
Synergistic Coupling of SSD and Hard Disk for QoS-aware Virtual Memory

Ke Liu† Xuechen Zhang†‡∗ Kei Davis\ Song Jiang†

†ECE Department ‡ School of Computer Science \ CCS Division
Wayne State University Georgia Institute of Technology Los Alamos National Laboratory
Detroit, MI 48202, USA Atlanta, GA 30332, USA Los Alamos, NM 87545, USA

Abstract—With significant advantages in capacity, power con-
sumption, and price, solid state disk (SSD) has good potential
to be employed as an extension of DRAM (memory), such that
applications with large working sets could run efficiently on
a modestly configured system. While initial results reported in
recent works show promising prospects for this use of SSD by
incorporating it into the management of virtual memory, frequent
writes from write-intensive programs could quickly wear out SSD,
making the idea less practical. We propose a scheme, HybridSwap,
that integrates a hard disk with an SSD for virtual memory
management, synergistically achieving the advantages of both. In
addition, HybridSwap can constrain performance loss caused by
swapping according to user-specified QoS requirements.

To minimize writes to the SSD without undue performance loss,
HybridSwap sequentially swaps a set of pages of virtual memory
to the hard disk if they are expected to be read together. Using a
history of page access patterns HybridSwap dynamically creates
an out-of-memory virtual memory page layout on the swap space
spanning the SSD and hard disk such that random reads are
served by SSD and sequential reads are asynchronously served
by the hard disk with high efficiency. In practice HybridSwap
can effectively exploit the aggregate bandwidth of the two devices
to accelerate page swapping.

We have implemented HybridSwap in a recent Linux kernel,
version 2.6.35.7. Our evaluation with representative benchmarks,
such as Memcached for key-value store, and scientific programs
from the ALGLIB cross-platform numerical analysis and data
processing library, shows that the number of writes to SSD can
be reduced by 40% with the system’s performance comparable to
that with pure SSD swapping, and can satisfy a swapping-related
QoS requirement as long as the I/O resource is sufficient.

Keywords-SSD; Page Swapping; and Flash Endurance.

I. INTRODUCTION

Given the large performance gap between DRAM (memory)
and hard disk, flash memory (flash)—with much lower access
latency, and performance much less sensitive to random access,
than disk—has been widely employed to accelerate access of
data normally stored on disk, or by itself to provide a fast
storage system. Another use of flash is as an extension of
memory so that working sets of memory-intensive programs
can overflow into the additional memory space [24], [4],
[16], [19], [27]. This latter application is motivated by the
exponential cost of DRAM as a function of density (e.g.,
∼$10/GB for 2GB DIMM, ∼$200/GB for 8GB DIMM, and
hundreds or even thousands of dollars per GB for DIMM over
64GB) and its high power consumption. In contrast, flash is

∗Xuechen Zhang conducted this work at Wayne State University.

much less expensive, has much greater density, and is much
more energy efficient both in terms of energy consumption and
needed cooling. A typical approach for inclusion of flash in
the memory system is to use it as swap space and map virtual
memory onto it [24], [4], [16]. Much effort has been made to
address the particular properties of flash for use in this context,
such as access at page granularity, the erasure-before-write
requirement, and asymmetric read and write performance.
The most challenging issue is flash’s endurance—the limited
number of write-erase cycles each flash cell can endure before
failure. A block of MLC (multi-level cell) NAND flash—the
less expensive, higher density, and more widely used type—
may only be erased and rewritten approximately 5000-10,000
times before it has unacceptably high bit error rates [10], [18].
Though SLC (single-level cell) flash can support a higher
erasure limit (around 100,000), increasing flash density can
reduce this limit [11].

