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Abstract

In a distributed environment the utilization of file buffer
caches in different clients may vary greatly. Cooperative
caching is used to increase cache utilization by coordinat-
ing the usage of distributed caches. Existing cooperative
caching protocols mainly address organizational issues,
paying little attention to exploiting locality of file access
patterns. We propose a locality-aware cooperative caching
protocol, called LAC, that is based on analysis and manip-
ulation of data block reuse distance to effectively predict
cache utilization and the probability of data reuse. Using a
dynamically controlled synchronization technique, we make
local information consistently comparable among clients.
The system is highly scalable in the sense that global coor-
dination is achieved without centralized control.

1. Introduction

I/O performance of file systems in distributed and
cluster-based parallel systems has a critical impact on ap-
plication performance. A central file server may han-
dle requests from hundreds of clients simultaneously and
become a serious bottleneck. Distributed storage sys-
tems such as Panasas and Lustre Storage Systems can
be used to provide a high storage bandwidth [10]. How-
ever, on-demand file access latency is not correspondingly
reduced.

1.1. Cooperative Caching

The concept of cooperative caching to form a unified
level of cache on top of server cache in the file cache hierar-
chy has been proposed to reduce disk accesses [3]. Systems
employing such techniques include GMS and PGMS [6,

13]. In the more than ten years since cooperative caching
was first introduced, the technical trends that originally mo-
tivated it are more relevant than ever: for example, the
performance gap between processor and disk has contin-
ued to widen, which makes disk access time increasingly
long in terms of CPU operations. While the performance
gap is not expected to change dramatically in the fore-
seeable future, reducing disk access via improved caching
remains a desirable goal. In the meantime, however, ad-
vances in network technology—vastly improved bandwidth
and latency—improve the possibilities for sharing memory
space among clients. For example, the use of 10 gigabit Eth-
ernet or Infiniband can make the transfer a data block be-
tween clients in a LAN two orders of magnitude faster than
fetching the block from a state-of-the-art hard disk. Further-
more, because the aggregate amount of memory in clients
scales with the number of clients, cooperative caching im-
proves the system scalability by alleviating the workload
pressure on the server as number of clients increases.

1.2. Balanced Cache Utilization

A major objective of cooperative caching is to balance
the utilization of caches by moving the data from over-
loaded caches to underloaded ones. A cooperative caching
protocol usually provides mechanisms for block forward-
ing and block locating. In block forwarding, a block de-
moted from a client cache is stored in the cache of a se-
lected remote client rather than being discarded, thus mak-
ing it more readily available if later requested. Block locat-
ing is a mechanism whereby a client can determine the lo-
cation (hosting client) of a requested block that has been
cached either because of a previous forwarding or a local
access.



For cooperative caching to achieve efficient and balanced
cache utilization, two critical elements of any proposed so-
lution are the determination of which blocks should be for-
warded; and, where the blocks should be forwarded. The
algorithms for making these determinations depend on pre-
dictions of the locality strengths of blocks at each client.
Here an accessed block with strong locality will be re-
accessed soon; one with weak locality not so soon or not
ever. The blocks with weakest locality, i.e. the leastest likely
to be re-accessed in the near future, would be the candi-
dates for being forwarded, while blocks with stronger lo-
cality would be retained in the local cache. The decision
of whether to forward, and if so to where, depends on the
relative local and peer cache utilization. A cache’s utiliza-
tion is determined by its blocks with weakest locality—a
cache containing blocks of weaker locality than another is
deemed to have lower utilization. A candidate for forward-
ing would be sent to another client whose cache utilization
is lower than the forwarding client’s, if such a client ex-
ists, otherwise discarded as in a traditional system. The ef-
fectiveness of the system depends on developing a method
to predict block locality—a locality measure—that exhibits
good accuracy, and the ability to make locality quantified
at each client consistently comparable across the system. If
this were achieved, cache utilization across all clients would
be balanced, and the aggregate cache at client level more ef-
ficiently utilized.

