
STEP: Sequentiality and Thrashing Detection Based Prefetching

to Improve Performance of Networked Storage Servers

Shuang Liang1, Song Jiang2, and Xiaodong Zhang1

1Dept. of Computer Science and Engineering 2Dept. of Electrical and Computer Engineering
The Ohio State University Wayne State University

Columbus, OH 43210, USA Detroit, MI 48202, USA
{liangs,zhang}@cse.ohio-state.edu sjiang@eng.wayne.edu

Abstract

State-of-the-art networked storage servers are equipped
with increasingly powerful computing capability and large
DRAM memory as storage caches. However, their contribu-
tion to the performance improvement of networked storage
system has become increasingly limited. This is because the
client-side memory sizes are also increasing, which reduces
capacity misses in the client buffer caches as well as access
locality in the storage servers, thus weakening the caching
effectiveness of server storage caches. Proactive caching
in storage servers is highly desirable to reduce cold misses
in clients. We propose an effective way to improve the uti-
lization of storage server resources through prefetching in
storage servers for clients. In particular, our design well
utilizes two unique strengths of networked storage servers
which are not leveraged in existing storage server prefetch-
ing schemes. First, powerful storage servers have idle CPU
cycles, under-utilized disk bandwidth, and abundant mem-
ory space, providing many opportunities for aggressive disk
data prefetching. Second, the servers have the knowledge
about high-latency operations in storage devices, such as
disk head positioning, which enables efficient disk data
prefetching based on an accurate cost-benefit analysis of
prefetch operations.

We present STEP – a Sequentiality and Thrashing dEtec-
tion based Prefetching scheme, and its implementation with
Linux Kernel 2.6.16. Our performance evaluation by re-
playing Storage Performance Council (SPC)’s OLTP traces
shows that server performance improvements are up to 94%
with an average of 25%. Improvements with frequently used
Unix applications are up to 53% with an average of 12%.
Our experiments also show that STEP has little effect on
workloads with random access patterns, such as SPC’ Web-
Search traces.

1 Introduction

Motivation. The fast growth of data resources has made
networked storage servers very useful for the ease of mass
on-line data storage and management. According to a sur-

vey of 260 businesses with more than 500 employees dis-
closed in a Business Insight storage market research re-
port [2], enterprises are adopting networked storage at the
cost of directly attached models because of the growing
storage requirements; and a majority of enterprises both in
the United States and Europe have either installed a stor-
age area network (SAN), or are considering doing so. This
trend demands strong system support for networked stor-
age servers to facilitate efficient data accesses in such dis-
tributed environments.

In a typical storage area network (SAN), file system and
storage devices are separated by networks. The file sys-
tem in each storage client coordinates requests from mul-
tiple clients and accesses data blocks in storage devices
connected to shared storage servers. Storage servers are
resource-rich systems equipped with powerful CPUs and
large memory as storage caches (usually 0.05% − 0.2% of
the storage capacity in commercial storage systems [10]).
In this networked storage architecture, there are at least two
levels of buffer caching: buffer caching in each client (first
level, or L1 caches), and storage caching in the storage
server (second level, or L2 caches). In addition, plentiful
CPU cycles are also available at the storage server for net-
work and storage protocol processing.

The second level (L2) caches in storage servers play im-
portant roles in data access performance of clients. How-
ever, studies have shown that storage traffic exhibits much
longer reuse distances (the number of distinct accesses be-
tween two consecutive accesses to the same block) at the L2
level due to the existence of the L1 buffer caches in clients,
weakening the caching effectiveness of the L2 cache. With
a continuous increase of memory capacity in clients, this
reuse distance is expected to keep growing accordingly at
the L2 level, which can lead to a lower utilization of storage
caches. Our simulation results1 using production-level stor-
age system traces from Storage Performance Council (SPC)
also demonstrate that the storage cache miss rate would not
be reduced by keeping increasing cache capacity beyond a
relatively small size. For two OLTP traces and one Web
search trace, the miss rates of the three workloads flatten at

1Due to the space limit, the graph illustrating the results cannot be fitted
in here. Please refer to [15] for details.

28%, 52%, and 63%, respectively, with a cache size of 512
MBytes.

In face of this problem, previous studies on storage
caches have either focused on improving the replacement
algorithms to adapt to the weakened temporal locality, such
as MQ algorithm [27], or focused on making multi-level
caches exclusive, such as demotion based placement [25],
eviction-based placement [27], ULC [11], Karma [26] and
X-RAY [1]. The effectiveness of these caching-based stud-
ies can be limited in practice, because cache hit ratios in
storage servers would continue to decrease for two main
reasons. First, as buffer cache sizes in clients increase, the
access locality in server caches is further weakened. Sec-
ond, the increasingly large server cache capacity is not well
utilized due to mainly conducting passive caching in stor-
age servers. Effective prefetching is largely a missing com-
ponent in storage servers, which can potentially improve
data access performance and storage resource utilization.
However, prefetching decisions must be made correctly
and timely based on access patterns and data access costs.
Specifically, we target two performance- and cost- sensitive
access patterns: sequential and thrashing access patterns in
disks. Sequential access pattern from a single request se-
quence has been well handled by existing prefetching tech-
nique. In contrast, we target on detecting and prefetch-
ing sequential accesses from multiple sequences of requests
that are common execution patterns in practice. Prefetching
to-be accessed data with thrashing access patterns in disks
would significantly reduce the delay of data accesses in net-
worked storage servers. We will address several technical
issues in order to enable detection and prefetching of these
two important types of data accesses.

Main Ideas. We propose a Sequentiality and Thrash-
ing dEtection-based Prefetching scheme (STEP) to aggres-
sively prefetch disk data based on cost-benefit analysis for
two typical storage access patterns: sequential access pat-
terns and disk thrashing patterns. In the sequential data ac-
cess pattern, blocks are accessed contiguously; in the disk
thrashing pattern, blocks are accessed alternatively in multi-
ple neighborhoods concurrently, which causes frequent disk
head movements among them. We detect these two patterns
from the intermingled request sequences received by stor-
age servers. By maintaining access statistics in prefetching
contexts for these patterns, we are able to keep track of per-
pattern history information and support effective prefetch-
ing decisions based on cost-benefit analysis. We design a
new cost-benefit analysis model, which takes each prefetch
context as input and generates aggressive yet appropriate
prefetch requests.

