynamic fashion for
caching frequently requested files and providing fast
accesses for clients. The disk caches are located be-
tween clients and source data storage. There are sev-
eral reasons for disk cache to be an essential compo-
nent of data grids: (1) Majority of data files reside in
mass storage system (MSS) including tertiary storage
system such as robotic tapes, high performance stor-
age systems (HPSS), and RAID farms. It takes long
latency (up to several minutes) to retrieve these data
at their sources; (2) It takes a very long time (up to
a few hours) to complete file transfers for a request
over wide-area networks; (3) A researcher’s worksta-
tion or even her local computer center may not be able
to keep all the required dataset for a long time for her
needs. With disk caches that temporarily store a set
of frequently accessed files, a client can access its de-
sired files much faster from the caches than from MSS
systems.

File replacement algorithms in SRMs determine
which files can be kept in the cache for re-use, and
which files are less likely to be accessed and should
be replaced. Considering the large sizes of caching files
and the excessively prolonged file transmission time,
a replacement algorithm has a significant influence on
the efficiency of data accesses. There are several fac-
tors that have to be accounted in devising a replace-
ment algorithm for objects with varied sizes and trans-
fer cost, namely, (1) file access pattern, (2) file size, and
(3) file transfer cost.

An effective replacement algorithm works because of
existence of locality. It strives to abstract locality in-
formation from access patterns observed on-line. We
define locality strength of an object as the inverse of
the time to its next reference. It is known that an op-
timal algorithm chooses the object with the smallest
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locality strength for eviction with fixed sizes and an
uniform miss penalty. For caching objects with varied
sizes and a non-uniform miss penalty, we combine lo-
cality strength of a file with its size and miss penalty
in an utility function to determine its benefit of being
kept in the disk. For a given file ¢ at time ¢, let L;(¢) de-
note its locality strength, S; denote its size, and C; de-
note its retrieving cost (miss penalty), the utility func-
tion is
i

This utility function framework is straightforward,
and is broadly accepted in various replacement poli-
cies. Furthermore, it is not hard to know file sizes and
to estimate their retrieving costs. However, our de-
fined locality strength is an ideal, off-line measure of
the benefit of being cached. The most challenging is-
sue in implementing the function is how to estimate lo-
cality strength on-line by correctly interpreting history
access patterns. In the three factors of an utility func-
tion, locality strength is the most critical one, which
determines cache hit ratio, while the other two factors
are mainly related to the amount of gain from the hits
such as responsive time reduction and network band-
width savings.

Otoo et al [8] recently proposed a disk cache re-
placement policy for data grids, called Least Cost Ben-
eficial Based on the K backward References (LCB-K),
where the utility function ¢;(t) is used, and their local-
ity strength is estimated as follows:

SO o)
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where for each file ¢, k; is the number of the most re-
cent references retained, up to a maximum of X, within
the time interval [t — tx,]. ¢k, is the time of the k;(t)
backward reference, ¢;(t) is the cumulative count of
references to the file over the active period of refer-
ences to the file. Though LCB-K thoughtfully incor-
porates history information into their strength estima-
tion, and detailed simulation in the SRM environment
shows its performance improvement over some repre-
sentative replacement algorithms in terms of a reduc-
tion of the average retrieval cost, its significant weak-
ness is that it uses absolute wall clock time for the es-
timation, which could be irrelevant to the re-use prob-
ability estimation, and misguide the selection of victim
files.

In this paper, we propose a new method to timely es-
timate file locality strength based on the principle of
timescale relativity. In our method we count on the ac-
cumulated size of accessed files and disk cache size to

measure the probability of in-cache file re-use, rather
than using traditional measures such as absolute wall
clock reference time, reference frequency, or number of
accessed files. We show the effectiveness of our replace-
ment policy incorporating the locality strength estima-
tor through simulation on real Grid workload trace.
The contributions of our work are threefold: (1) We
have identified a critical weakness in the utility function
for accurately ranking the caching values for accessed
files; (2) We propose a locality strength estimator using
more relevant access events to effective compare the rel-
ative re-reference probability among accessed files; (3)
Our real workload trace simulation shows its effective-
ness for data grid management.