1.3. Locality Measures in Current Coopera-
tive Caching Protocols

Previously proposed cooperative caching protocols gen-
erally focus on some organizational issues such as server
involvement, cache consistency, and coordination effi-
ciency [3, 6, 11]. The study of the analysis of data ac-
cess patterns and client cache utilization is still preliminary.
For example, researchers have not yet developed an ef-
fective locality measure for forwarding decisions and host
client selection. Instead, they have simply borrowed the lo-
cality measure used in LRU (Least Recently Used) replace-
ment, which is the age of a block. In LRU, a block that
has not been used recently (i.e., with a large age) is pre-
dicted to be unlikely to be re-accessed (i.e., have weak lo-
cality), while a block recently accessed is assumed to
have strong locality and therefore should be cached. How-
ever, in many situations this locality measure is very inac-
curate. For example, if a client sequentially reads a large
data file multiple times, blocks with higher age will al-
ways be re-accessed sooner than any with lower age. An-
other example is the one-time scan of files, where all the
accessed blocks are of least value for being cached, no mat-
ter how recently they were accessed. In these cases, cache
performance can be very poor. When the age-based lo-
cality measure is employed in cooperative caching, its
behavior may jeopardize the performance of not only a sin-

gle cache but that of peer caches as well—if a client were
to rapidly scan a large amount of disk data, it would flush a
large number of blocks with small ages, which might never
be used again, to other clients whose possibly heavily-used
working sets would be displaced. This concern regard-
ing age-based measure has been raised in the context of
the GMS system as one of its weaknesses [6]. Gener-
ally, the possibility of this inter-client interference speaks
against the use of cooperative caching despite its poten-
tial benefits. In short, what is needed is effective data ac-
cess pattern analysis and associated locality measures, and
a method for consistent comparison of locality (and so uti-
lization) between caches.

1.4. Our Objectives and Solutions

In this paper we propose a Locality-Aware Cooperative
caching protocol, LAC, that uses block reuse distance as the
locality measure. The reuse distance of a block is the num-
ber of other distinct blocks accessed between two consec-
utive references to the block. In contrast with the age of a
block, which only characterizes the number of other blocks
subsequently accessed, reuse distance predicts access fre-
quency based on historical precedent. Using the last reuse
distance of a block to predict the next reuse distance, we
can avoid the disadvantages associated with the measure of
age while still being able to exploit the property of stable
locality exhibited during a particular phase of program ex-
ecution. Using the last reuse distance, the locality strength
of a block is determined immediately upon its access. Only
those blocks with strong locality are cached in memory, and
those with relatively weak locality are consequently evicted.
For example, because one-time accessed blocks have infi-
nite reuse distance, they are not subject to caching in local
memory or forwarding to remote memory. This is in con-
trast with the use of age, where all blocks recently accessed
have small ages and are cached until they grow old.

While each client uses reuse distance to measure block
locality strength and keeps those with relatively strong lo-
cality in its cache, we must provide a method to make
the locality measure consistently comparable across
all clients. This is achieved by a periodic synchroniza-
tion among clients. A block is only allowed to be for-
warded from a client with high cache utilization to another
one with a low utilization. In this way we can achieve bal-
anced cache utilization across the clients and high perfor-
mance for this level of the cache hierarchy with minimal
adverse interference.

In summary, there are three objectives in the LAC proto-
col to address the weaknesses in current designs.

1. Though current and emerging advanced networking
technology enable inexpensive data transfer, local and
remote caches are still in a non-uniform caching struc-
ture. Thus blocks with strong locality in their host



clients should be cached locally, and only those with
weaker locality should be candidates for forwarding.

2. Clients should only forward blocks that, through reten-
tion, are predicted to improve aggregate cache perfor-
mance. This implies that a local block replaced by a
forwarded block must have weaker locality on a glob-
ally comparable basis to minimize clients unduly de-
grading the performance of a peer without producing
greater global performance improvement.

3. The protocol should be scalable with the size of the
system. Our protocol is fully decentralized, with no
server involvement, to prevent the server from becom-
ing a performance bottleneck.

2. Related Work

Our work builds on, and synergistically combines, two
somewhat distinct areas of research: work on cooperative
caching and work on exploiting reuse distance as a mea-
sure of locality strength. Related work in both areas is pre-
sented.

2.1. Related Work on Cooperative Caching

Around a decade ago, rapid advances in processor and
network performance inspired the original work on cooper-
ative caching by Dahlin et al. [3]. They described and eval-
uated a variety of protocols covering a large design space.
They concluded that a protocol named N-Chance Forward-
ing provided the best performance and relatively low over-
head.

