
DULO: An Effective Buffer Cache Management Scheme to Exploit Both
Temporal and Spatial Locality

Song Jiang
Performance & Architecture Laboratory

Computer & Computational Sciences Div.
Los Alamos National Laboratory

Los Alamos, NM 87545, USA
sjiang@lanl.gov

Xiaoning Ding, Feng Chen,
Enhua Tan and Xiaodong Zhang

Department of Computer Science and Engineering
Ohio State University

Columbus, OH 43210, USA�
dingxn, fchen, etan, zhang � @cse.ohio-state.edu

Abstract
Sequentiality of requested blocks on disks, or their spatial
locality, is critical to the performance of disks, where the
throughput of accesses to sequentially placed disk blocks
can be an order of magnitude higher than that of accesses
to randomly placed blocks. Unfortunately, spatial locality of
cached blocks is largely ignored and only temporal locality is
considered in system buffer cache management. Thus, disk
performance for workloads without dominant sequential ac-
cesses can be seriously degraded. To address this problem,
we propose a scheme called DULO (DUal LOcality), which
exploits both temporal and spatial locality in buffer cache
management. Leveraging the filtering effect of the buffer
cache, DULO can influence the I/O request stream by mak-
ing the requests passed to disk more sequential, significantly
increasing the effectiveness of I/O scheduling and prefetch-
ing for disk performance improvements.

DULO has been extensively evaluated by both trace-
driven simulations and a prototype implementation in Linux
2.6.11. In the simulations and system measurements, vari-
ous application workloads have been tested, including Web
Server, TPC benchmarks, and scientific programs. Our ex-
periments show that DULO can significantly increase system
throughput and reduce program execution times.

1 Introduction
A hard disk drive is the most commonly used secondary stor-
age device supporting file accesses and virtual memory pag-
ing. While its capacity growth pleasantly matches the rapidly
increasing data storage demand, its electromechanical nature
causes its performance improvements to lag painfully far be-
hind processor speed progress. It is apparent that the disk
bottleneck effect is worsening in modern computer systems,
while the role of the hard disk as dominant storage device
will not change in the foreseeable future, and the amount of

disk data requested by applications continues to increase.
The performance of a disk is limited by its mechanical op-

erations, including disk platter rotation (spinning) and disk
arm movement (seeking). A disk head has to be on the
right track through seeking and on the right sector through
spinning for reading/writing its desired data. Between the
two moving components of a disk drive affecting its perfor-
mance, the disk arm is its Achilles’ Heel. This is because an
actuator has to move the arm accurately to the desired track
through a series of actions including acceleration, coast, de-
celeration, and settle. Thus, accessing a stream of sequen-
tial blocks on the same track achieves a much higher disk
throughput than that accessing several random blocks does.

In current practice, there are several major efforts in par-
allel to break the disk bottleneck. One effort is to reduce
disk accesses through memory caching. By using replace-
ment algorithms to exploit the temporal locality of data ac-
cesses, where data are likely to be re-accessed in the near
future after they are accessed, disk access requests can be
satisfied without actually being passed to disk. To minimize
disk activities in the number of requested blocks, all the cur-
rent replacement algorithms are designed by adopting block
miss reduction as the sole objective. However, this can be a
misleading metric that may not accurately reflect real system
performance. For example, requesting ten sequential disk
blocks can be completed much faster than requesting three
random disk blocks, where disk seeking is involved. To im-
prove real system performance, spatial locality, a factor that
can make a difference as large as an order of magnitude in
disk performance, must be considered. However, spatial lo-
cality is unfortunately ignored in current buffer cache man-
agement. In the context of this paper, spatial locality specif-
ically refers to the sequentiality of continuously requested
blocks’ disk placements.

Another effort to break the disk bottleneck is reduc-
ing disk arm seeks through I/O request scheduling. I/O
scheduler reorders pending requests in a block device’s re-

quest queue into a dispatching order that results in minimal
seeks and thereafter maximal global disk throughput. Ex-
ample schedulers include Shortest-Seek-Time-First (SSTF),
CSCAN, as well as the Deadline and Anticipatory I/O sched-
ulers [15] adopted in the current Linux kernel.

The third effort is prefetching. The data prefetching man-
ager predicts the future request patterns associated with a
file opened by a process. If a sequential access pattern is de-
tected, then the prefetching manager issues requests for the
blocks following the current on-demand block on behalf of
the process. Because a file is usually continuously allocated
on disk, these prefetching requests can be fulfilled quickly
with few disk seeks.

While I/O scheduling and prefetching can effectively ex-
ploit spatial locality and dramatically improve disk through-
put for workloads with dominant sequential accesses, their
ability to deal with workloads mixed with sequential and ran-
dom data accesses, such as those in Web services, databases,
and scientific computing applications, is very limited. This
is because these two schemes are positioned at a level lower
than the buffer cache. While the buffer cache receives I/O re-
quests directly from applications and has the power to shape
the requests into a desirable I/O request stream, I/O schedul-
ing and prefetching only work on the request stream passed
on by the buffer cache and have very limited ability to re-
catch the opportunities lost in buffer cache management.
Hence, in the worst case, a stream filled with random ac-
cesses prevents I/O scheduling and prefetching from helping,
because no spatial locality is left for them to exploit.

Concerned with the missing ability to exploit spatial lo-
cality in buffer cache management, our solution to the de-
teriorating disk bottleneck is a new buffer cache manage-
ment scheme that exploits both temporal and spatial locality,
which we call the DUal LOcality scheme DULO. DULO in-
troduces dual locality into the caching component in the OS
by tracking and utilizing the disk placements of in-memory
pages in buffer cache management � . Our objective is to max-
imize the sequentiality of I/O requests that are served by
disks. For this purpose, we give preference to random blocks
for staying in the cache, while sequential blocks that have
their temporal locality comparable to those random blocks
are replaced first. With the filtering effect of the cache on
I/O requests, we influence the I/O requests from applica-
tions so that more sequential block requests and less random
block requests are passed to the disk thereafter. The disk is
then able to process the requests with stronger spatial local-
ity more efficiently.

2 Dual Locality Caching

2.1 An Illustrating Example
To illustrate the differences that a traditional caching scheme
could make when equipped with dual locality ability, let us

consider an example reference stream mixed with sequen-
tial and random blocks. In the accessed blocks, we assume
blocks A, B, C, and D are random blocks dispersed across
different tracks. Blocks X1, X2, X3, and X4 as well as
blocks Y1, Y2, Y3, and Y4 are sequential blocks located on
their respective tracks. Furthermore, two different files con-
sist of blocks X1, X2, X3, and X4, and blocks Y1, Y2, Y3
and Y4, respectively. Assume that the buffer cache has room
for eight blocks. We also assume that the LRU replacement
algorithm and a Linux-like prefetching policy are applied.
In this simple illustration, we use the average seek time to
represent the cost of any seek operation, and use average ro-
tation time to represent the cost of any rotation operation � .
We ignore other negligible costs such as disk read time and
bus transfer time. The 6.5 ms average seek time and 3.0 ms
average rotation time are taken from the specification of the
Hitachi Ultrastar 18ZX 10K RPM drive.

Table 1 shows the reference stream and the on-going
changes of cache states, as well as the time spent on each
access for the traditional caching and prefetching scheme
(denoted as traditional) and its dual locality conscious al-
ternative (denoted as dual). In the 5th access, prefetching is
activated and all the four sequential blocks are fetched be-
cause the prefetcher knows the reference (to block X1) starts
at the beginning of the file. The difference in the cache states
between the two schemes here is that traditional lists the
blocks in the strict LRU order, while dual re-arranges the
blocks and places the random blocks at the MRU end of the
queue. Therefore, the four random blocks A, B, C, and D
are replaced in traditional, while sequential blocks X1, X2,
X3, and X4 are replaced in dual when the 9th access in-
curs a four-block prefetching. The consequences of these
two choices are two different miss streams that turn into real
disk requests. For traditional, it is � A, B, C, D � from the
17th access, a four random block disk request stream, and
the total cost is 95.0 ms. For dual, it is � X1, X2, X3, X4 � at
the 13th access, a four sequential blocks, and the total cost is
only 66.5 ms.