STEP focuses on critical system bottlenecks. It opti-
mizes performance based on storage server’s high-latency
disk access operations such as disk seeks, and frequent ac-
cess patterns such as sequential accesses. By identifying
access patterns of high cost-benefit ratio using our analysis
model, aggressive prefetching will be applied appropriately
to hide disk access latency and reduce the number of expen-
sive disk operations. STEP combines client access seman-

tics (request sequentiality) with low level device operation
awareness (high overhead of disk thrashing) by taking ad-
vantage of storage server’s unique strength of being able to
detect both patterns and to afford the analysis costs, yet it
remains simple to be implemented.

Contributions. We have made the following contribu-
tions in this work. First, very limited studies have been
done on prefetching in storage servers. Through the im-
plementation based study, we have shown that significant
performance improvements can be achieved by our pro-
posed storage server prefetching scheme – STEP. Second,
we have proposed a new cost-benefit analysis model using
access history, disk access costs, and data access locality.
Third, we have proposed a method to detect disk thrash-
ing – a common phenomenon that severely degrades stor-
age system performance, yet is not explicitly detected and
prevented in existing systems. Finally, we have proposed a
method to detect sequential accesses from pseudo-random
access patterns received by storage servers due to the inter-
mingled accesses from multiple clients.

We have implemented STEP on Linux 2.6.16 and eval-
uated our implementation by replaying production-level
traces from Storage Performance Council (SPC) [23] and
running several widely used Unix applications. The results
demonstrate that significant performance improvements can
be achieved with STEP. The comparisons with Linux’s de-
fault prefetching scheme and several heuristics show that
our system improves the performance of the OLTP work-
load by up to 94% with an average of 25%. Improvements
with frequently used Unix applications are up to 53% with
an average of 12%. As we expected, random workload per-
formance has remained roughly unchanged compared with
other schemes including Linux. In addition, the results also
show that in average only 2.8% of additional CPU cycles
are used in our system compared with the original Linux
system.

2 Background and Related Work

I/O prefetching has been an active research topic since
the early days of computer systems. As the technology
trend allows CPU speed and memory/storage capacity to
scale up, leaving I/O speed far behind to keep up with, I/O
prefetching will continue to be important [16, 7].

Prefetching based on sequential access patterns is a
conventional wisdom in file systems and database sys-
tems [22, 21]. However, previous prefetching approaches
have mainly remained conservative for the high penalty of
miss predictions such as waste of precious disk bandwidth,
cache pollution, and premature eviction of prefetched
blocks [16]. At the storage level, sequential prefetching
is mostly device oriented, which operates only according
to the physical data layout. Recently, SARC and AMP
were proposed to manage prefetching memory for sequen-
tial prefetching in storage servers, which focused on bal-
ancing cache allocation between random and sequential ac-

cesses and among multiple sequential streams [8, 9]. Most
recently, system DiskSeen has been proposed to study his-
tory based block-level sequential prefetching in stand-alone
systems [6]. Unlike these studies, STEP prefetches for
sequential accesses by maintaining access history using
prefetch contexts, which provides more accurate informa-
tion to make prefetch decisions.

Enhanced I/O interface allows accurate semantic in-
formation to be passed from applications to systems for
prefetching. Cao et al. [5] used application-controlled
prefetching and caching for file systems. Patterson
et al. [17] proposed an enhanced API to pass information
(hints) to operating system for prefetching and caching cost-
benefit analysis.

Predictive prefetching approach does not require
application-provided hints, which allows an easier deploy-
ment for a wider range of applications. At logical level,
Brown et al. [4] used locality analysis to generate prefetch
requests with the assistance from compiler. By tracing file
access relationship, Lei et al. [13] used file access tree and
dynamic pattern matching for file prefetching. At block-
level, Li et al. [14] used data mining techniques to find
block correlation on storage server to direct prefetching.

Due to the semantic gap for storage servers [1], prefetch-
ing for storage servers must take a predictive approach using
only block-level access history. Focusing on critical perfor-
mance bottlenecks, STEP targets frequently used and high-
cost access patterns: sequential access patterns and disk
thrashing patterns. Based on a new cost-benefit analysis
model, STEP issues aggressive yet cost-effective prefetch
requests.

3 Detection-Based Prefetching Management

STEP is based on sequentiality and disk thrashing detec-
tion. In this paper, we define a block address range with
good spatial locality on disk as a neighborhood. When
accesses to a neighborhood are significantly interleaved
with accesses to other neighborhoods, we call it a thrash-
ing scenario. Sequentiality describes the contiguousness
of accessed data. An access pattern has so-called high-
confidence sequentiality if it has a long sequential access
length and high prefetch hit ratio – the ratio at which
prefetched blocks are actually demanded by clients and hit
in the storage cache. In contrast, a sequential access pattern
is of low-confidence sequentiality when it has short sequen-
tial access length or large length but low prefetch hit ratio.
And we call the accesses within a sequential pattern a se-
quential stream.

3.1 Pattern Detections

Storage devices, including single disks and storage ar-
rays, expose their storage capacity as a large linear block
array to storage clients. Logical Block Address (LBA) is
used as address to reference this block array. When LBA
is mapped to physical disk geometric address by a drive’s
internal algorithm, spatial locality is preserved as best as
possible [20, 12]. Therefore, file systems generally map

logically sequential blocks to continuous LBAs to optimize
access performance. This allows us to detect logical se-
quential accesses using LBA. At the same time, this spatial-
locality-preserving property also enables us to use LBA to
estimate disk access cost for thrashing detection.