2. Other Related Work

A lot of replacement policies for varied object sizes
and miss penalties have been proposed in the Web-
caching and data-grid management domains. We clas-
sify these work into two groups based on whether an
utility-function is used.

Some early proposed policies were simply based
on traditional paging replacement algorithms such
as Least-Recently-Used (LRU) and Least-Frequently-
Used (LFU) without using utility functions. For ex-
ample, LRU-Threshold algorithm [2] is the same like
LRU, except that documents larger than a speci-
fied threshold size are not cached. Log(Size)+LRU al-
gorithm [2] replaces the object with the large log(size)
and is the least recency used object among all the ob-
ject with the same log(size). Pitkow/Recker algo-
rithm [12] evicts the least-recently-used object, ex-
cept if all objects are accessed today, in which case the
largest one is evicted. Existing studies show that none
of the simple policies can perform consistently bet-
ter than others across various traces. The essential
problem of these algorithms is that they can not effec-
tively combine the observed access pattern with the
retrieving cost and object sizes.

Another group of policies make replacement deci-
sions by calculating an utility function for each object
and evict the one with the least utility. The framework
of the function is in the form:

RetrivingCost
FileSize

As we have mentioned, file sizes and retrieving costs
are easy to observe or estimate. The challenge of these
group of policies are centered on the estimation of local-
ity strength, where they mainly differ from each other.
We list the estimator of major policies of the group as
follows:

¢ = LocalityStrengthEstimator =
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1. Hybrid algorithm [11] used (n,)"» as the esti-
mator, where n, is the number of times object p
has been requested since it was brought into the
cache. W, is an constant.

2. Lowest Relative Value (LRV) [7] formulates
the utility function based on an extensive empiri-
cal analysis of trace data. They analyzed the rela-
tionship between the probability of objects’ re-use
and the number of its previous request times and
its sizes. Then the derived relationship is used to
estimate locality strength. Because their method
heavily relies on the web-traces they used, it is
not a general replacement applicable to disk cache
management in data-grid.

3. GreedyDual-Size(GDS) [4] is actually a gen-
eralization of LRU, which allows varied cost and
object sizes. Its locality strength estimator for an
object is essentially the inverse of the number of
missed objects since its last access. To overcome
the shortcoming of GDS overlooking history access
information prior to the last access, GreedyDual-
Size with Frequency (GDSF) [1] incorporates ob-
ject frequency (the number of access times) into
the estimator. However, using frequency can cause
the “cache pollution” problem , where an object
having accumulated a high frequency will stay in
cache for excessive long time, even if it is not used
any more.

3. Timescale Relativity Principle in
Disk Caching

The locality strength estimation is about how of-
ten a file has been accessed and how soon it will be
accessed. Both “how often” and “how soon” are re-
lated to the measurement of time. In this work, we
strongly advocate to use the principle of timescale rel-
ativity in measuring the time used in the paging re-
placement algorithm design [6, 9]. We name the time
used in caching algorithms caching time. The principle
has two implications in disk caching design. The first
is that only events that matter for replacement deci-
sions should count to advance caching time. For exam-
ple, the order of requests for retrieving files is important
to predict the future file access sequence, and to deter-
mine which files would be accessed relatively less soon
and should be replaced. However, if we use wall clock
ticks to advance caching time like the one in LCB-K,
the order would be obscured in the long wall-clock time
of days even weeks. Actually caching time should only
advance with file access events. The second implication
is that the pace of caching time advance should be re-
lated to the sizes of accessed files. Time advances at

a slower rate for accessing files with small sizes than
accessing files with large sizes. That is to say, regard-
less of the amount of wall clock time elapsed or the
number of files accessed, the probability of re-reference
to the file before it is evicted from the cache becomes
slim, if the total size of other files accessed after the
last reference to a file becomes large. This is because
large cache space would be consumed after its last ac-
cess. That is, large total accessed file sizes mean a long
caching time. However, this property of disk caching
can not be captured in the GDS, LCB-K and other ex-
isting algorithms. Our proposed replacement policy ad-
dresses this critical weakness.