When flash-based SSD is used for file storage the limited
number of write cycles that flash can endure may not be a
significant issue because frequently accessed data is usually
buffered in memory. However, if SSD is used as a memory
extension with memory-intensive applications, the write rate
to the SSD can be much higher and SSD longevity a serious
concern. For example, for a program writing to its working set
on a 64GB SSD of MLC flash at a sustained rate of 128MB/s,
the SSD can become unreliable after about two months of the
use. Considering the write-amplification effect due to garbage
collection at the flash translation layer (FTL), the lifetime
could be reduced by a factor of up to 1000 [13]. To improve
SSD’s lifetime when used as swap space for processes’ virtual
memory, researchers have tried to reduce write traffic to SSD
by using techniques such as minimizing the replacement of
dirty pages [24], detecting pages containing all zero bytes to
avoid swapping them [24], and managing swap space at the
granularity of custom objects [4]. In these prior works, when
SSD is proposed to serve as swap space, the conventional host,
the hard disk, is excluded from consideration for use for the
same purpose. This is in contrast to the scenario where SSD
is used as file storage, wherein hard disk is often also used to
provide large capacity and to reduce cost.

We claim that it is feasible to distribute write traffic to
the swap space between SSD and hard disk to obtain SSD-
like performance but with greatly reduced wear on the SSD,
and therefore that hard disk can augment SSD to provide a

highly-performing and reliable memory extension. Though the
hard disk’s access latency is greater than SSD’s by orders
of magnitude, its peak throughput, which is achieved with
long sequential access, can be comparable to that of SSD.
As long as there are memory pages that are sequentially
swapped out and back in, the hard disk can play a role in
the implementation of such a system, in particular exploiting
its significant advantages in cost and longevity. Furthermore,
using pre-swapping-out and pre-swapping-in techniques, ac-
cess of swap space can be served asynchronously with the
occurrence of page faults, and by having the swap space span
both SSD and disk it is possible to access them in parallel to
increase the bandwidth of the swapping system. Using disk
for page swapping is a particularly economical choice when
a disk is already present. We note that it is less likely for
disk to be involved in file-data access when applications are
actively computing on their prepared working sets and are
actively page swapping. While endurance remains an issue in
anticipated storage-class memory (SCM) [8], our approach to
keeping the hard disk relevant in the effort towards reliable,
large, and affordable memory provides a low-cost and effective
supplement to existing solutions [7], [20], [28].

We propose a page-swapping management scheme, Hy-
bridSwap, to reduce SSD writes in its use as a memory
extension. In this scheme we track page access patterns to
identify pages of strong spatial locality to form page sequences
and accordingly determine the destinations of pages to be
swapped out.

In summary we make the following contributions.

• We introduce the hard disk into the use of SSD for
memory extension. We show that representative memory-
intensive applications have substantial sequential access
that warrants the use of disk to significantly reduce SSD
writes without significant performance loss compared to
SSD-only swapping.

• We develop an efficient algorithm to record memory
access history, and to identify page access sequences
and evaluate their locality. Swapping destinations are
accordingly determined for the sequences to ensure that
both high disk throughput and low SSD latency are
exploited while high latency is avoided or hidden.

• We build a QoS-assurance mechanism into HybridSwap
so that it can bound the performance penalty due to swap-
ping. Specifically, it allows users to specify a bound on
the program stall time due to page faults as a percentage
of the program’s total run time.

• We implement the hybrid swapping system in the Linux
kernel and conduct extensive evaluation using representa-
tive benchmarks including key-value store for in-memory
caching, image processing, and scientific computations.
The results show that HybridSwap can reduce SSD swap-
ping writes by 40% with performance comparable to that
of using an SSD-only solution.

II. RELATED WORK

There are numerous works in the literature concerned with
various aspects of SSD. We briefly review the most closely
related efforts in reducing write cycles in the use of SSD for
virtual memory, and in the integration of SSD and hard disk
for storage systems.

In the FlashVM system SSD is used as a dedicated page-
swapping space for its greater cost-effectiveness than adding
DRAM [24]. To reduce writes to SSD, FlashVM does not swap
pages if they are all zeros. It also prioritizes the replacement
of clean pages over dirty pages. In another work using SSD
as swap space, SSDAlloc, data for swapping is managed at
object granularity rather than at page granularity, where objects
may be much smaller then the page size [4]. Objects are
defined by programmers via the ssd alloc() API for dynami-
cally allocating memory. SSDAlloc also attempts to track the
access patterns of objects to exploit temporal locality in the
replacement of the objects. Mogul et al. propose to reduce
writes to non-volatile memory (NVM), such as flash used
with DRAM in a hybrid memory, by estimating time-to-next-
write (TTNW) for pages managed by the operating system, and
placing pages with large TTNW on the NVM [19]. Ko et al.,
recognizing that current OS swapping strategies are designed
for hard disk and can cause excessive block copies and erasures
on SSD if it is used as swap space, modify the swapping
strategies of Linux by swapping out pages in a log structure
and swapping in pages in a block-aligned manner [16].