N-Chance Forwarding uses the LRU stack as the data
structure for managing information about access history.
Two factors are considered in deciding whether a block
should be forwarded: its age and its redundancy in the sys-
tem. The last block in the LRU stack, which has the largest
age, is forwarded if it is the only copy cached in any client,
and is referred to as a singlet. No account is taken of the
cache utilization of the client that accepts the block. Thus a
heavily loaded client may have to accept forwarded blocks
of relatively low locality strengths. To limit the lifetime of a
cached block, a recirculation count is maintained to limit
the number of times a block is forwarded. The selection
of the target client for forwarding is very simple: it is cho-
sen at random. N-Chance Forwarding maintains a per-block
forwarding table on the server to track every block being
cached by each client. By consulting the global table a client
can determine whether one of its blocks is a singlet, and
where to find any remotely cached block. This design min-
imizes caching redundancy and maximizes block locating
performance. However, it also results in a performance bot-
tleneck at the server, which limits the system scalability.

The N-Chance protocol was later integrated into the xFS
serverless network file system design [1, 2], where central
management of the metadata at the server is removed for

better scalability and availability. Feeley et al. introduced
Global Memory Service (GMS), which implemented a dis-
tributed shared memory system [6]. GMS deals with all
memory activities, including VM paging, memory-mapped
files, and explicit file access. To avoid the blindness of tar-
get client selection in N-Chance, GMS uses a centralized
manager to periodically collect age information of blocks
in each client and to disseminate the information to all the
clients so that a client caching blocks with large age blocks
can be chosen as a forwarding target.

Sarkar et al. designed a decentralized ‘hint’-based coop-
erative caching protocol that removed the need for central-
ized control at the server and significantly reduced the over-
head of centralized coordination [11]. Instead of consult-
ing a central manager to locate requested blocks at remote
clients, the protocol uses its own hint to explore the cooper-
ative cache directly. In the hint-based system, the first copy
of a block to be cached by any client is designated the mas-
ter copy. The notion of master copy is similar to that of the
singlet in N-Chance. To avoid redundancy, only a master
copy may be forwarded to a peer client. Any client that has
forwarded a master copy will update its own hint to show
where the block was sent. If that client later seeks to re-
trieve the block it will follow the path indicated by the chain
of hints to reach the block; if a client without a hint for the
block is reached, the request is sent to the server. Like GMS
this scheme relies on the age information from peers to se-
lect the target with the oldest block for forwarding. How-
ever, it does not consult a central manager for the age infor-
mation. Instead, it uses a mechanism called best guess re-
placement, where each client maintains a local oldest block
list that contains what the client believes to be identities and
locations of the oldest blocks of each client. When a block
is forwarded from one client to another, both clients ex-
change the age information of each of their current oldest
blocks, thus allowing each client to update its own list. Our
LAC protocol uses similar hint and best-guess techniques to
achieve low overhead and scalability. However, we do not
use age for a target client selection. Instead, we use reuse
distance to make a more effective selection.

2.2. Related Work on Reuse Distance and Locality

Reuse distance has been widely used in recent years to
characterize data access locality and to improve program ef-
ficiency, CPU cache management, and buffer cache man-
agement. For example, reuse distance is used to analyze
program locality and its access characteristics [4]. It is used
to enhance the locality of programs [15]. Reuse distance can
also help improve CPU cache performance [5]. The LIRS
buffer cache replacement algorithm, based on a reuse dis-
tance analysis, has been proposed to effectively overcome
the performance disadvantages of LRU replacement [8].
Reuse distance has also been used to improve virtual mem-
ory replacement using the CLOCK-Pro policy [7]. All of
the work shows that reuse distance is a powerful and effec-



tive measure for characterizing access locality for improv-
ing performance.