If we do not enable prefetching, the two schemes have the
same number of misses, i.e., 16. With prefetching enabled,
traditional has 10 misses, while dual has only 7 misses. This
is because dual generates higher quality I/O requests (con-
taining more sequential accesses) to provide more prefetch-
ing opportunities.

2.2 Challenges with Dual Locality

Introducing dual locality in cache management raises chal-
lenges that do not exist in the traditional system, which is
evident even in the above simple illustrating example.

In current cache management, replacement algorithms
only consider temporal locality (a position in the queue in
the case of LRU) to make a replacement decision. While
introducing spatial locality necessarily has to compromise

Block Being Accessed Traditional Time (ms) Dual Time (ms)
1 A [A - - - - - - -] 9.5 [A - - - - - - -] 9.5
2 B [B A - - - - - -] 9.5 [B A - - - - - -] 9.5
3 C [C B A - - - - -] 9.5 [C B A - - - - -] 9.5
4 D [D C B A - - - -] 9.5 [D C B A - - - -] 9.5
5 X1 [X4 X3 X2 X1 D C B A] 9.5 [D C B A X4 X3 X2 X1] 9.5
6 X2 [X2 X4 X3 X1 D C B A] 0 [D C B A X2 X4 X3 X1] 0
7 X3 [X3 X2 X4 X1 D C B A] 0 [D C B A X3 X2 X4 X1] 0
8 X4 [X4 X3 X2 X1 D C B A] 0 [D C B A X4 X3 X2 X1] 0
9 Y1 [Y4 Y3 Y2 Y1 X4 X3 X2 X1] 9.5 [D C B A Y4 Y3 Y2 Y1] 9.5

10 Y2 [Y2 Y4 Y3 Y1 X4 X3 X2 X1] 0 [D C B A Y2 Y4 Y3 Y1] 0
11 Y3 [Y3 Y2 Y4 Y1 X4 X3 X2 X1] 0 [D C B A Y3 Y2 Y4 Y1] 0
12 Y4 [Y4 Y3 Y2 Y1 X4 X3 X2 X1] 0 [D C B A Y4 Y3 Y2 Y1] 0
13 X1 [X1 Y4 Y3 Y2 Y1 X4 X3 X2] 0 [D C B A X4 X3 X2 X1] 9.5
14 X2 [X2 X1 Y4 Y3 Y2 Y1 X4 X3] 0 [D C B A X2 X4 X3 X1] 0
15 X3 [X3 X2 X1 Y4 Y3 Y2 Y1 X4] 0 [D C B A X3 X2 X4 X1] 0
16 X4 [X4 X3 X2 X1 Y4 Y3 Y2 Y1] 0 [D C B A X4 X3 X2 X1] 0
17 A [A X4 X3 X2 X1 Y4 Y3 Y2] 9.5 [A D C B X4 X3 X2 X1] 0
18 B [B A X4 X3 X2 X1 Y4 Y3] 9.5 [B A D C X4 X3 X2 X1] 0
19 C [C B A X4 X3 X2 X1 Y4] 9.5 [C B A D X4 X3 X2 X1] 0
20 D [D C B A X4 X3 X2 X1] 9.5 [D C B A X4 X3 X2 X1] 0

total time 95.0 total time 66.5

Table 1: An example showing that a dual locality conscious scheme can be more effective than its traditional counterpart in improving disk performance.
Fetched blocks are boldfaced. The MRU end of the queue is on the left.

the weight of temporal locality in the replacement decision,
the role of temporal locality must be appropriately retained
in the decision. In the example shown in Table 1, we give
random blocks A, B, C, and D more privilege of staying in
cache by placing them at the MRU end of the queue due to
their weak spatial locality (weak sequentiality), even though
they have weak temporal locality (large recency). However,
we certainly cannot keep them in cache forever if they have
few re-accesses showing sufficient temporal locality. Oth-
erwise, they would pollute the cache with inactive data and
reduce the effective cache size. The same consideration also
applies to the block sequences of different sizes. We prefer
to keep a short sequence because it only has a small number
of blocks to amortize the almost fixed cost of an I/O oper-
ation. However, how do we make a replacement decision
when we encounter a not recently accessed short sequence
and a recently accessed long sequence? The challenge is how
to make the tradeoff between temporal locality (recency) and
spatial locality (sequence size) with the goal of maximizing
disk performance.

3 The DULO Scheme
We now present our DULO scheme to exploit both temporal
locality and spatial locality simultaneously and seamlessly.
Because LRU or its variants are the most widely used re-
placement algorithms, we build the DULO scheme by using
the LRU algorithm and its data structure — the LRU stack,
as a reference point.

In LRU, newly fetched blocks enter into its stack top
and replaced blocks leave from its stack bottom. There are

two key operations in the DULO scheme: (1) Forming se-
quences. A sequence is defined as a number of blocks whose
disk locations are adjacent � and have been accessed during
a limited time period. Because a sequence is formed from
the blocks in a stack segment of limited size, and all blocks
enter into the stack due to their references, the second condi-
tion of the definition is automatically satisfied. Specifically,
a random block is a sequence of size 1. (2) Sorting the se-
quences in the LRU stack according to their recency (tem-
poral locality) and size (spatial locality), with the objective
that sequences of large recency and size are placed close to
the LRU stack bottom. Because the recency of a sequence is
changing while new sequences are being added, the order of
the sorted sequence should be adjusted dynamically to reflect
the change.

3.1 Structuring LRU stack

To facilitate the operations presented above, we partition the
LRU stack into two sections (shown in Figure 1 as a ver-
tically placed queue). The top part is called staging section
used for admitting newly fetched blocks, and the bottom part
is called evicting section used for storing sorted sequences
to be evicted in their orders. We again divide the staging
section into two segments. The first segment is called cor-
relation buffer, and the second segment is called sequencing
bank. The correlation buffer in DULO is similar to the cor-
relation reference period used in the LRU-K replacement al-
gorithm [26]. Its role is to filter high frequency references
and to keep them from entering the sequencing bank, so as
to reduce the consequential operational cost. The size of the

�����	�	�	
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

��

��

Staging Section

Evicting Section

Correlation Buffer

Sequencing Bank

Figure 1: LRU stack is structured for the DULO replacement algorithm.

buffer is fixed. The sequencing bank is used to prepare a col-
lection of blocks to be sequenced, and its size ranges from 0
to a maximum value, BANK MAX.

Suppose we start with an LRU stack whose staging sec-
tion consists of only the correlation buffer (the size of the
sequencing bank is 0), and the evicting section holds the rest
of the stack. When a block leaves the evicting section and
a block enters the correlation buffer at its top, the bottom
block of the correlation buffer enters the sequencing bank.
When there are BANK MAX blocks leaving the evicting sec-
tion, the size of sequencing bank is BANK MAX. We refill
the evicting section by taking the blocks in the bank, forming
sequences out of them, and inserting them into the evicting
section in a desired order. There are three reasons for us to
maintain two interacting sections and use the bank to con-
duct sequence forming: (1) The newly admitted blocks have
a buffering area to be accumulated for forming potential se-
quences. (2) The sequences formed at the same time must
share a common recency, because their constituent blocks
are from the same block pool — the sequencing bank in the
staging section. By restricting the bank size, we make sure
that the block recency will not be excessively compromised
for the sake of spatial locality. (3) The blocks that are leaving
the stack are sorted in the evicting section for a replacement
order reflecting both their sequentiality and their recency.