Because SSD is still used as a swap device in addition to
hard disk in our proposed scheme, the optimizations of the
use of SSD in the mentioned works are complementary or
supplemental to our effort to improve SSD lifetime. In some
of the works the Linux virtual memory prefetching strategy
is tuned to match SSD’s characteristics to improve swapping
efficiency, such as allowing non-sequential prefetching and
realigning prefetching scope with SSD block boundaries [24],
[16]. In constrast, HybridSwap coordinates prefetching over
SSD and disk to hide disk access latency.

As an accelerator for hard disk, SSD has been used either
as buffer cache between main (DRAM) memory and the hard
disk and exploits workloads’ locality for data caching [26],
[22], or used in parallel with the hard disk to form a hybrid
storage device such that frequently accessed data is stored
on the SSD [6], [21], [29]. A major effort in these works
for optimized performance and improved SSD lifetime is in
dynamic identification of randomly-read blocks and caching
them on, or migrating them to, the SSD. In principle Hy-
bridSwap has a similar goal of directing sequential page access
to the disk. However, unlike accessing file data in a storage
system, HybridSwap manages the swapping of virtual memory
pages and has different opportunities and challenges. First,
the placement of swapped-out pages on the swap space is
determined by the swapping system rather than by the file
system. For continuously swapped-out pages HybridSwap can
usually manage to sequentially write to the disk. There is an
opportunity to improve the efficiency of reading from the disk

in resolving page faults by placing the pages on the disk in
an order consistent with their anticipated future read (page
fault) sequence. To this end HybridSwap predicts future read
sequences at the time of swapping out pages. Second, because
data in a file system is structured, information is available
to assist in the prediction of access patterns: for example,
metadata and small files are more likely to be randomly
accessed. Virtual memory pages lack such information and
their access patterns can be expensive to detect. Third, swap
space can be more frequently accessed than files because it
is mapped into process address space, and data migration
strategies used in works concerned with hybrid disks adapting
to changing access patterns are usually not efficient in this
scenario. To meet these challenges HybridSwap incorporates
new and effective methods for tracking access patterns and the
laying out of swap pages in the swap space.

In the domain of file I/O there are two recent works in
which the hard disk is explicitly used to reduce writes to the
SSD. To allow disk to be a write cache for access to the SSD,
Soundararajan et al. analyzed file I/O traces in the desktop and
server environments and found that there is significant write
locality—most writes are on a small percentage of file blocks
and writes to a block are concentrated in a short time window.
Based on this observation they cache these blocks on the disk
during its write period and migrate them to the SSD when
the blocks start to be read [9]. In contrast, swap pages do not
have such locality because a page’s access following a swap-
out, if ever, must be a read (swap-in). Therefore HybridSwap
must take into account the efficiency of reading pages from the
disk. The second work, I-CASH, makes the assumption that
writes to a file block usually do not significantly change its
contents, i.e., that the difference in content (the delta) is usually
small [23]. By storing the deltas on the hard disk the SSD
will mostly serve reads, and writes to the disk are made more
efficient as deltas are compacted into disk blocks. However,
for virtual memory access there is insufficient evidence to
support the assumption that the deltas are consistently small.
In addition, the on-line computation required for producing
the deltas and recovering the original pages could heavily
burden the CPU. In contrast, HybridSwap achieves high read
efficiency from the disk by forming sequential read patterns to
exploit high disk throughput.

To provision QoS assurance for programs running in virtual
memory, a common practice is to prevent the memory regions
of performance-sensitive programs from swapping, either en-
forced by the kernel [5] or facilitated with application-level
paging techniques [12]. In the HPC environment swapping (or
virtual memory) is often disabled (or not supported) to ensure
predictable and efficient execution of parallel programs on a
large cluster [27]. While HybridSwap advocates the use of hard
disk along with SSD as a swapping device, its integrated QoS
assurance mechanism provides a safety measure to prevent
excessive performance loss in the effort to reduce wear on
flash.