3.1.1 Detecting Sequentiality

An effective way to detect sequential patterns is to maintain
recent access history. Upon a new request, the system refers
to the history to decide if it is within a proximity of the last
access to determine sequentiality.

In order to separate sequential streams from intermingled
pseudo random request sequence, STEP uses a Prefetch
Context (PC) to represent the run-time object associated
with each detected sequential stream. Each PC includes
attributes that describe this stream, such as the most re-
cently requested and prefetched addresses, the total se-
quence length of the stream and the stream’s recent prefetch
hit ratio. A PC also keeps a small number of records for
recent requests in this stream for prediction of the next re-
quest, e.g. recent requests’ lengths and timing intervals. Fi-
nally, a PC contains pointers for maintaining itself in dif-
ferent data structures such as indexing trees and PC queues.
Overall, the PC occupies only several tens of bytes. When a
new request comes, the request address is compared against
the most recent prefetch addresses of the existing streams to
see if it extends any of them. If an extension is found, the
total sequence length of the stream is increased by current
request’s length. Then statistics of this stream are updated
with attributes of this new request. To track the effective-
ness of our prefetching scheme, we also update the prefetch
hit ratio based on whether current request can be fulfilled
from storage cache. If the new request cannot extend any of
the PCs, then a new PC is created for it.

The key issue for the algorithm to work is to design an
efficient data structure to locate existing PCs and purge out-
of-date PCs. Without proper management, a large number
of PCs may be created and kept for non-sequential requests,
which increases the overhead of locating relevant PCs and
the memory consumption on data structures. To overcome
the problem, we index the PCs using a balanced tree and
bound the number of active PCs with a purging process
running in background to delete useless PCs including both
obsolete sequential ones or non-sequential ones. Since the
number of active sequential sequences during a certain pe-
riod of time is limited, only a reasonably large access his-
tory window is needed to identify and maintain those active
sequential streams.

As shown in Figure 1, the algorithm for purging oper-
ates on three PC queues: high-confidence, low-confidence
and new queues. PCs are managed within these queues us-
ing promotion and demotion policies. Each time when a PC
is created, it is added to the new queue. As PC’s sequen-
tiality and prefetch hit ratio increases, it is promoted into
the high-confidence queue. If the prefetch hit ratio of PCs
in the high-confidence queue drops below a threshold, it is
demoted to the low-confidence queue. Each queue is main-

PC PC PC PC PC

High

Confidence

Queue

PC PC PC PC PC

Low

Confidence

Queue

PC PC PC PC PC

New Queue

Increasing Recency

.....................

.........

Indexing Tree

...

Index tree to queue mapping

Figure 1. PC management data structures. Each PC is linked to one of the queues for purging based on recency and sequentiality. Meanwhile, it
is also indexed by a balanced tree structure for efficient lookup.

tained in the order of access recency to facilitate LRU-based
purging within a queue.

When the upper bound of the number of active PCs
is reached, the algorithm purges PCs in batches using
a weighted round-robin algorithm which favors different
queues in the order of new, low-confidence and high-
confidence, so that PCs that are not sequential or not effec-
tive for prefetching are purged earlier than effective prefetch
candidates.

To locate a PC, STEP uses a balanced index tree [24] to
organize all the PCs. The balanced tree ensures that opera-
tions, such as deletion, insertion, and search, can complete
in O(log n) time. Since there is a constant upper bound of
the number of PCs, the indexing and purging process in-
volves only a small overhead.

3.1.2 Detecting Thrashing

For hard disks, disk seek operations between tracks are ex-
pensive. Ruemmler and Wilkes [19] described a model of
modern disks, which breaks seek time into speedup time,
coast time, slowdown time, and settle time. Although disk
drive manufacturers intend to reduce the diameter of disks
for average seek time reduction, the seek latency beyond
around ten cylinders is still of several milliseconds for cur-
rent generation of technology [20]. Within this seek pe-
riod, at least several tens of kilobytes sequential data can be
read from a single drive. Therefore, if the disk head is busy
commuting between different locations, it may cause sig-
nificant performance degradation. Although frequent seeks
are inevitable for some workloads such as random accesses,
thrashing, as defined above, can be effectively alleviated
with better prefetch algorithms to reduce the number of seek
operations.

For thrashing detection, we define neighborhood ac-
cesses as a series of spatially close accesses. For
example, if we have a block access sequence of
20046, 46, 234546, 47, 48, 9848. Then we can group sub-
sequence 46, 47, 48 as neighborhood accesses. To detect
neighborhood accesses, the same algorithm for sequential-
ity detection is used by keeping track of sequential streams.
In general, more flexible detection method other than the
sequentiality detection can be used in this scenario.

For each neighborhood, we track the number of seeks
and the sum of seek distances traveled to serve these ac-

cesses. In the aforementioned example, the distance trav-
eled is |46 − 20046| + |234546 − 46| + |47 − 234546| +
|9848 − 48| = 498799 blocks, and the number of seeks is
4. In real systems, the traced number of seeks and their dis-
tance do not strictly correspond to disk head movement due
to low-level I/O scheduling and on-drive caching. However,
since on-drive cache is small and I/O scheduler only queues
a very small number of requests before issuing them, these
tracked values are qualified estimations of the intensity of
thrashing.

To formulate the intensity of thrashing in each neighbor-
hood, we use a weighted average seek cost that is biased
to recent accesses. In another word, the intensity calcula-
tion gives more priority to recent access patterns to reflect
up-to-date thrashing behaviors.

3.2 Prefetching Model

With the patterns identified to initiate prefetching, we
need to generate prefetch requests of appropriate lengths
and schedule the requests. To design effective algorithms
for such purposes, we create a cost-benefit model to deter-
mine the appropriate length of a prefetch request. We first
discuss the I/O scheduling background, then derive the prin-
ciples for generating prefetch requests based on cost-benefit
analysis. We uses time as metric to measure the cost and
benefit.