4. Our Disk Caching Policy: Least Value
based on Caching Time (LVCT)

Our disk caching policy is also based on the evalua-
tion of the utility function, in which we adopt a differ-
ent locality strength estimator based on the timescale
relativity principle.

4.1. Locality Strength Estimator

If there are n distinct, currently resident files fq, f,
..., fn accessed after last reference to file F, and the size
of file f is SIZE(f), the current caching time of file F is
> SIZE(f;). In our definition, if file f; is accessed
multiple times before the reference to file F, its size
is counted only once. This is because repeated refer-
ences to the same file do not consume additional cache
space, thus do not advance extra caching time. If a re-
quested file is not admitted into disk cache and does
not consume cache space, the caching time is not ad-
vanced. Our caching time definition considers the com-
petition of cache space among accessed files, and ex-
presses the eligibility for a file to be cached compared
with other accessed files in terms of file access pattern.
Holding the same principle of LRU replacement, we
assume a file with a large caching time will not be ac-
cessed soon. The locality strength estimator of file F' is
the inverse of its current caching time. We use a data
structure called caching time stack to keep track of
caching time for each accessed file. Caching time stack
is similar to the LRU stack used in LRU paging re-
placement algorithm. The difference from LRU stack
is that its stack entry is a metadata representing a file,
not a constant-sized page. Each entry records the cur-
rent caching time of its corresponding file.

Figure 1 illustrates a caching time stack. When file
f is accessed, we move it to the top of the stack, and
set its caching time as 0. If the file was in the cache,
we only advance the caching times of the files above
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Figure 1. Caching time stack. Each entry in the
stack represents an accessed file, and has two
fields indicating its current caching time and the
file size.

the original position of f by SIZE(f); Otherwise, the
caching times of all the files in the stack are advanced
by SIZE(f). The caching times of the files are dynam-
ically maintained in the stack. Non-accessed files have
infinite caching times. It is noted that some of entries
of the stack could represent files which have been re-
placed out of the cache. To limit the size of the stack, we
remove the entries in the bottom of the stack once ei-
ther of the conditions are satisfied: (1) The total size of
files represented in the stack exceeds two times of the
disk cache size; or (2) The number of files represented
in the cache exceeds two times of the number of resi-
dent files. The purpose of the caching time stack is to
track the recently accessed files and to select most fre-
quently ones which the disk cache can hold. When ei-
ther of the conditions is met, the files associated with
the entries in the stack bottom have so large caching
times that they can be removed from the stack and
be treated as non-accessed without negatively affect-
ing the evaluation of locality strength of frequently ac-
cessed files.

4.2. LVCT Replacement Based on Caching
Time

We define our utility function of file f; as:

1 N cost;
(CachingTime;)

where cost; and size; are the retrieving cost and the
size of file f;, and CachingTime; is its current caching

¢i(fi) =

size;’

time, which is available from caching time stack. Then
we have our replacement policy, called Least Value
Based on Caching Time (LVCT):

For a request for file f, there are two cases:

1. If the file can be found in the cache, update the
caching time stack, then transfer the file to the
client;

2. If the file can not be found in the cache, then we
send it to the source. When the retrieved file ar-
rives, we select a set of file(s) with the least val-
ues based on our utility function to make enocugh
room to accommodate the file. Then we compute
the value of f based on the utility function. If the
value of f is larger than that of any selected file
in the set, we will replace the files and admit file
f into the disk cache. Otherwise, file f will not be
cached.

In our policy we overcome a common weakness in all
previous replacement algorithms when they are applied
in the disk cache of SRM. These algorithms do not eval-
uate the eligibility of missed files being cached in the
disk. They always evict least valuable resident file(s)
to make room for a missed file. Once the file is admit-
ted into disk it could take a long time for the file to be
evicted even if it would not be accessed any longer, be-
cause it is a recently accessed file and keeps its high util-
ity ranking for a period of time as a resident file. In our
proposed estimator, we allow non-resident files to keep
their caching times in the stack for an extended period
of time after the files are evicted from the cache. When
the files are re-accessed, this additional history infor-
mation can be used to compare its utility value against
those of the resident files by a consistent criteria to de-
cide whether they should be replaced.