Reuse distance has also been introduced into the man-
agement of hierarchical multi-level caches in a client-server
system using a protocol called Unified Level-aware Caching
(ULC) [9]. There are two major differences between the
ULC protocol and the LAC protocol presented here. First,
the caches being managed have different structures. ULC
manages a hierarchy of caches such as client cache, server
cache, and RAID disk cache, while LAC manages client
caches at the same level. In more detail, the caches in ULC
form a tree structure with no breadth-wise communication,
while the cache structure in LAC is effectively flat and di-
rectly uses breadth-wise (peer to peer) communication. Sec-
ond, the concerns differ. In the tree-like structure, all the
block requests go through the clients before they reach the
server, and all fetched blocks go through server before they
reach clients, so there exists client filtering issue to address
to improve server caching performance. In the latter, all of
the caches are at the same level so there is no inherent in-
teraction between them. LAC addresses the problem of how
to balance cache utilization in this latter regime to improve
overall system performance without introducing undue in-
terference among clients.

3. A Locality-Aware Protocol

Our LAC cooperative caching protocol is built on an ef-
fective locality measure. We use block reuse distance to de-
termine access locality. Both local caching and cache space
sharing among clients are locality-conscious. That is, only
those blocks with relatively weak locality in a client are for-
warding candidates, and only those candidates with rela-
tively strong locality evaluated from the view of the target
client are allowed to be forwarded to it.

We first describe locality characterization on a sin-
gle client. We then describe how to make the local-
ity strength characterized at each client comparable across
all the clients. Next we describe how a block is for-
warded based on consistent locality characterization. Last
we describe how a block is located.

3.1. Locality Characterization at One Client

We use an LRU stack to facilitate locality characteriza-
tion by tracking reuse distance. The LRU stack is a fixed-
size data structure used in the implementation of LRU re-
placement. In LRU replacement, a block is pushed onto the
top of the stack when the block is accessed, and is removed
when if it reaches the bottom and another block is pushed
onto the top.1 If not reused, a block will move down in the
stack as new blocks are accessed. Thus the distance of a

1 In practice only the metadata of a block is stored in the stack. For sim-
plicity we do not make the distinction in our descriptions.

block from the top of the stack defines its age or recency—
how many distinct blocks have been subsequently accessed.
The LRU algorithm relies solely on recency for its replace-
ment decision: the block with the largest recency is the can-
didate for replacement.

The LRU stack can be used to measure reuse distance.
When a block in the stack is accessed, its recency represents
its reuse distance—the time between its last access and the
current access. If a block is accessed for the first time and is
not in the stack the reuse distance is taken to be infinite.

The problem with using reuse distance as a measure of
locality strength is that a reuse distance becomes outdated
after it is collected. For example, suppose block A is ac-
cessed when its recency is 5, then its reuse distance is 5.
Following that, suppose there are 6 other distinct blocks ac-
cessed. Then block A has a recency of 6 but the last reuse
distance is still 5. Its current recency is a better measure of
the true locality strength. Thus, in fact, after a block is ac-
cessed and placed back into the stack top its current recency
is the better indicator of its locality strength.

The purpose of evaluating locality strength at the time
a block is accessed is to determine whether it should be
cached in the local client or be a forwarding candidate. We
therefore compare the reuse distance of the currently ac-
cessed block with the largest recency of the cached blocks.
If the reuse distance is smaller, the block joins the group
of blocks regarded as having a strong locality. Otherwise it
goes into the pool of forwarding candidates. Using the LRU
stack the comparison is simple and efficient.

We manage the metadata of accessed blocks in the same
way as the LRU replacement algorithm does. However,
blocks are allowed to leave the cache while their metadata
is still in the stack. We refer to those metadata as shadow
blocks. We also maintain a small LRU stack as a pool to
hold the forwarding candidates.

For clarity we use two examples to show how the local-
ity strength of an accessed block is evaluated and how a for-
warding candidate block is identified. Figure 1a shows three
types of blocks in the LRU stack: cached blocks, which have
been evaluated as having strong locality and thus are resi-
dent in the cache; forwarding candidate blocks, which have
weak locality and are ready to be forwarded; and shadow
blocks, which have left the cache and but are kept in the
stack for the purpose of calculating reuse distance. When
block G is accessed, its recency is R1. So its new reuse dis-
tance is R1. We need to make a decision whether the block
has strong locality by comparing its reuse distance with that
of the block with largest recency, which is block F. Because
G is originally below F in the stack, its reuse distance is
larger than the recency R2 of block F. So G is deemed as
a weak locality block and is sent to the forwarding candi-
date pool. Note that its metadata is moved to the stack top,
as the LRU replacement algorithm does, to measure its next
reuse distance. Because the access to block G is a miss, a
block (block C) in the forwarding pool is selected for re-
placement. The locality strength of each forwarding candi-
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date is recorded. In this case the value of the strength for
block G is its reuse distance R1. The result of the access to
block G is shown in Figure 1b.