3.2.1 Prefetching Cost and I/O Scheduling

The cost of prefetching is the time the system takes to bring
the prefetched blocks into memory. Quantitatively, the cost
of a single prefetch request includes the block transfer time,
as well as, if any, the seek and rotation time for a disk head
to commute to the desired prefetch location and back where
the disk head should have been otherwise. However, the
same cost of prefetching can be perceived differently de-
pending on the workload. For example, when the system is
serving a workload with abundant “think time”, the prefetch
cost perceived by a client can be zero as long as the prefetch
request is scheduled to be overlapped with the think time to
get full prefetch benefit. Given the luxury of time in this
case, cost-benefit analysis is less interesting, as we just need
to predict the next fetch request and prefetch it whenever

disk bandwidth is available during the long interval. There-
fore, we focus on the scenario when the server is kept busy
with little think time, which also applies to the situation of
bursty traffic. In this case, the prefetch cost is largely de-
pendent on I/O scheduling.

Generally, prefetch requests can be scheduled immedi-
ately or delayed with respect to the fetch request that leads
to the prefetch decision. Issuing prefetch requests immedi-
ately following the fetch request has two benefits compared
with delayed issuance where other disk accesses might in-
terleave in between. First, immediate scheduling avoids
additional seek cost, as prefetched blocks follow fetched
blocks. Second, disk drives perform internal prefetching
into their small on-drive cache; immediate scheduling can
pick up those blocks without accessing the disk media. Both
of the above benefits are due to the locality benefits of im-
mediacy. The disadvantage of immediate prefetching is the
longer latency serving the fetch request due to possible re-
quest merges at disk level. However, this can be solved
by issuing the prefetch request asynchronously after the
fetch request is fulfilled. So we choose immediate prefetch
scheduling in our model.

3.2.2 A Cost-Benefit Model for Prefetching

To generate effective prefetch requests, we analyze the cost
and benefit of prefetching based on a model to determine
the appropriate prefetch length. In our model, we consider
block transfer time, block access probability, and disk seek
time. We do not consider rotational time in our model for
two reasons: a) Average rotational time is smaller than aver-
age seek time, and its improvement rates is faster than seek
time with current technology [10]; b) Using asynchronous
prefetching, the prefetch request can cause rotational de-
lay as well if the data is not already in the drive’s cache,
which can be common because with limited resources on
disk drive, it is hard to detect sequentiality from the inter-
mingled server traffic. The following notations are used for
our presentation. ST is the average time for one seek; PT is
the time to transfer the prefetched blocks; P is the probabil-
ity that the prefetched data will be actually requested; and
RT is the time needed to transfer the next request’s blocks
once the disk head is appropriately positioned.

From the server’s perspective, the cost of prefetching
for a (future) request is PT . The benefit has two differ-
ent cases: a) the prefetched length is less than the (actual)
request length, and b) the prefetched length is greater than
or equal to the (actual) request length.

I. For a), the benefit is P ·RT ·Plen/Rlen, where Plen
is the prefetched length, Rlen is the requested length. This
is because if the prefetcher does not retrieve enough bytes
for the next request, a seek is still required, if any, before
reading the missing part due to requests interleaving on the
storage server, thus prefetching only saves the time to trans-
fer the already prefetched part, which is RT · Plen/Rlen.
In this case,

Earning = benefit− cost

= P · RT · Plen/Rlen− PT

≈ (P − 1) · PT.

II. For b), the benefit is P · (ST + RT). In this case,

Earning = benefit− cost

= P · (ST + RT) − PT

≤ P · ST + (P − 1) · PT.

From the formulas, we draw the following conclusions:
1. Prefetching less than the next request length is almost

always a waste for a busy server. In fact, in Case a, the
earning is less than or equal to zero. Therefore, estimating
the future request length conservatively usually is not wise
in this case.

2. As shown in Case b, when a sequential stream is ac-
cessed in an interleaved manner, there is a large prefetching
potential for performance improvement due to seeks. Since
P is reversely proportional to (ST + RT) for a given ben-
efit, even when the probability of a future sequential access
is small, aggressive prefetching can still be beneficial when
the seek time is large. The benefit of aggressive prefetching
is further magnified when a single prefetching request can
cover multiple fetch requests, as the cost of multiple seeks
can be avoided.

3. For aggressive prefetching, the prefetch length should
be bounded according to the probability distribution of the
future sequential request. Roughly, to gain a certain earn-
ing, as the prefetch length PT increases, the prefetch hit
ratio P needs to increase as well.

In summary, when the disk is busy serving requests from
different locations, prefetching aggressively has a large po-
tential for performance improvement. At the same time,
successful prefetching requires a delicate balance between
the probability of a future access and the prefetch length.

3.3 Prefetching Request Generation

With the formulas derived above, we estimate the next
request length RT based on recent request history, and use
a request probability distribution function (pdf) to generate
the optimal prefetch length.

Estimation of Prefetch Request Length. The estimation
of the next request is based on recent history kept in the rel-
evant PC, which stores the last N demanded fetch request
lengths (N is small, e.g. 4). Due to client-side prefetch-
ing/caching and the aggregate nature of block I/O, requests
of a sequential stream received by storage servers are com-
paratively predictable. For example, requests are multiples
of page size; the request length of long sequential streams is
steadily increasing and then stays at constant due to client-
side prefetching. Therefore, prediction with limited history
can be effective in many cases. Therefore, we use the av-
erage gradients of the past N request lengths and the latest
request length to calculate the next one ahead as estimation.