5. Performance Evaluation

The metrics we use are hit ratio and byte hit ra-
tio, which are two most popular performance measures
in evaluating the replacement algorithms. The hit ra-
tio refers to the ratio of the number of requested files
that can be found in cache to the number of total re-
quested files. The byte hit ratio refers to the ratio of the
volume of requested data that can be found in cache
to the volume of total requested data. The hit ratio re-
flects the improvement on response time observed by
clients, while byte hit ratio expresses the savings on the
traffic to the remote storage facility.

We use trace driven simulations to compare hit ra-
tio and byte hit ratio of our LVCT with those of LRU,
GDS and LCB-K. It is suggested in [8] that K = 2 is
sufficiently good and ensures an acceptable overhead
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Access Times 1

3 4 >4

Number of Files | 115,930

34,514

17,772 | 10,770 | 28,345

Table 1. Breakdown of 207,331 accessed files according to their number of references.
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Figure 2. The hit ratio curves and byte hit ratio curves of JLab trace with various disk cache sizes for replace-

ment policies LRU, GDS, and LVCT.

for LCB-K. So we use LCB-2 for the comparison. The
trace we use is a real system workload trace from Jef-
ferson’s National Accelerator Facility (JLab), which re-
flects representative data grid access activities for sci-
entific computing. It records the file access activities
for a period of about 6 months at the mass storage sys-
tem, JasMINE. The log describes the request submis-
sion time, the time when the request file starts to be re-
trieved from its source, the time when the file was deliv-
ered to the cache disk, and the file size in detail. There
are 207,331 files accessed in the traces, and their to-
tal size is 144.9 TeraBytes. In our simulator we set the
size of disk cache to range from 500 Gbytes to 4 Ter-
abytes. Figure 2 show the hit ratios and byte hit ra-
tios of replacement algorithms for LRU, GDS, LCB,
and LVCT. Al the ratios are for the whole 6-month
traces. Both figures show the LVCT outperforms LRU,
GDS and LCB.

To understand the reasons why LVCT performs bet-
ter than the other polices, we show the breakdown
of the 207,331 accessed files according to their num-
ber of requests within the 6-month period in Table 1.
It is noted that 56% of accessed files are referenced
only once in the period of 6-months. This is a distinc-
tive characteristic of data access patterns in Grid com-

puting different from those observed in Web-caching.
Though Web requests also show strong popularity on
a subset of objects, it is rare to have a large number of
one-time-accessed objects for a long period of time [3].
Thus it is critical to test the eligibility of missed files
before admitting them into cache in disk cache man-
agement. LRU, GDS, and LCB replacement policies
admit any retrieving files into disk cache. Our simula-
tions show that the average time for a admitted one-
time-accessed file to stay in the cache without being
referenced before being evicted is 1.45 days, 1.36 days
and 1.31 days for LCB, GDS, and LRU respectively
when the disk cache size is 1 Terabytes. Considering
the large number of one-time-accessed files, their con-
sumption of cache space is a significant waste of limited
disk cache resources. Because these one-time-accessed
files have infinite caching times, they are not admitted
into disk cache at all in our LVCT replacement policy.
This is also true for the files that have been evicted
from cache for a long period of time and have large
caching times. It is noted that these files are recorded
in the caching time stack even though they are not ad-
mitted in the cache. By doing so, the files will have
small caching times and pass the eligibility test to be
admitted into cache if they are re-accessed soon. The
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performance advantage of LVCT over the other algo-
rithms at small cache size is especially pronounced, be-
cause disk caches of small sizes are more susceptible to
the space waste caused by unjustified file caching.

6. Conclusion

A data replacement algorithm in SRM plays a cru-
cial role in data access management for data grids.
Identifying a critical weakness in existing replacement
policies, we have presented a corrected utility func-
tion, and proposed an improved disk caching algorithm
for data grid management. Our trace-driven simula-
tion results show its consistent effectiveness compared
with several representative replacement policies. We
are making an collaborative effort to implement our
replacement policy in data grids.
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