Figure 2a shows a different case, where accessed block D
has a reuse distance R1 that is smaller than the recency R2

of block F, which has the largest recency among the cached
blocks. So block D is deemed a to have strong locality and
is cached. Because the cache capacity is fixed, block F is de-
moted as a forwarding candidate. Its locality strength is set
to its recency R2. The result of the access to block D is
shown in Figure 2b.

In summary, by judicious use of reuse distance and re-
cency to define a locality measure, we can dynamically de-
termine which blocks have strongest locality and should be
cached, and which are candidates for forwarding.

3.2. Making Locality Comparable across Clients

While we are able to quantify locality at a particular
client, the measure is only relative to the blocks accessed by
that client, are not comparable between clients. This is be-
cause the time is measured by local block access events, not
real time. Using these locality strength values for forward-
ing could cause blocks with weak real-time locality to re-
place blocks with strong real-time locality in other clients.

To address the issue, we use a global timing mechanism.
Instead of relying on the server to collect and broadcast tim-
ing information, we let the clients themselves synchronize
with each other to avoid the potential server bottleneck. The
synchronization is made on a variable time unit we refer to
as an epoch. Each client maintains an epoch counter with
the same starting value at each client; this value will remain
synchronized across clients. Additionally, each client main-
tains an epoch timer, a count-down timer initialized with a
prescribed starting value, the epoch threshold. Each time a
block is accessed at a client, the value of the epoch counter
is assigned to the block and the epoch timer is decremented.

There are two events that end an epoch at a client. One is
that its local timer expires (becomes zero). The client then
increments its epoch counter by one and broadcasts a mes-
sage containing the new epoch number to all other clients,
instructing them to terminate their epochs. The other event
that ends an epoch at a client is when a client receives such
a message from another client before its own timer expires,
and the epoch number in the message exceeds the client’s
own. In this case the client increases its epoch counter to
match that in the message. In both cases the client starts
a new epoch by resetting its timer to the epoch threshold.
Thus the length of the epoch for all clients is determined by
the client that makes the the most frequent block accesses in
real time. Figure 3 shows an example of the accessed blocks
at different clients grouped by common epoch number.

Next we observe that the epoch number of a block ap-
proximates its recency, reuse distance, and locality strength,
and are comparable across clients. For the purpose of com-
paring locality between clients for making forwarding deci-
sions, the finer distinctions are unnecessary: simple compar-
ison of epoch numbers is sufficient. In the example shown
in Figure 3, all the three blocks of client A in epoch n have
a recency of 2 because the stack-top blocks of client A have
epoch number n + 2. If one of those three blocks were then
accessed it would generate a reuse distance of 2.

3.3. Forwarding Blocks among Clients

To forward a block from a local cache to a remote cache
it is desirable to choose the least-loaded client as the for-
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number of forwarding candidate blocks.

warding target. There are two considerations, namely how
to evaluate the utilization of the client cache; and, how to
make the utilization information available to other clients.

Again the epoch number makes this comparison possi-
ble. Because the epoch numbers of the cached blocks repre-
sent their locality strengths, we use the smallest epoch num-
ber (least locality strength) associated with a cached block
in a client to represent the utilization of the client.

The example shown in Figure 3 helps explain the ra-
tionale of this choice. In the figure there are three clients,
A, B, and C, with their recently accessed blocks ordered in
their respective LRU stacks. The blocks in different epochs
(epochs n, n + 1, and n + 2) are separated by dotted lines.
The utilization values of clients A, B, and C are n, n, and
n+2, respectively. Client A is active and has many accesses.
However, most recently accessed blocks have weak locality.
They leave the cache soon after they are accessed and be-
come shadow blocks in the stack. Then the epoch numbers
of the cached blocks become relatively large. Even though
they are still strong locality blocks locally, their locality be-
come weak relative to the cached blocks in client C. Ac-
cordingly, the cache utilization of client A is deemed low.