Prefetching Length Decision. Under two circumstances,
we generate prefetching requests: a) detection of a high

(a)PDF for Sequential Workload (b)Reverse PDF for Random Workload

Figure 2. Probability Distribution Function and Reverse Prob-
ability Distribution Functions for Different Workloads. For (a) Z-
axis is the probability. For (b) Z-axis is the prefetching length.

confidence sequential stream; b) detection of a thrashing
condition. For a high confidence sequential stream, we
use its PC’s prefetch hit ratio times the system-dependent
prefetching upper bound to generate prefetching requests.
For thrashing condition, we generate requests aggressively
using Case b described in Section 3.2.2. We define a prob-
ability distribution function (pdf) P (x, y), which takes the
total length x of the past accessed blocks of this sequen-
tial stream and an expected prefetch length y as inputs, and
outputs the probability that the whole length y is to be ac-
tually requested. Generally, this function is monotonically
decreasing on y for a given x. However, depending on the
workload, the decreasing rate varies. Intuitively, the longer
a sequential stream is accessed in the past, the more likely
the following sequential data is to be requested. Further-
more, the more sequential a workload is, the longer a se-
quential stream tends to be. These two observations lead
to the following pdf generation guidelines. We use ex-
ponential functions to approximate pdf for mostly sequen-
tial workload, and linear functions to approximate pdf for
mostly random workload. The coefficients of these func-
tions are tunable and can be determined empirically and
modified as run-time parameters when system workload
changes. The pdf s used in our experiments are shown in
Figure 2.

In order to generate the optimal prefetch length, we ex-
tend the single request formula in Section 3.2.2 to include
multiple subsequent requests. We use PL to represent to-
tal expected prefetch length and use RL to represent the
average estimated length of the subsequent requests. The
earning function E(x, PL) is formulated as follows:

E(x, PL) =

∫ PL

z=0

P (x, z) ·

(

ST · dz

RL
+

dz

BW

)

−
dz

BW
.

In the above function, BW is the disk bandwidth.
P (x, z) · (ST

RL
·dz + 1

BW
·dz) represents the seek and trans-

fer time saved, i.e. the benefit of prefetching; 1

BW
· dz rep-

resents the prefetched data transfer time, i.e. the cost of
prefetching. Thus we are ready to compute, using the re-
verse pdf function, the value of PL to maximize E(x, PL).
We omit the mathematical details.

3.4 Interactions with Caching

Prefetched blocks need to be managed properly to bal-
ance the needs from both caching and prefetching, as well
as to avoid premature eviction, where prefetched data are
evicted before they are actually requested [5].

As shown earlier, cached storage server blocks are less
likely to be reused in the near future. However, based on
pattern detection and cost-benefit analysis, the prefetched
data are of high probability to be beneficial. Considering
a unified cache for both demanded and prefetched blocks,
higher priority should be given to the prefetched blocks
in the cache replacement decision. Instead of designing a
completely new replacement algorithm to achieve the goal,
we advise the cache management to adapt to the differ-
ence of demanded and prefetched blocks. We instruct the
cache management subsystem in kernel to raise the prior-
ity of prefetched blocks before they are requested. Then
when they are actually being requested, the priority is re-
covered to what they should have been to keep a fair status
for cache replacement. This approach is compatible with
any replacement algorithm the server chooses to use due to
its non-intrusiveness in nature.

To further strengthen our approach, we also incorporate
delayed I/O scheduling in our design. In addition to the
estimation of the request length, as described in Section 3.3,
we estimate the fetch time of the next request. For a request
whose estimated fetched time is far into the future, we put
the prefetch request in a delayed queue with a timer for later
scheduling to avoid premature eviction.

Finally, in our choice of PC purging, we consider the
cache usage effectiveness in terms of hit ratio, in other
words, only high hit ratio PCs will be promoted to high se-
quentiality queue to mitigate the chance of being purged.
Therefore streams that utilize cache poorly only prefetch
conservatively and their PCs are purged earlier, which also
helps to balance prefetching and caching.

4 Implementation in Linux Environment

Our prototype implementation is based on Linux 2.6.16
kernel. We have implemented a storage server using NBD
– a network block protocol implementation distributed
with Linux kernel and used in Redhat Global File System
(GFS) [18].

The prefetching management system is implemented as
a dynamic library on top of the raw disk device exposed
by the NBD server. NBD protocol is a client/server proto-
col. NBD client is a pseudo storage device driver on the
storage client to provide access to the storage server, while
NBD server is a user-space storage provider which exposes
the storage capacity of the server. Our choice of dynamic
library as the implementation layer makes the prefetching
functionality transparent to any user-space storage servers
for easy deployment.

On each block read request, our library creates or up-
dates relevant PCs, then it generates corresponding prefetch

requests when appropriate. To interact with the caching sys-
tem, we add new system calls, which instrument the read
and readahead system calls to give our library feedbacks
about the cache status and tune the cache manager to pro-
mote or demote the pages of prefetched block for replace-
ment algorithm.

We also implement a Red-Black tree [24] as the balance
tree in our design to index the PCs. Each PC is linked to one
of the three link lists representing the three PC queues: new,
low-confidence and high-confidence. Each list is main-
tained in the LRU order to facilitate recency-based purging
of victim PCs.

5 Performance Evaluation

5.1 Methodology

The evaluation is conducted by both replaying real pro-
duction storage server traces and running frequently used
I/O intensive applications. Our storage traces are from
Storage Performance Council (SPC) [23], a vendor-neutral
standards body. The traces include both OLTP application
I/O and search engine I/O. The OLTP trace is mainly se-
quential, while the web search trace is random. We filter
the traces to retrieve read requests and divide resulting re-
quests into smaller trace files based on the Application Spe-
cific Unit(ASU). For application benchmarks, we use three
frequently used Linux applications: cscope, tar, and diff.
Cscope is a source code browser. It builds a cross-reference
database from a set of files for the indexing purposes. We
test the database build time as a benchmark for storage
server performance. Tar is a widely used Unix utility. We
benchmark the tar ball creation time of a large source tree.
Finally, diff is used for generating software patches. We
benchmark the time of generating the patch for the kernel
upon which STEP runs.