3.2 Block Table: A Data Structure for Dual
Locality

To complement the missing spatial locality in traditional
caching systems, we introduce a data structure in the OS
kernel called block table. The block table is analogous in
structure to the multi-level page table used for process ad-
dress translation. However there are clear differences be-
tween them because they serve different purposes: (1) The
page table covers virtual address space of a process in the
unit of page and page address is an index into the table, while
the block table covers disk space in the unit of block, and
block disk location is an index into the table. (2) The page
table is used to translate a virtual address into its physical
address, while the block table is used to provide the times of

recent accesses for a given disk block. (3) The requirement
on the page table lookup efficiency is much more demanding
and performance-critical than that on the block table lookup
efficiency because the former supports instruction execution
while the latter facilitates I/O operations. That is the rea-
son why a hardware TLB has to be used to expedite page
table lookup, but there is no such a need for block table. (4)
Each process owns a page table, while each disk drive owns
a block table in memory.

In the system we set a global variable called bank clock,
which ticks each time the bank in the staging section is used
for forming sequences. Each block in the bank takes the cur-
rent clock time as a timestamp representing its most recent
access time. We then record the timestamp in an entry at the
leaf level of the block table corresponding to the block disk
location, which we called BTE (Block Table Entry). BTE is
analogous in structure to PTE (Page Table Entry) of page ta-
ble. Each BTE allows at most two most recent access times
recorded in it. Whenever a new time is added, the oldest
time is replaced if the BTE is full. In addition, to manage
efficiently the memory space held by block table(s), a times-
tamp is set in each table entry at directory levels (equivalent
to PGD (Page Global Directory) and PMD (Page Middle Di-
rectory) in the Linux page table). Each time the block table
is looked up in a hierarchical way to record a new access
time, the time is also recorded as a timestamp in each direc-
tory entry that has been passed. In this way, each directory
entry keeps the most recent timestamp among those of all its
direct/indirect children entires when the table is viewed as a
tree. The entries of the table are allocated in an on-demand
fashion.

The memory consumption of the block table can be flex-
ibly controlled. When system memory pressure is too high
and the system needs to reclaim memory held by the table,
it traverses the table with a specified clock time threshold
for reclamation. Because the most recent access times are
recorded in the directories, the system will remove a direc-
tory once it finds its timestamp is smaller than the threshold,
and all the subdirectories and BTEs under it will be removed.

3.3 Forming Sequences

When it is the time to form sequences from a full bank, the
bank clock is incremented by one. Each block in the bank
then records the clock time as a new timestamp in the block
table. After that, we traverse the table to collect all the se-
quences consisting of the blocks with the current clock time.
This is a low cost operation because each directory at any
level in a block table contains the most recent timestamp
among all the BTEs under it. The traversal goes into only
those directories containing the blocks in the bank. To en-
sure the stability of a sequence exhibited in history, the algo-
rithm determines that the last block of a developing sequence
should not be coalesced with the next block in the table if the

next block belongs to one of the following cases:

1. Its BTE shows that it was not accessed in the current
clock time. This includes the case where it has never
been accessed (i.e., it has an empty timestamp field).
It belongs to this case if the next block is a spare or
defective block on the disk.

2. One and only one of the two blocks, the current block
and the next block, was not accessed before the current
clock time (i.e., it has only one timestamp).

3. Both of the two blocks have been accessed before the
current clock time, but their last access times have a
difference exceeding one.

4. The current sequence size reaches 128, which is the
maximal allowed sequence size and we deem to be suf-
ficient to amortize a disk operation cost.

If any one of the conditions is met, a complete sequence
has been formed and a new sequence starts to be formed.
Otherwise, the next block becomes part of the sequence, the
following blocks will be tested continuously.

3.4 The DULO Replacement Algorithm
There are two challenging issues to be addressed in the de-
sign of the DULO replacement algorithm.

The first issue is the potentially prohibitive overhead asso-
ciated with the DULO scheme. In the strict LRU algorithm,
both missed blocks and hit blocks are required to move to
the stack top. This means that a hit on a block in the evict-
ing section is associated with a bank sequencing cost and a
cost for sequence ordering in the evicting section. These ad-
ditional costs that can incur in a system with few memory
misses are unacceptable. In fact, the strict LRU algorithm is
seldom used in real systems because of its overhead associ-
ated with every memory reference [18]. Instead, its variant,
the CLOCK replacement algorithm, has been widely used in
practice. In CLOCK, when a block is hit, it is only flagged
as young block without being moved to the stack top. When
a block has to be replaced, the block at the stack bottom is
examined. If it is a young block, it is moved to the stack top
and its “young block” status is revoked. Otherwise, the block
is replaced. It is known that CLOCK simulates LRU behav-
iors very closely and its hit ratios are very close to those of
LRU. For this reason, we build the DULO replacement algo-
rithm based on the CLOCK algorithm. That is, it delays the
movement of a hit block until it reaches the stack bottom. In
this way, only block misses could trigger sequencing and the
evicting section refilling operations. While being compared
with the miss penalty, these costs are very small.

The second issue is how the sequences in the evicting sec-
tion are ordered for replacement according to their tempo-
ral and spatial locality. We adopt an algorithm similar to

/* Initialize */
L = 0;
losses_of_evicting_section = 0;

/* Procedure to be invoked upon a reference
to block b */

if b is in cache
mark b as a young block;

else {
while (block e at the stack bottom is young) {

revoke the young block state;
move it to the stack top;
losses_of_evicting_section++;
if (losses_of_evicting_section == BANK_MAX)

refill_evicting_section();
}
replace block e at the stack bottom;
s = e.sequence;
L = H(s);
losses_of_evicting_section++;
if (losses_of_evicting_section == BANK_MAX)

refill_evicting_section();
place block b at the stack top as a young block

}

/* procedure to refill the evicting section */
refill_evicting_section()
{

/* group sequences */
for each block in sequencing bank

place it in hierarchical block table;

traverse the table to obtain all sequences;
for each above sequence s

H(s) = L + 1/size(s);
sort the above sequences by H(s) into list L1;

/* L2 is the list of sequences in evicting
section */

evicting_section = merge_sort(L1, L2);
losses_of_evicting_section = 0;

}

Figure 2: The DULO Replacement Algorithm

GreedyDual-Size used in Web file caching [8]. GreedyDual-
Size was originally derived from GreedyDual [37]. It makes
its replacement decision by considering the recency, size,
and fetching cost of cached files. It has been proven that
GreedyDual-Size is online-optimal, which is � -competitive,
where � is the ratio of the size of the cache to the size of
the smallest file. In our case, file size is equivalent to se-
quence size, and file fetching cost is equivalent to the I/O
operation cost for a sequence access. For sequences whose
sizes are distributed in a reasonable range, which is limited
by bank size, we currently assume their fetching cost is the
same. Our algorithm can be modified to accommodate cost
variance if necessary in the future.

The DULO algorithm associates each sequence with a
value � , where a relatively small value indicates the se-
quence should be evicted first. The algorithm has a global
inflation value � , which records the � value of the most

recent evicted sequence. When a new sequence � is admit-
ted into the evicting section, its � value is set as ���������������� �"!$#&%'�(�)� , where �"!*#%'�(�)� is the number of the blocks
contained in � . The sequences in the evicting section are
sorted by their � values with sequences of small � values
at the LRU stack bottom. In the algorithm a sequence of
large size tends to stay at the stack bottom and to be evicted
first. However, if a sequence of small size is not accessed for
a relatively long time, it will be replaced. This is because a
newly admitted long sequence could have a larger � value
due to the � value, which is continuously being inflated by
the evicted blocks. When all sequences are random blocks
(i.e., their sizes are 1), the algorithm degenerates into the
LRU replacement algorithm.