Next we consider client B. It does access its strong local-
ity blocks, so its recently accessed blocks are cached. How-
ever, it is less active than client C, which can be observed
from the small number of blocks in the recent epochs. Ei-
ther accessing the weak locality blocks in client A or be-
ing inactive in client B causes the spaces held by the cached
blocks to be underutilized. Comparatively, client C actively
accesses its cached blocks, making its cache spaces more
fully utilized. Note that utilization is a relative metric. For
example, if all three clients are inactive, the epoch counter

will be updated slowly. Then the cache utilization of block
B would be considered high.

To make cache utilization information available to other
clients we adopt an approach similar to the one used in the
hint-based protocol [11]. Each client maintains a list of what
it believes to be the current cache utilization value of each
of the other clients. The list is sorted by utilization value.
A forwarding candidate is then forwarded to the client that
has the smallest utilization value in the list if the locality
strength value of the candidate block is smaller than the uti-
lization value (both values are represented by epoch num-
bers). Otherwise, the block is discarded. To maintain the ac-
curacy of the utilization information stored at each client,
we allow two clients to exchange their utilization values
when one client forwards a block to the other. However, the
local utilization at a client could be stale. So the target client
could see a forwarded block with its utilization lower than
the client utilization. It that case it will abort the forward-
ing.

3.4. Locating Blocks among Clients

To reduce the control message overhead we use hints to
locate blocks in remote clients [11]. Whenever a client suc-
cessfully forwards a block to another client, it records the
target client as the location hint for that block. The next
time a client attempts to retrieve the block, it will follow the
hints to reach the remote copy.

4. Performance Evaluation and Analysis

We compare LAC with two representative cooperative
caching protocols: N-Chance and Hint-Based, as well as
Baseline cache management where cooperative caching is
not used. We use trace-driven simulations for the evaluation.
Our simulator tracks the status of all accessed blocks, mon-
itors the requests and block hits/misses seen at each cache
client and server. We assume 8 KB cache block. In the ex-
periments we only consider reads and assume asynchronous
writes. The epoch size threshold is set at 50 by default.

We use three large-scale real-life traces to drive the sim-
ulator:

1. httpd was collected on a 7-node parallel web-server
at University of Maryland [12]. The size of the data
set served was 524 MB which is stored in 13,457 files.
The collection was conducted over 24 hours. A total
of about 1.5M HTTP requests were served, delivering
over 36GB of data.

2. db2 was collected at University of Maryland by an
eight-node IBM SP2 system running an IBM DB2
database that performed join, set, and aggregation op-
erations [12]. The total data set size was 5.2GB and
was stored in 831 files. The total execution time is
7,688 seconds.
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Figure 4. Hit rate breakdowns for the four protocols
(Baseline, N-Chance, Hint-Based, and LAC) on the the three
workloads (httpd, openmail and db2).

3. openmail was collected on a production e-mail sys-
tem running the HP OpenMail application for 25,700
users, 9,800 of whom were active during the hour-long
trace [14]. The system has 6 HP 9000 K580 servers
running HP-UX 10.20. The size of the data set ac-
cessed by all six clients was 18.6GB.

We present hit rates as well as average block access times
resulted from the simulations. In calculating the average ac-
cess times, we assume a 0.02ms for a local block access,
0.2ms for access to a remote client cache or a server cache,
and a 5ms for a disk block access. While these values are
not specific to any particular system, their relative magni-
tudes are representative of current technology and do not
qualitatively affect the conclusions drawn by comparing the
relative performance of the different protocols.

Because of the widely different working set sizes of the
access streams of the traces, we adjust the client cache sizes
to capture the differences in behavior of the protocols.2

Specifically, the cache sizes of each client for httpd, db2,
and openmail are 80MB, 400MB, and 800MB, respectively.
The server cache size is set at half of the total client cache
sizes.