To demonstrate the effectiveness of our design, we com-
pare STEP with Linux’s prefetching scheme, as well as sev-
eral other heuristics to illustrate the benefits. Linux has
a prefetching mechanism for raw devices. For sequential
accesses, it adaptively grows the prefetching window to a
tunable upper bound, which is 128K by default [3]. We
also compare with several other heuristics: Conservative
prefetches the next estimated request only; Benefit Bounded
Risk bounds the prefetch risk according to the advantage
a stream has taken. More specifically, it tracks the total
prefetch hit length of each PC and generates prefetch length
using a percentage of this total benefit length; Sequential
Aggressive prefetches aggressively for high confidence se-
quential streams using prefetch upper bound times the past
prefetch hit ratio on a cache hit.

None of the three schemes detect thrashing and prefetch
based on cost-benefit analysis. Thus clients only have the
advantage of prefetching for interleaved sequential streams
with different degrees.

5.2 Experiment Platform

The experiments are conducted on an Intel Xeon 2.4GHz
cluster. Each node has 1GB memory and 64 bit PCI-X 133
MHz bus. All nodes are connected to a 100Mbps fast Ether-
net as well as an InfiniBand network. Each node is equipped
with two 18GB 15K RPM SCSI disks and two 40GB 7.2K
RPM, ATA/100 disks. We create a level-one software RAID
using the two SCSI disks for the experiments. To compare
the technology impact, we also test with one of the ATA
disk for some of the experiments. The operating system is
Redhat Linux AS4.

We evaluate our design using different system configu-
rations to exclude device-specific performance issues. The
experiments are done with both local and networked storage
scenarios so as to illustrate the performance issues caused
by network connections. For local test scenarios, we test
with both IDE disk and SCSI disk array to demonstrate that
the design is not device specific. For the network storage
scenario, one node is set up as the storage server, which ex-
poses the SCSI software RAID as block device using NBD.
However, due to the space limit for the presentation, we can
only show part of our experimental results, more details can
be found at [15].

5.3 Results

The following notations are used for simplicity of pre-
sentation in all test scenarios. PM-TA stands for STEP; PM-
SA, PM-BB, and PM-CON stands for sequential aggressive,
benefit bounded risk, and conservative schemes, respec-
tively. For comparison with Linux’s prefetching scheme, we
test Linux with different prefetching thresholds. RA# repre-
sents the upper bound Linux uses for block-level prefetch-
ing in the kernel. For SPC trace tests, we randomly choose
three of the processed trace files from each of the two work-
load types and use OLTP[1-3] and Web[1-3] as labels.

5.3.1 Local Storage Server Tests

0

10

20

30

40

50

60

70

80

90

100

OLAP.1 OLAP.2 OLAP.3 WEB.1 WEB.2 WEB.3

T
im
e
(s
)

Linux-RA0

Linux-RA256

Linux-RA1024

PM-TA

PM-SA

PM-BB

PM-CON

0

5

10

15

20

25

30

35

40

OLAP.1 OLAP.2 OLAP.3 WEB.1 WEB.2 WEB.3

T
im
e
(s
)

Linux

PM-TA

PM-SA

(a) IDE disk (b) Local Software RAID

Figure 3. Local storage server performance test with different
prefetching strategies and workloads

Figure 3 (a) illustrates the IDE disk results comparing
the total execution time of different SPC traces. The re-
sults show that PM-TA performs best among all schemes
for the sequential OLTP workloads. The performance im-
provements range from 38% to 117%. For the random Web-

0

5

10

15

20

25

30

RA-0 RA-256 RA-

1024

RA-0 RA-256 RA-

1024

T
im
e
(s
)

Linux

PM-TA

PM-SA
100Mbps

1.3Gbps

0

5

10

15

20

25

30

RA-0 RA-256 RA-

1024

RA-0 RA-256 RA-

1024

T
im
e
(s
)

Linux

PM-TA

PM-SA

100Mbps

1.3Gbps

0

5

10

15

20

25

30

35

RA-0 RA-256 RA-

1024

RA-0 RA-256 RA-

1024

T
im
e
(s
)

Linux

PM-TA

PM-SA100Mbps

1.3Gbps

(a) OLTP1 Results (b) OLTP2 Results (c) OLTP3 Results

0

1

2

3

4

5

6

7

8

RA-0 RA-256 RA-1024 RA-0 RA-256 RA-1024

T
im
e
(s
)

Linux

PM-TA

PM-SA
100Mbps

1.3Gbps

0

1

2

3

4

5

6

7

RA-0 RA-256 RA-1024 RA-0 RA-256 RA-1024

T
im
e
(s
)

Linux

PM-TA

PM-SA100Mbps

1.3Gbps

0

10

20

30

40

50

60

RA-0 RA-256 RA-

1024

RA-0 RA-256 RA-

1024

T
im
e
(s
)

Linux

PM-TA

PM-SA

100Mbps

1.3Gbps

(a) Web1 Results (b) Web2 Results (c) Web3 Results

Figure 4. Network Storage Server Test Performance with Different Prefetching Strategies and Workloads

Search workload, all the schemes perform similarly with
slowdown ratios ranging from −3.0% to 2.6%. As we ex-
pected, STEP significantly improves the performance of the
interleaved sequential workload. At the same time, it has
no noticeable effect on the random workload. Figure 3
(b) compares Linux, PM-TA and PM-SA (the best of the
three heuristics) using SCSI software RAID – a faster stor-
age technology. STEP’s improvements range from 19% to
165% compared with the default Linux prefetching scheme
in this case.

5.3.2 Network Storage Server Tests

SPC Trace. For this set of tests, we compare Linux, PM-
SA and PM-TA. All three schemes use the default Linux
RA value on the server side. On the client side, we vary
the Linux RA value to compare the effects of client-side
prefetching.

Figure 4 shows the execution time of the six SPC traces.
In this figure, we also compare the performance with differ-
ent network technologies, namely 100Mbps Fast Ethernet
and 10Gbps InfiniBand network. InfiniBand supports dif-
ferent network protocol stacks with different performance
and software compatibility trade-offs. In particular, the TCP
compatible IPoIB protocol provides 1.3Gbps peak band-
width on our testing platform.