As we have mentioned before, once a bank size of blocks
are replaced from the evicting section, we take the blocks
in the sequencing bank to form sequences and order the se-
quences by their � values. Note that all these sequences
share the same current � value in their � value calculations.
With a merge sorting of the newly ordered sequence list and
the ordered sequence list in the evicting section, we complete
the refilling of the evicting section, and the staging section
ends up with only the correlation buffer. The algorithm is
described using pseudo code in Figure 2.

4 Performance Evaluation
We use both trace-driven simulations and a prototype imple-
mentation to evaluate the DULO scheme and to demonstrate
the impact of introducing spatial locality into replacement
decisions on different access patterns in applications.

4.1 The DULO Simulation
4.1.1 Experiment Settings

We built a simulator that implements the DULO scheme,
Linux prefetching policy [28], and Linux Deadline I/O
scheduler [30]. We also interfaced the Disksim 3.0, an accu-
rate disk simulator [4], to simulate the disk behaviors. The
disk drive we modeled is the Seagate ST39102LW with 10K
RPM and 9.1GB capacity. Its maximum read/write seek time
is 12.2/13.2ms, and its average rotation time is 2.99ms. We
selected five traces of representative I/O request patterns to
drive the simulator (see Table 2). The traces have also been
used in [5], where readers are referred for their details. Here
we briefly describe these traces.

Trace viewperf consists of almost all-sequential-accesses.
The trace was collected by running SPEC 2000 benchmark
viewperf. In this trace, over 99% of its references are to
consecutive blocks within a few large files. By contrast, trace
tpc-h consists of almost all-random-accesses. The trace was
collected when the TPC-H decision support benchmark runs
on the MySQL database system. TPC-H performs random

references to several large database files, resulting in only
3% references to concecutive blocks in the trace.

The other three traces have mixed I/O request patterns.
Trace glimpse was collected by using the indexing and query
tool “glimpse” to search for text strings in the text files un-
der the /usr directory. Trace multi1 was collected by running
programs cscope, gcc, and viewperf concurrently. Cscope is
a source code examination tool, and gcc is a GNU compiler.
Both take Linux kernel 2.4.20 source code as their inputs.
Cscope and glimpse have a similar access pattern. They con-
tain 76% and 74% sequential accesses, respectively. Trace
multi2 was collected by running programs glimpse and tpc-h
concurrently. Multi2 has a lower sequential access rate than
Multi1 (16% vs. 75%).

In the simulations, we set the sequencing bank size as
8MB, and evicting section size as 64MB in most cases.
Only in the cases where the demanded memory size is less
than 80MB (such as for viewperf), we set the sequencing
bank size as 4MB, and evicting section size as 16MB. These
choices are based on the results of our parameter sensitivity
studies to be presented in Section 4.1.3. In the evaluation, we
compare the DULO performance with that of the CLOCK
algorithm. For generality, we still refer it as LRU.

4.1.2 Evaluation Results

Figures 3 and 4 show the execution times, hit ratios, and
disk access sequence size distributions of the LRU caching
and DULO caching schemes for the five workloads when
we vary memory size. Because the major effort of DULO
to improve system performance is to influence the quality
of the requests presented to the disk — the number of se-
quential block accesses (or sequence size), we show the se-
quence size differences for workloads running on the LRU
caching scheme and on the DULO caching scheme. For this
purpose, we use CDF curves to show how many percent-
ages (shown on Y-axis) of requested blocks appear in the se-
quences whose sizes are less than a certain threshold (shown
on X-axis). For each trace, we select two memory sizes to
draw the corresponding CDF curves for LRU and DULO,
respectively. We select the memory sizes according to the
execution time gaps between LRU and DULO shown in ex-
ecution time figures — one memory size is selected due to
its small gap and another is selected due to its large gap. The
memory sizes are shown in the legends of the CDF figures.

First, examine Figure 3. The CDF curves show that for the
almost-all-sequential workload viewperf, more than 80% of
requested blocks are in the sequences whose sizes are larger
than 120. Though DULO can increase the sizes of short
sequences a little bit, and hence reduce execution time by
4.4% (up to 8.0%), its influence is limited. For the almost-
all-random workload tpc-h, apparently DULO cannot create
sequential disk requests from the application requests con-
sisting of pure random blocks. So we see almost no improve-

Application Num of block accesses (M) Aggregate file size(MB) Num of files sequential refs
viewperf 0.3 495 289 99%

tpc-h 13.5 1187 49 3%
glimpse 3.1 669 43649 74%

multi1 (cscope+gcc+viewperf) 1.6 792 12514 75%
multi2 (glimpse+tpc-h) 16.6 1855 43696 16%

Table 2: Characteristics of the traces used in the simulations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 30 40 50 60 70 80 90

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Memory Size (MB)

viewperf

LRU
DULO

 0

 20

 40

 60

 80

 100

 30 40 50 60 70 80 90

H
it
 R

a
ti
o
 (

%
)

Memory Size (MB)

viewperf

DULO
LRU

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 (

%
)

Sequence Size (Number of Blocks)

viewperf

LRU-48MB
LRU-72MB

DULO-48MB
DULO-72MB

 0

 5000

 10000

 15000

 20000

 50 100 150 200 250 300

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Memory Size (MB)

tpc-h

LRU
DULO

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300

H
it
 R

a
ti
o
 (

%
)

Memory Size (MB)

tpc-h

DULO
LRU

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 (

%
)

Sequence Size (Number of Blocks)

tpc-h

LRU-64MB
LRU-224MB
DULO-64MB

DULO-224MB

Figure 3: Execution times, hit ratios, and disk access sequence size distributions (CDF curves) of LRU caching and DULO caching schemes for viewperf
with sequential request pattern and tpc-h with random request pattern.

ments from DULO.
DULO achieves substantial performance improvements

for the workloads with mixed request patterns (see Figure
4). There are several observations from the figures. First, the
sequence size increases are directly correlated to the execu-
tion time and hit ratio improvements. Let us take multi1 as
an example, with the memory size of 80MB, DULO makes
16.1% requested blocks appear in the sequences whose sizes
are larger than 40 compared with 13.7% for LRU. Accord-
ingly, there is an 8.5% execution time reduction and a 3.8%
hit ratio increase. By contrast, with the memory size of
160MB, DULO makes 24.9% requested blocks appear in
the sequences whose sizes are larger than 40 compared with
14.0% for LRU. Accordingly, there is a 55.3% execution
time reduction and a 29.5% hit ratio increase. The corre-

lation clearly indicates that requested sequence size is a crit-
ical factor affecting disk performance and DULO makes its
contributions through increasing the sequence size. DULO
can increase the hit ratio by making prefetching more ef-
fective with long sequences and generating more hits on the
prefetched blocks. Second, the sequential accesses are im-
portant for DULO to leverage the buffer cache filtering ef-
fect. We see that DULO does a better job for glimpse and
multi1 than for multi2. We know that glimpse and multi1
have 74% and 75% of sequential accesses, while multi2 has
only 16% sequential accesses. The small portion of sequen-
tial accesses in multi2 make DULO less capable to keep
random blocks from being replaced because there are not
sufficient sequentially accessed blocks to be replaced first.
Third, multi1 has more pronounced performance improve-

 0

 2000

 4000

 6000

 8000

 10000

 250 300 350 400 450 500 550 600 650 700

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Memory Size (MB)

glimpse

LRU
DULO

 0

 20

 40

 60

 80

 100

 250 300 350 400 450 500 550 600 650 700

H
it
 R

a
ti
o
 (

%
)

Memory Size (MB)

glimpse

DULO
LRU

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 (

%
)

Sequence Size (Number of Blocks)

glimpse

LRU-450MB
LRU-640MB

DULO-450MB
DULO-640MB

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 60 80 100 120 140 160 180

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Memory Size (MB)

multi1

LRU
DULO

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

H
it
 R

a
ti
o
 (

%
)