We run the four protocols (Baseline, N-Chance, Hint-
Based, and LAC) on the three workloads (httpd, openmail,
and db2), and present their general performance results.
Figure 4 shows a breakdown of hit rates (local hit rate, re-
mote client hit rate, and server hit ratio) for each protocol
on each workload. Accordingly, Figure 5 shows the break-
downs of the average block access times. To clearly show
the results for all the workloads, we normalized the access

2 For example, for repeated sequential access of a file, there would be
no insight to be gained by making client caches as large or larger than
the file itself.
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Figure 5. Average block access time breakdowns for
the four protocols (Baseline, N-Chance, Hint-Based, and LAC)
on the the three workloads (httpd, openmail and db2).

times to the time of the baseline protocol in Figure 5. From
the figures we make the following observations.
(1) LAC demonstrates a significant performance improve-
ment over Baseline. Its performance advantage is most
obvious in the cases of weak locality. For example, be-
cause openmail and db2 have weak localities,3 their hit
rates in Baseline are especially low (9.9% for openmail
and 11.6% for db2), causing greatly increased block ac-
cess times (4.5ms for openmail and 4.4ms for db2). LAC
is able to significantly increase their hit rates: to 38.2% for
openmail, and to 38.5% for db2, with concomitant reduc-
tion in their block access times: 31.0% for openmail and
29.8% for db2. The ability of LAC to effectively handle
weak locality is especially important for a workload with
many accesses of use-once data: because LAC can discard
the blocks quickly without forwarding because of their infi-
nite reuse distance, other protocols might allow these blocks
to be forwarded among clients several times before they are
finally discarded. For the strong locality workload httpd, a
significant reduction in the block access time is observed
with LAC (reduced by 20.3%) though the hit rate increase
is small (from 90.5% to 92.6%): this is a consequence of
the large latency gap between disk and memory accesses.
The performance improvements are largely attributable to
client cache sharing and the more effective management of
local cache by using reuse distance. This is evidenced by
the growth of the bars for local hit rate and remote client hit
rate in Figure 4.
(2) While N-Chance and Hint-Based perform better than
Baseline, there is a conflict between local caching and space

3 Detailed analysis of the localities of the chosen traces shows that most
client caches have the hit rates less than 20% until the cache sizes in-
crease to 1000MB for openmail, and to 600MB for db2, and that httpd
has strong locality [14].



sharing among clients which limits the performance poten-
tial of cooperative caching. When we carefully compare the
hit rates between N-Chance (or Hint-Based) and Baseline,
we observe that the local hit rates of both N-Chance and
Hint-Based are lower than those of Baseline for all three
workloads. Even though the losses of local hits are com-
pensated by the remote client hits, and the total hit rates
are actually increased, this is undesirable and degrades per-
formance for two reasons: (1) the latency to access local
cache and remote caches is non-uniform; and, (2) some
clients could experience unnecessarily interference because
parts of their working sets are forced out by the forwarded-
in blocks. This interference is effectively removed in LAC
because LAC uses reuse distance to quantify locality and
makes a comparison with the cache utilization of the target
client before it decides to cache a block. Only those blocks
with relatively strong locality are forwarded, and only truly
weak locality blocks leave the cache by forwarding. This
is in contrast with the other two protocols that use age in-
formation, which allows weak locality blocks to ‘dilute’ the
target cache and to lower its utilization.
(3) A large server cache (half of total client cache sizes in
our experiments) does not help much in increasing the hit
rates, possibly counter-intuitively. Careful examination of
the cached blocks in the server reveals that this is because of
redundant caching between the clients and the server—most
blocks cached by the server are also cached by clients. The
low server cache utilization has been dealt with in client-
server protocols such as ULC [9, 14]. Even if the server
cache issue were effectively addressed, it would not reduce
the demands on cooperating caching at the client side be-
cause of its good scalability and the server performance bot-
tleneck concern.

5. Conclusions

We have presented a novel cooperative caching proto-
col based on the effective evaluation of block locality and
cache space utilization. It overcomes the weaknesses of ex-
isting protocols in selecting the blocks to forward and of
the clients’ choice to accept the blocks. The real-life trace-
driven simulations show significant improvements over ex-
isting representative protocols.

In the experiments with real-life workload traces, we
show that LAC can reduce block access time by up to 31.0%
with an average of 27.1% over the system without peer
cache cooperation, and reduces the time by up to18.6%,
with an average of 14.7%, over the best performer of the ex-
isting schemes, in both cases using local memory, remote
memory, and disk access times with relative magnitudes
representative of current technology. In addition, the LAC
protocol implements judicious cache sharing in the coordi-
nation management, while the existing schemes cause ex-
cessive interference among peer clients, which is highly un-
desirable in a resource sharing system, and so heretofore a

strong argument against the use of cooperative caching.
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