The results show that PM-TA outperforms both Linux
and PM-SA for all three sequential workloads in the net-
work scenarios. Among the test results, the OLTP1 work-
load improvement with IPoIB and RA256 tops at 94% com-
pared with Linux. The average improvements across all the
schemes using two different networks is 25%, and average
improvements with IPoIB only is 27%. For random work-

load, different schemes perform similarly as expected. The
performance improvements vary from −1.3% to 2.4% with
an average of 0.1%.

These test results reveal the network performance impact
on networked storage I/O performance. Compared with the
performance improvements of 100Mbps Fast Ethernet, the
overall performance of 1.3Gbps InfiniBand IPoIB improves
more. Therefore, our prefetching scheme is expected to see
a better performance improvement for sequential workload
as the storage’s bottleneck effect becomes more serious with
faster network technologies. For example, with 100Mbps
fast Ethernet, OLTP2 workload performs only 2.7% better
than the default Linux scheme. However with 1.3Gbps In-
finiBand IPoIB, the improvement increases to 9.7%.

Another observation from the results is that client-side
prefetching is generally beneficial for all workloads. How-
ever, prefetching beyond the relatively small default up-
per bound of 256 kilobytes does not lead to better perfor-
mance for all workloads. In two of the sequential work-
loads: OLTP1 and OLTP3, performance actually degrades
noticeably ranging from 9% to 23%.

Application Performance. For this set of tests, we com-
pare Linux, PM-SA, and PM-TA schemes using application
benchmarks on the client. Ext3 file system is built on the
client and populated with files used frequently in this work
including the Linux source tree and trace files. We use the
time utility to measure the real time, user time, and sys-
tem time. We report both the real execution time and “out
of box” time, i.e. the difference of real time minus user
and system time, which represents the storage server access
time.

0

10

20

30

40

50

60

70

Linux PM-TA PM-SA

T
im
e
(s
)

real

ob-time

0

1

2

3

4

5

6

7

8

9

Linux PM-TA PM-SA

T
im

e
(s

)

real

ob-time

0

5

10

15

20

25

30

35

40

Linux PM-TA PM-SA

T
im
e
(s
)

real

ob-time

(a) Archiving a built Linux source tree with Tar (b) Building a cross reference database with Cscope (c) Generating kernel patch

Figure 5. Application Performance with STEP

Figure 5 (a) shows the results of tar creating an archive
for a built Linux source tree. In this benchmark, the I/O pat-
tern is sequential reads for files in the source tree and writes
to the archive. The results show that the PM-TA scheme
performs best among the three. The real execution time im-
proves 14% and 3.8%, respectively compared with Linux
and PM-SA. The “out of box” time improves 23% and 8.7%,
respectively.

Figure 5 (b) shows the result of cscope building a cross
reference database for a Linux source tree. In this bench-
mark, the major I/O operation is file meta-data access, such
as lstat and access calls, so that the sequentiality is not as
strong as the first benchmark. The results show that the
PM-TA scheme performs only 2% better than Linux and
1.7% worse than PM-SA. However, for the “out of box”
time, it improves the performance for 8.7% and 3.7%, re-
spectively. We can see from the figure that the “out of box”
time constitutes only around one third of the total execu-
tion time, which explains the small overall performance im-
provements.

Next, we test the performance of generating the patches
to our customized kernel for supporting STEP. Figure 5
(c) shows the result of diff comparing our modified Linux
source tree and the original Linux source tree. In this bench-
mark, the major I/O operations are sequential file reads for
these two source trees. In order to serve this source compar-
ison, the disk head has to move back and forth to get the data
from the disk. Aggressive prefetching is very effective for
this test scenario. The results show that our PM-TA scheme
performs 44% better than Linux and 11% better than PM-
SA. For the “out of box” time, it improves the performance
for 53% and 13%, respectively. By detecting and prefetch-
ing for the thrashing patterns, our scheme has significantly
improved the storage server access time which constitutes
more than 80% of the total execution time.

Finally, we test the case in which multiple applications
are executing concurrently, which generates more intermin-
gled traffic patterns. However, due to the hardware environ-
ment change during the study, unlike the other tests, these
experiments were done on Dell PowerEdge SC440 servers
with 7.2K RPM SATA disk connected by Gigabit Ether-
net. Compared with Linux, PM-TA improves performance
by 12% for diff and 16% for tar; compared with PM-SA,

PM-TA improves performance by 7.7% for diff and 5.9%
for tar.

Server CPU Usage Impact. The above experiments are
all conducted with cold storage cache, i.e. disk blocks need
to be brought in from disk. Although storage servers are
increasingly facing cold misses, it is always interesting to
see how our scheme impacts the case when most of the ac-
cesses hit in the storage cache. Since our scheme uses more
CPU cycles for prefetching management, we expect some
performance degradation for this case because of the extra
processing.

The performance results of the six SPC traces results
show that the performance degradation of PM-TA is within
2.7% in average compared with Linux.

Code Size The total engineering effort for implementing
our scheme is small. With our current prototype, the patch
file for Linux-2.6.16 stock kernel is only 224 lines. Reused
library code from Linux source is 695 lines. Our STEP li-
brary is 1383 lines.

5.3.3 Summary

From the detailed experiment results, we show that STEP
consistently outperforms the default Linux prefetching
scheme and the other common heuristics by both replay-
ing SPC OLTP sequential traces and running frequently
used I/O intensity applications. For random workload, our
scheme has no noticeable effect, as shown by the SPC Web-
Search traces. The CPU usage for the prefetching manage-
ment is also tested to be minimal.

6 Conclusions

The technology trend has significantly increased DRAM
memory’s capacity with falling price. The increased mem-
ory capacity on the storage clients makes the large stor-
age cache on networked storage servers increasingly under-
utilized due to the weakened caching effectiveness for pro-
longed block reuse distance of data blocks. The powerful
computing capability and available disk bandwidth in addi-
tion to the large cache resources have provided a unique op-

portunity to improve storage system performance through
prefetching.