Memory Size (MB)

multi1

DULO
LRU

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 (

%
)

Sequence Size (Number of Blocks)

multi1

LRU-80MB
LRU-160MB
DULO-80MB

DULO-160MB

 0

 5000

 10000

 15000

 20000

 25000

 300 350 400 450 500 550 600 650 700

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Memory Size (MB)

multi2

LRU
DULO

 0

 20

 40

 60

 80

 100

 300 350 400 450 500 550 600 650 700

H
it
 R

a
ti
o
 (

%
)

Memory Size (MB)

multi2

DULO
LRU

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 (

%
)

Sequence Size (Number of Blocks)

multi2

LRU-320MB
LRU-700MB

DULO-320MB
DULO-700MB

Figure 4: Execution times, hit ratios, and disk access sequence size distributions (CDF curves) of LRU caching and DULO caching schemes for glimpse,
multi1, and multi2 with mixed request patterns.

ments from DULO than glimpse does. This difference is
mainly because DULO incidentally improves the LRU hit
ratios by better exploiting temporal locality with the looping
access pattern, for which LRU has well well-known inability
(see e.g. [17]). By contrast, in the case of multi2, DULO
can hardly improve its hit ratios, but is able to considerably
reduce its execution times, which clearly demonstrates its ef-
fectiveness at exploiting spatial locality.

4.1.3 Parameter Sensitivity and Overhead Study

There are two parameters in the DULO scheme, the (maxi-
mum) sequencing bank size and the (minimal) evicting size.
Both of these sizes should be related to the workload ac-
cess patterns rather than memory size, because they are used
to manage the sequentiality of accessed blocks. We use
four workloads for the study, excluding viewperf because its
memory demand is very small.

Table 3 shows the execution times change with varying

Bank Size tpc-h glimpse multi1 multi2
(MB) (128MB) (640MB) (160MB) (640MB)

1 16325 3652 1732 18197
2 16115 3611 1703 17896
4 15522 3392 1465 16744
8 15698 3392 1483 16737

16 15853 3412 1502 17001
32 15954 3452 1542 17226

Table 3: The execution times (seconds) with varying bank sizes (MB).
Evicting section size is 64MB. Memory sizes are shown with their respec-
tive workload names.

Evicting Section tpc-h glimpse multi1 multi2
Size (MB) (128MB) (640MB) (160MB) (640MB)

32 15750 3852 1613 18716
64 15698 3392 1483 16737
128 - 3382 1406 16685
192 - 3361 - 16665
256 - 3312 - 16540
320 - 3342 - 16538

Table 4: The execution times (seconds) with varying evicting section sizes
(MB). Sequencing bank size is 8MB. Memory sizes are shown with their
respective workload names.

sequencing bank sizes. We observe that across the work-
loads with various access patterns, there is an optimal bank
size roughly in the range from 4MB to 16MB. This is be-
cause a bank with too small size has little chance to form
long sequences. Meanwhile, a bank size must be less than
the evicting section size. When the bank size approaches the
section size, the performance will degrade. This is because a
large bank size causes the evicting section to be refilled too
late and causes the random blocks in it to have to be evicted.
So in our experiments we choose 8MB as the bank size.

Table 4 shows the execution times change with varying
evicting section sizes. Obviously the larger the section size,
the more control DULO will have on the eviction order of
the blocks in it, which usually means better performance.
The figure does show the trend. Meanwhile, the figure also
shows that the benefits from the increased evicting section
size saturate once the size exceeds the range from 64MB to
128MB. In our experiments, we choose 64MB as the sec-
tion size because the memory demands of our workloads are
relatively small.

The space overhead of DULO is its block table, whose
size growth corresponds to the number of compulsory
misses. Only a burst of compulsory misses could cause the
table size to be quickly increased. However, the table space
can be reclaimed by the system in a grace manner as de-
scribed in Section 3.2. The time overhead of DULO is triv-
ial because it is associated with the misses. Our simulations
show that a miss is associated with one block sequencing op-
eration including placing the block into the block table and
comparing with its adjacent blocks, and 1.7 merge sort com-

parison operation in average.

4.2 The DULO Implementation
To demonstrate the performance improvements of DULO for
applications running on a modern operating system, we im-
plement DULO in the recent Linux kernel 2.6.11. One of
the unique benefits from real system evaluation over trace
simulation is that it can take all the memory usages into ac-
count, including process memory and file-mapped memory
pages. For example, due to time and space cost constraints,
it is almost impossible to faithfully record all the memory
page accesses as a trace. Thus, the traces we used in the
simulation experiments only reflect the file access activities
through system calls. To present a comprehensive evaluation
of DULO, our kernel implementation and system measure-
ments effectively complement our trace simulation results.

Let us start with a brief description of the implementation
of the Linux replacement policy, an LRU variant.

4.2.1 Linux Caching

Linux adopts an LRU variant similar to the 2Q replacement
[16]. The Linux 2.6 kernel groups all the process pages and
file pages into two LRU lists called the active list and the
inactive list. As their names indicate, the active list is used
to store recently actively accessed pages, and the inactive
list is used to store those pages that have not been accessed
for some time. A faulted-in page is placed at the head of
the inactive list. The replacement page is always selected at
the tail of the inactive list. An inactive page is promoted
into the active list when it is accessed as a file page (by
mark page accessed()), or it is accessed as a process page
and its reference is detected at the inactive list tail. An active
page is demoted to the inactive list if it is determined to have
not been recently accessed (by refill inactive zone()).

4.2.2 Implementation Issues

In our prototype implementation of DULO, we do not re-
place the original Linux page frame reclaiming code with
a faithful DULO scheme implementation. Instead, we opt
to keep the existing data structure and policies mostly un-
changed, and seamlessly adapt DULO into them. We make
this choice, which has to tolerate some compromises of the
original DULO design, to serve the purpose of demonstrat-
ing what improvements a dual locality consideration could
bring to an existing spatial-locality-unaware system without
changing its basic underlying replacement policy.

In Linux, we partition the inactive list into a staging sec-
tion and an evicting section because the list is the place
where new blocks are added and old blocks are replaced.
Two LRU lists used in Linux instead of one assumed in the
DULO scheme challenge the legitimacy of forming a se-
quence by using one bank in the staging section. We know

that the sequencing bank in DULO is intended to collect con-
tinuously accessed pages and form sequences from them,
so that the pages in a sequence can be expected to be re-
quested together and be fetched sequentially. With two lists,
both newly accessed pages and not recently accessed active
pages demoted from the active list might be added into the
inactive list and probably be sequenced in the same bank + .
Hence, two spatially sequential but temporally remote pages
can possibly be grouped into one sequence, which is appar-
ently in conflict with the sequence definition described at the
beginning of Section 4. We address this issue by marking
the demoted active pages and sequencing each type of page
separately. Obviously, the Linux two-list structure provides
fewer opportunities for DULO to identify sequences than
those in one stack case where any hit pages are available for
a possible sequencing with faulted-in pages.

The anonymous pages that do not yet have mappings on
disk are treated as random blocks until they are swapped
out and are associated with some disk locations. To map
the LBN (Logical Block Number) of a block into a one-
dimensional physical disk address, we use the technique de-
scribed in [33] to extract track boundaries. To characterize
accurately block location sequentiality, all the defective and
spare blocks on disk are counted. We also artificially place a
dummy block between the blocks on a track boundary in the
mapping to show the two blocks are non-sequential.

There are two types of I/O operations, namely file access
and VM paging. In the experiments, we set the sequencing
bank size as 8MB, and the evicting section size as 64MB, the
same as those adopted in the simulations.

4.2.3 Case Study I: File Accesses

In the first case we study the influence of the DULO scheme
on file access performance. For this purpose, we installed
a Web server running a general hypertext cross-referencing
tool — Linux Cross-Reference (LXR) [24]. This tool is
widely used by Linux developers for searching Linux source
code. The machine we use is a Gateway desktop with In-
tel P4 1.7GHz processor, a 512MB memory, and Western
Digital WD400BB hard disk of 7200 RPM. The OS is SuSE
Linux 9.2 with the Linux 2.6.11 kernel. The file system is
Ext2. We use LXR 0.3 search engine on the Apache 2.0.50
HTTP Server, and use Glimpse 4.17.3 as the freetext search
engine. The file set for the searching is Linux 2.6.11.9 source
code, whose size is 236MB. Glimpse divides the files into
256 partitions, indexes the file set based on partitions, and
generates a 12MB index file showing the keyword locations
in terms of partitions. To serve a search query, glimpse
searches the index file first, then accesses the files included
in the partitions matched in the index files. On the client
side, we used WebStone 2.5 [36] to generate 25 clients con-
currently submitting freetext search queries. Each client ran-
domly picks up a keyword from a pool of 50 keywords and

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 170 180 190 200 210 220 230 240 250 260

S
e

rv
e

r
T

h
ro

u
g

h
p

u
t

(M
B

it
s
/s

e
c
)

Memory Size (MB)

DULO
Linux 2.6.11

Figure 5: Throughputs of LXR search on the original Linux kernel and
DULO instrumented kernel with varying memory sizes.

sends it to the server. It sends its next query request once it
receives the results of its previous query. We randomly select
25 Linux symbols from file /boot/System.map and another
25 popular OS terms such as “lru”, “scheduling”, “page”
as the pool of candidate query keywords. Each experiment
lasts for 15 minutes. One client always uses the same se-
quence of keyword queries in each experiment. The met-
ric we use is the query system throughput represented by
MBits/sec, which means the number of Mega bits of query
results returned by the server per second. This metric is also
used for reporting WebStone benchmark results. Because
in the experiments the query processing is I/O-intensive, the
metric is suitable to measure the effectiveness of the memory
and disk systems.

Figure 5 shows the server throughputs for the original
Linux 2.6.11 kernel and its DULO instrumented counter-
part with various memory sizes. The reported memory sizes
are those available for the kernel and user applications. We
adopt relatively small memory sizes because of the limited
size of the file set for search. The figure shows that DULO
helps improve the benchmark throughput by 5.1% to 16.9%,
and the trend also holds for the hit ratio curves (not shown in
this paper). To understand the performance improvements,
we examine the disk layout of the glimpse partitions (i.e.,
the sets of files the glimpse searches for a specific keyword).
There are a small percentage of files in a partition that are lo-
cated non-continuously with the rest of its files. The fact that
a partition is the glimpse access unit makes accesses to those
files be random accesses interleaved in the sequential ac-
cesses. DULO identifies these isolated files and keeps them
in memory with priority. Then the partition can be scanned
without abruptly moving the disk head, even if the partition
contains isolated small files. To prepare the aforementioned
experiments, we untar the compressed kernel 2.6.11.9 on the
disk with 10% of its capacity occupied. To verify our perfor-
mance explanation, we manually copy the source code files
to an unoccupied disk and make all the files in a glimpse par-
tition be closely allocated on the disk. Then we repeat the
experiments. This time, we see little difference between the

DULO instrumented kernel and the original kernel, which
clearly shows that (1) DULO can effectively and flexibly ex-
ploit spatial locality without carefully tuning system com-
ponents, which is sometimes infeasible; (2) The additional
running overhead introduced by DULO is very small.

4.2.4 Case Study II: VM Paging

In the second case we study the influence of the DULO
scheme on VM paging performance. For this purpose, we
use a typical scientific computing benchmark — sparse ma-
trix multiplication (SMM) from an NIST benchmark suite
SciMark2 [31]. The system settings are the same as those
adopted in the previous case study. The SMM benchmark
multiplies a sparse matrix with a vector. The matrix is of
size ,.-/, , and has 0 non-zero data regularly dispersed in
its data geometry, while the vector has a size of , (,1�32&�54
and 06�72 �8�). The data type is 8Byte double. In the mul-
tiplication algorithm, the matrix is stored in a compressed-
row format so that all the non-zero elements are continu-
ously placed in a one-dimensional array with two index ar-
rays recording their original locations in the matrix. The total
working set, including the result vector and the index arrays,
is around 116MB. To cause the system paging and stress the
swap space accesses, we have to adopt small memory sizes,
from 90MB to 170MB, including the memory used by the
kernel and applications. The benchmark is designed to re-
peat the multiplication computation 15 times to collect data.

To increase spatial locality of swapped-out pages in disk
swap space, Linux tries to allocate continuous swap slots on
disk to sequentially reclaimed anonymous pages in the hope
that they would be swapped-in in the same order efficiently.
However, the data access pattern in SMM foils the system
effort. In the program, SMM first initializes the arrays one
by one. This thereafter causes each array to be swapped out
continuously and be allocated on the disk sequentially when
the memory cannot hold the working set. However, in the
computation stage, the elements that are accessed in the vec-
tor array are determined by the matrix locations of the ele-
ments in the matrix array. Thus, those elements are irregu-
larly accessed, but they are continuously located on the disk.
The swap-in accesses to the vector arrays turn into random
accesses, while the elements of matrix elements are still se-
quentially accessed. This explains the SMM execution time
differences between on the original kernel and on DULO in-
strumented kernel (see Figure 6). DULO significantly re-
duces the execution times by up to 43.7%, which happens
when the memory size is 135MB. This is because DULO de-
tects the random pages in the vector array and caches them
with priority. Because the matrix is a sparse one, the vector
array cannot obtain sufficiently frequent reuses to allow the
original kernel to keep them from being paged out. Further-
more, the similar execution times between the two kernels
when there is enough memory to hold the working set shown

 0

 200

 400

 600

 800

 1000

 1200

 90 100 110 120 130 140 150 160 170

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Memory Size (MB)

Linux 2.6.11
DULO

Figure 6: SMM execution times on the original Linux kernel and DULO
instrumented kernel with varying memory sizes.

in the figure suggest that the DULO overhead is small.

5 Related Work
Because of the serious disk performance bottleneck that has
existed over decades, many researchers have attempted to
avoid, overlap, or coordinate disk operations. In addition,
there are studies on the interactions of these techniques and
on their integration in a cooperative fashion. Most of the
techniques are based on the existence of locality in disk ac-
cess patterns, either temporal locality or spatial locality.

5.1 Buffer caching

One of the most actively researched area on improving I/O
performance is buffer caching, which relies on intelligent re-
placement algorithms to identify and keep active pages in
memory so that they can be re-accessed without actually ac-
cessing the disk later. Over the years, numerous replace-
ment algorithms have been proposed. The oldest and yet still
widely adopted algorithm is the Least Recently Used (LRU)
algorithm. The popularity of LRU comes from its simple and
effective exploitation of temporal locality: a block that is ac-
cessed recently is likely to be accessed again in the near fu-
ture. There are also a large number of other algorithms pro-
posed such as 2Q [16], MQ [38], ARC [25], LIRS [17] et al.
All these algorithms focus only on how to better utilize tem-
poral locality, so that they are able to better predict the blocks
to be accessed and try to minimize page fault rate. None
of these algorithms considers spatial locality, i.e., how the
stream of faulted pages is related to their disk locations. Be-
cause of the non-uniform access characteristic of disks, the
distribution of the pages on disk can be more performance-
critical than the number of the pages itself. In other words,
the quality of the missed pages deserves at least the same
amount of attention as their quantity. Our DULO scheme
introduces spatial locality into the consideration of page re-
placement and thus makes replacement algorithms aware of

page placements on the disk.