In this study, we have made a strong case for aggres-
sively prefetching critical access patterns in networked stor-
age servers. Leveraging client access pattern detection and
server’s internal knowledge of expensive storage operations
such as disk seeks, we propose a new prefetching scheme –
STEP, which generates prefetch requests aggressively for
sequential access patterns and thrashing patterns using a
new cost-benefit analysis model. Our implementation and
in-depth evaluation of the design by replaying Storage Per-
formance Council’s (SPC) I/O traces and widely used Unix
applications demonstrate that significant performance im-
provements are achieved with STEP.

We plan to extend our work to study the interaction of
probability distribution function and different storage work-
loads to enhance the categories of applications that can ben-
efit from our scheme.

7 Acknowledgment

We thank the appreciations and constructive comments
from the anonymous referees. This work is partially sup-
ported by the National Science Foundation under grants
CNS-0405909 and CCF-0602152.

References

[1] L. N. Bairavasundaram, M. Sivathanu, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. X-ray: A non-invasive exclu-
sive caching mechanism for raids. In Proceedings of the

31st annual international symposium on Computer architec-

ture (ISCA), page 176, 2004.

[2] J. Band. The Storage Outlook: Managing to maintain growth.
Business Insights, 2003.

[3] D. P. Bovet and M. Cesati. Understanding the Linux Kernel.
O’Reilly, 2005.

[4] A. D. Brown, T. C. Mowry, and O. Krieger. Compiler-based
I/O prefetching for out-of-core applications. ACM Transac-

tions on Computer Systems, 19(2):111–170, 2001.

[5] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Implementa-
tion and performance of integrated application-controlled file
caching, prefetching, and disk scheduling. ACM Transactions

on Computer Systems, 14(4):311–343, 1996.

[6] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang.
DiskSeen: Exploiting Disk Layout and Access History to En-
hance I/O Prefetch. In Proceedings of USENIX 2007 Annual

Technical Conference, Santa Clara, CA, 2007.

[7] G. A. Gibson, J. S. Vitter, and J. Wilkes. Strategic directions
in storage i/o issues in large-scale computing. ACM Comput-

ing Survey, 28(4):779–793, 1996.

[8] B. S. Gill and L. A. D. Bathen. AMP: Adaptive Multi-stream
Prefetching in a Shared Cache. In Proceedings of the Fifth

USENIX Symposium on File and Storage Technologies (FAST

’07), pages 185–198, San Jose, CA, 2007.

[9] B. S. Gill and D. S. Modha. Sarc: Sequential prefetch-
ing in adaptive replacement cache. In Proceedings of the

General Track: USENIX 2005 Annual Technical Conference

(USENIX), pages 293–308, 2005.

[10] W. Hsu and A. J. Smith. The performance impact of i/o
optimizations and disk improvements. IBM J. Res. Dev.,
48(2):255–289, 2004.

[11] S. Jiang, K. Davis, and X. Zhang. Coordinated multi-
level buffer cache management with consistent access locality
quantification. IEEE Transactions on Computers, 2007.

[12] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang. Dulo:
An effective buffer cache management scheme to exploit
both temporal and spatial localities. In Proceedings of the

4th USENIX Conference on File and Storage Technologies

(FAST), pages 101–114, 2005.

[13] H. Lei and D. Duchamp. An analytical approach to file
prefetching. In Proceedings of the USENIX 1997 Annual

Technical Conference (USENIX), pages 275–288, 1997.

[14] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-miner:
Mining block correlations in storage systems. In Proceedings

of the 3rd USENIX Conference on File and Storage Technolo-

gies (FAST), pages 173–186, 2004.

[15] S. Liang, S. Jiang, and X. Zhang. Step: Sequentiality and
thrashing detection based prefetching to improve performance
of networked storage servers. Technical Report OSU-CISRC-
3/07-TR23, 2007.

[16] A. E. Papathanasiou and M. L. Scott. Aggressive prefetch-
ing: An idea whose time has come. In Proceedings of the

10th Workshop on Hot Topics in Operating Systems (HotOS),
2005.

[17] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed prefetching and caching. In Proceedings

of the 15th ACM symposium on Operating systems principles

(SOSP), pages 79–95, 1995.

[18] Rea Hat Inc. Red Hat GFS Documentation.
http://www.redhat.com/.

[19] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling. IEEE Computer, 27(3):17–28, 1994.

[20] S. W. Schlosser, J. Schindler, S. Papadomanolakis, M. Shao,
A. Ailamaki, C. Faloutsos, and G. R. Ganger. On multi-
dimensional data and modern disks. In Proceedings of the

4th USENIX Conference on File and Storage Technologies

(FAST), pages 225–238, 2005.

[21] E. Shriver, C. Small, and K. A. Smith. Why does file sys-
tem prefetching work? In Proceedings of the USENIX 1999

Annual Technical Conference (USENIX), pages 71–84, 1999.

[22] A. J. Smith. Sequentiality and prefetching in database sys-
tems. ACM Transactions on Database Systems, 3(3):223–

247, 1978.

[23] Storage Networking Industry Association.
http://www.snia.org.

[24] R. L. R. Thomas H. Cormen, Charles E. Leiserson and
C. Stein. Introduction to Algorithms. The MIT Press, 2001.

[25] T. M. Wong and J. Wilkes. My Cache or Yours? Mak-
ing Storage More Exclusive. In Proceedings of the Gen-

eral Track: USENIX 2002 Annual Technical Conference

(USENIX), pages 161–175, 2002.

[26] G. Yadgar, M. Factor, and A. Schuster. Karma: Know-it-All
Replacement for a Multilevel Cache . In Proceedings of the

Fifth USENIX Symposium on File and Storage Technologies

(FAST ’07), pages 169–184, San Jose, CA, 2007.

[27] Y. Zhou, Z. Chen, and K. Li. Second-level buffer cache man-
agement. IEEE Transactions on Parallel and Distributed Sys-

tems, 15(6):505–519, 2004.