5.2 I/O Prefetching
Prefetching is another actively researched area on improving
I/O performance. Modern operating systems usually employ
sophisticated heuristics to detect sequential block accesses
so as to activate prefetching, as well as adaptively adjust the
number of blocks to be prefetched within the scope of one
individual file [5, 28]. System-wide file access history has
been used in probability-based predicting algorithms, which
track sequences of file access events and evaluate probabil-
ity of file occurring in the sequences [11, 19, 20, 23]. This
approach can perform prefetching across files and achieve a
high prediction accuracy due to its use of historical informa-
tion.

The performance advantages of prefetching coincide with
sequential block requests. While prefetchers by themselves
cannot change the I/O request stream in any way as the buffer
cache does, they can take advantage of the more sequential
I/O request streams resulted from the DULO cache man-
ager. In this sense, DULO is a complementary technique
to prefetching. With the current intelligent prefetching poli-
cies, the efforts of DULO on sequential accesses can be eas-
ily translated into higher disk performance.

5.3 Integration between Caching and
Prefetching

Many research papers on the integration of caching and
prefetching consider the issues such as the allocations of
memory to cached and prefetched blocks, the aggressiveness
of prefetching, and use of application-disclosed hints in the
integration [2, 6, 12, 21, 7, 22, 27, 35]. Sharing the same
weakness as those in current caching policies, this research
only utilizes the temporal locality of the cached/prefetched
blocks and uses hit ratio as metric in deciding memory allo-
cations. Recent research has found that prefetching can have
a significant impact on caching performance, and points out
that the number of aggregated disk I/Os is a much more ac-
curate indicator of the performance seen by applications than
hit ratio [5].

Most of the proposed integration schemes rely on
application-level hints about I/O access patterns provided by
users [6, 7, 22, 27, 35]. This reliance certainly limits their
application scope, because users may not be aware of the
patterns or source code may not be available. The work de-
scribed in [21, 12] does not require additional user support
and thus is more related to our DULO design.

In paper [21], a prefetching scheme called recency-local
is proposed and evaluated using simulations. Recency-local
prefetches the pages that are nearby the one being referenced
in the LRU stack 9 . It takes a reasonable assumption — pages
adjacent to the one being demanded in the LRU stack would

likely be used soon, because it is likely that the same ac-
cess sequence would be repeated. The problem is that those
nearby pages in the LRU stack may not be adjacent to the
page being accessed on disk (i.e., sharing spatial locality).
In fact, this is the scenario that is highly likely to happen
in a multi-process environment, where multiple processes
that access different files interleavingly feed their blocks into
the common LRU stack. Prefetching requests involving disk
seeks make little sense to improving I/O performance, and
can hurt the performance due to possible wrong predictions.
If we re-order the blocks in a segment of an LRU stack ac-
cording to their disk locations, so that adjacent blocks in the
LRU stack are also close to each other on disk, then replac-
ing and prefetching of the blocks can be conducted in a spa-
tial locality conscious way. This is one of the motivations of
DULO.

Another recent work is described in paper [12], in which
cache space is dynamically partitioned among sequential
blocks, which have been prefetched sequentially into the
cache, and random blocks, which have been fetched indi-
vidually on demand. Then a marginal utility is used to com-
pare constantly the contributions to the hit rate between the
allocation of memory to sequential blocks and that to ran-
dom blocks. More memory is allocated to the type of blocks
that can generate a higher hit rate, so that the system-wide
hit rate is improved. However, a key observation is unfortu-
nately ignored here, i.e., sequential blocks can be brought
into the cache much faster than an equivalent number of
random blocks due to their spatial locality. Therefore, the
misses of random blocks should count more in their contri-
bution to final performance. In their marginal utility estima-
tions, misses on the two types of blocks are equally treated
without giving preference to random blocks, even though the
cost of fetching random blocks is much higher. Our DULO
gives random blocks more weight for being kept in cache to
compensate for their high fetching cost.

While modern operating systems do not support caching
and prefetching integration designs yet, we do not pursue in
this aspect in our DULO scheme in this paper. We believe
that introducing dual locality in these integration schemes
will certainly improve their performance, and that it remains
as our future work to investigate the amount of its benefits.

5.4 Other Related Work

Because disk head seek time far dominates I/O data transfer
time, to effectively utilize the available disk bandwidth, there
are techniques to control the data placement on disk [1, 3] or
reorganize selected disk blocks [14], so that related objects
are clustered and the accesses to them become more sequen-
tial. In DULO, we take an alternative approach in which we
try to avoid random small accesses by preferentially keeping
these blocks in cache and thereby making more accesses se-
quential. In comparison, our approach is capable of adapting

itself to changing I/O patterns and is a more widely applica-
ble alternative to the disk layout control approach.

Finally, we point out some interesting work analogous to
our approach in spirit. [10] considers the difference in per-
formance across heterogeneous storage devices in storage-
aware file buffer replacement algorithms, which explicitly
give those blocks from slow devices higher weight to stay
in cache. To do so, the algorithms can adjust the stream of
block requests to have more fast device requests by filtering
slow device requests to improve caching efficiency. In pa-
pers [29, 39, 40], the authors propose to adapt replacement
algorithms or prefetching strategies to influence the I/O re-
quest streams for disk energy saving. With the customized
cache filtering effect, the I/O stream to disks becomes more
bursty separated by long idle time to increase disk power-
down opportunities in the single disk case, or becomes more
unbalanced among the requests’ destination disks to allow
some disks to have longer idle times to power down. All
this work leverages the cache’s buffering and filtering effects
to influence I/O access streams and to make them friendly
to specific performance characteristics of disks for their re-
spective objectives, which is the philosophy shared by our
DULO. The uniqueness of DULO is that it influences disk
access streams to make them more sequential to reduce disk
head seeks.

6 Limitations of our Work
While the DULO scheme exhibits impressive performance
improvements in average disk latency and bandwidth, as
well as the application runtimes, there are some limitations
worth pointing out. First, though DULO attempts to provide
random blocks with a caching privilege to avoid the expen-
sive I/O operations on them, there is little that DULO can do
to help I/O requests incurred by compulsory misses or misses
to random blocks that have not been accessed for a long time.
In addition, the temporal-locality-only caching policy is able
to cache frequently accessed random blocks, and there is no
need for DULO’s help. This discussion also applies to those
short sequences whose sizes cannot well amortize the disk
seeking cost. Second, we present our DULO scheme based
on the LRU stack. For implementation purposes, we adapt
it to the 2Q-like Linux replacement policy. The studies of
how to adapt DULO on other advanced caching algorithms
and understanding the interaction between DULO and the
characteristics of each algorithm are necessary and in our
research plan. Third, as we have mentioned, it remains as
our future work to study the integration between caching and
prefetching polices in the DULO scheme.

7 Conclusions
In this paper, we identify a serious weakness of lacking spa-
tial locality exploitation in I/O caching, and propose a new

and effective memory management scheme, DULO, which
can significantly improve I/O performance by exploiting
both temporal and spatial locality. Our experiment results
show that DULO can effectively reorganize application I/O
request streams mixed with random and sequential accesses
in order to provide a more disk-friendly request stream with
high sequentiality of block accesses. We present an effec-
tive DULO replacement algorithm to carefully tradeoff ran-
dom accesses with sequential accesses and evaluate it using
traces representing representative access patterns. Besides
extensive simulations, we have also implemented DULO in
a recent Linux kernel. The results of performance evalua-
tion on both buffer cache and virtual memory system show
that DULO can significantly improve the performance up to
43.7%.

Acknowledgment
We are grateful to Ali R. Butt, Chris Gniady, and Y. Charlie
Hu at Purdue University for providing us with their file I/O
traces. We are also grateful to the anonymous reviewers who
helped improve the quality of the paper. We thank our col-
leagues Bill Bynum, Kei Davis, and Fabrizio Petrini to read
the paper and their constructive comments. The research was
supported by Los Alamos National Laboratory under grant
LDRD ER 20040480ER, and partially supported by the Na-
tional Science Foundation under grants CNS-0098055, CCF-
0129883, and CNS-0405909.

References
[1] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, N. C. Burnett,

T. E. Denehy, T. J. Engle, H. S. Gunawi, J. Nugent, F. I.
Popovici, “Transforming Policies into Mechanisms with In-
fokernel”, Proc. of SOSP ’03, October 2003.

[2] S. Albers and M. Buttner, “Integrated prefetching and
caching in single and parallel disk systems”, Proc. of SPAA
’03, June, 2003.

[3] D. Black, J. Carter, G. Feinberg, R. MacDonald, S. Mangalat,
E. Sheinbrood, J. Sciver, and P. Wang, “OSF/1 Virtual Mem-
ory Improvements”, Proc. of the USENIX Mac Symposium,
November 1991.

[4] J. Bucy and G. Ganger, “The DiskSim Simulation En-
vironment Version 3.0 Reference Manual”, Technical Re-
port CMU-CS-03-102, Carnegie Mellon University, January
2003.

[5] A. R. Butt, C. Gniady, and Y. C. Hu, “The Performance Im-
pact of Kernel Prefetching on Buffer Cache Replacement Al-
gorithms”, Proc. of SIGMETRICS ’05, June, 2005.

[6] P. Cao, E. W. Felten, A. Karlin and K. Li, “A Study of In-
tegrated Prefetching and Caching Strategies”, Proc. of SIG-
METRICS ’95, May 1995.

[7] P. Cao, E. W. Felten, A. Karlin and K. Li, “Implementa-
tion and Performance of Integrated Application-Controlled

Caching, Prefetching and Disk Scheduling”, ACM Transac-
tion on Computer Systems, November 1996.

[8] P. Cao, S. Irani, “Cost-Aware WWW Proxy Caching Algo-
rithms”, Proc. of USENIX ’97, December, 1997.

[9] P. Cao, E. W. Felten and K. Li, “Application-Controlled File
Caching Policies”, Proc. of USENIX Summer ’94, 1994.

[10] B. Forney, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Storage-Aware Caching: Revisiting Caching For Heteroge-
neous Storage Systems”, Proc. of FAST ’02, January 2002.

[11] J. Griffioen and R. Appleton, “Reducing file system latency
using a predictive approach”, Proc. of USENIX Summer ’94,
June 1994.

[12] B. Gill and D. S. Modha, ”SARC: Sequential Prefetching in
Adaptive Replacement Cache,” Proc. of USENIX ’05, April,
2005.

[13] M. Gorman, “Understanding the Linux Virtual Memory
Manager”, Prentice Hall, April, 2004.

[14] W. W. Hsu, H. C. Young and A. J. Smith, “The Automatic Im-
provement of Locality in Storage Systems”, Technical Report
CSD-03-1264, UC Berkeley, July, 2003.

[15] S. Iyer and P. Druschel, “Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in syn-
chronous I/O”, Proc. of SOSP ’01, October 2001.

[16] T. Johnson and D. Shasha, “2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm”,
Proc. of VLDB ’94, 1994, pp. 439-450.

[17] S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-
reference Recency Set Replacement Policy to Improve Buffer
Cache Performance”, Proc. of SIGMETRICS ’02, June 2002.

[18] S. Jiang, F. Chen and X. Zhang, “CLOCK-Pro: An Effec-
tive Improvement of the CLOCK Replacement”, Proc. of
USENIX ’05, April 2005.

[19] T. M. Kroeger and D.D.E. Long, “Predicting file-system ac-
tions from prior events”, Proc. of USENIX Winter ’96, Jan-
uary 1996.

[20] T. M. Kroeger and D.D.E. Long, “Design and implementation
of a predictive file prefetching algorithm”, Proc. of USENIX
’01, January 2001.

[21] S. F. Kaplan, L. A. McGeoch and M. F. Cole, “Adaptive
Caching for Demand Prepaging”, Proc. of the International
Symposium on Memory Management, June, 2002.

[22] T. Kimbrel, A. Tomkins, R. H. Patterson, B. Bershad, P. Cao,
E. Felton, G. Gibson, A. R. Karlin and K. Li, “A Trace-
Driven Comparison of Algorithms for Parallel Prefetching
and Caching”, Proc. of OSDI ’96, 1996.

[23] H. Lei and D. Duchamp, “An Analytical Approach to File
Prefetching”, Proc. USENIX ’97, January 1997.

[24] Linux Cross-Reference, URL : http://lxr.linux.no/.

[25] N. Megiddo, D. Modha, “ARC: A Self-Tuning, Low Over-
head Replacement Cache”, Proc. of FAST ’03, March 2003,
pp. 115-130.

[26] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Buffering”, Proc.
of SIGMOD ’93, 1993.

[27] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky and J.
Zelenka, “Informed Prefetching and Caching”, Proc. of SOSP
’95, 1995.

[28] R. Pai, B. Pulavarty and M. Cao, “Linux 2.6 Performance Im-
provement through Readahead Optimization”, Proceedings
of the Linux Symposium, July 2004.

[29] A. E. Papathanasiou and M. L. Scott, “Energy Efficient
Prefetching and Caching”, Proc. of USENIX ’04, June, 2004.

[30] R. Love, “Linux Kernel Development (2nd Edition)”, Novell
Press, January, 2005.

[31] SciMark 2.0 benchmark, URL:
http://math.nist.gov/scimark2/

[32] A. J. Smith, “Sequentiality and Prefetching in Database Sys-
tems”, ACM Trans. on Database Systems, Vol. 3, No. 3, 1978.

[33] J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger,
“Track-Aligned Extents: Matching Access Patterns to Disk
Drive Characteristics”, Proc. of FAST ’02, January, 2002.

[34] E. Shriver, C. Small, K. A. Smith, “Why Does File System
Prefetching Work?”, Proc. of USENIX ’99, June, 1999.

[35] A. Tomkins, R. H. Patterson and G. Gibson, “Informed Multi-
Process Prefetching and Caching”, Proc. of SIGMETRICS
’97, June, 1997.

[36] WebStone — The Benchmark for Web Servers, URL :
http://www.mindcraft.com/benchmarks/webstone/

[37] N. Young, “Online file caching”, Proc. of SODA ’98, 1998.

[38] Y. Zhou, Z. Chen and K. Li. “Second-Level Buffer Cache
Management”, IEEE Transactions on Parallel and Dis-
tributed Systems, Vol. 15, No. 7, July, 2004.

[39] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou, and P.
Cao, “Reducing Energy Consumption of Disk Storage Us-
ing Power-Aware Cache Management”, Proc. of HPCA ’04,
February 2004.

[40] Q. Zhu, A. Shankar and Y. Zhou, “PB-LRU: A Self-Tuning
Power Aware Storage Cache Replacement Algorithm for
Conserving Disk Energy”, Proc. of ICS ’04, June, 2004

Notes:
We use page to denote a memory access unit, and block to denote a disk

access unit. They can be of different sizes. For example, a typical Linux
configuration has a 4KB page and a 1KB block. A page is then composed
of one or multiple blocks if it has a disk mapping.;

With a seek reduction disk scheduler, the actual seek time between con-
secutive accesses should be less than the average time. However, this does
not affect the legitimacy of the discussions in the section as well as its con-
clusions.<

The definition of sequence can be easily extended to a cluster of blocks
whose disk locations are close to each other and can be used to amortize the
cost of one disk operation. We limit the concept to being strictly sequential
in this paper because that is the dominant case in practice.=

This issue might not arise if the last timestamps of these two types of
blocks cannot meet the sequencing criteria listed in section 3.3, but there is
no guarantee of this.>

LRU stack is the data structure used in the LRU replacement algorithm.
The block ordering in it reflects the order of block accesses.