III. DESIGN AND IMPLEMENTATION

When a combination of SSD and hard disk is used to host
swap space as part of virtual memory, the performance goal is
to efficiently resolve page faults, i.e., to read pages from the
swap space quickly. While HybridSwap is proposed to achieve
a reduction in writes to SSD, an equally important goal is
high efficiency for reading swapped pages. To achieve both
goals HybridSwap is designed to carefully select appropriate
pages to be swapped to the disk and to schedule prefetching
of swapped-out pages back into memory. To this end we need
to integrate spatial locality with the traditional consideration
of temporal locality in the selection of pages for swapping,
evaluate access spatial locality, and schedule the swapping of
pages in and out.

A. Integration of Temporal Locality and Spatial Locality

Because swap space is on a device slower than DRAM,
temporal locality in page access maintained by keeping the
most frequently accessed pages in memory. To achieve this the
operating system buffers physical pages that have been mapped
to virtual memory in the system page cache and tracks their
access history. A replacement policy is used to select pages
with weakest temporal locality as targets for swapping out.
Consecutively identified target pages are swapped together and
are highly likely to be contiguously written in a region of the
swap space. However, there is no assurance that these pages
will be swapped in together in the future. Furthermore, the
replacement policy may not identify pages that were contigu-
ously swapped in as candidates for contiguously swapping out
with sequential writes. Ignoring spatial locality can increase
swap-in latency and page-fault penalty, especially when the
swap space is on disk. In the context of HybridSwap, spatial
locality refers to the phenomenon that contiguous pages on the
swap space are the targets of page faults occurring together
and can be swapped in together. While swap-in efficiency
is critical for the effectiveness of hard disk as a swapping
medium, spatial locality is integrated with temporal locality
when HybridSwap swaps pages out to the hard disk. To this
end, among pages of weak temporal locality we identify candi-
date pages with potentially strong spatial locality and evaluate
their temporal locality according to their access history. Only
sequences of pages with weak temporal locality and strong
spatial locality will be swapped to the hard disk, and those of
weak spatial locality will be swapped to the SSD.

In the LRU (least recently used) replacement algorithm,
one of the more commonly used replacement algorithms in
operating systems, it is relatively easy to recognize sequences
of candidate pages. HybridSwap is prototyped in the Linux
2.6 kernel that adopts an LRU variant similar to the 2Q
replacement [15]. Here the kernel pages are grouped into two
LRU lists, an active list to store recently or frequently accessed
pages, and an inactive list to store pages that have not been
accessed for some time. A faulted-in page is placed at the tail
of the active list, and pages at the tail of the inactive list are
considered to have weak temporal locality and are candidates

for replacement. A page is promoted from the inactive list into
the active list if it is accessed, and demoted to the inactive
list if it has not been accessed for some time. Pages that
have been accessed together when they are added into the
inactive list will stay close in the lists. However, a sequence
of pages in the lists may belong to different processes, as
a page fault of one process leads to scheduling of another
process. Such a sequence is unlikely to repeat as the involved
processes usually do not coordinate their relative progress.
Therefore HybridSwap groups pages at the tail of the inactive
list according to their process IDs, and then evaluates their
spatial locality within each process.

B. Evaluation of Spatial Locality of Page Sequences

For a sequence of pages at the tail of the inactive list we need
to predict the probability of them being swapped in together
if they are swapped out. As the basis of this prediction we
check the page access history to determine whether the same
access sequence has appeared before. The challenge is how to
efficiently detect and record page accesses. One option is to
use mprotect() to protect the pages of each process to detect
page access when an mprotect-triggered page fault occurs, but
this could be overly expensive because the system may not
always conduct page swapping, and not all pages are constantly
involved in the swapping. Instead, HybridSwap records a page
access only when a page fault occurs. In this way there is
almost zero time cost for detecting page accesses, and the
space overhead for recording access is proportional to number
of faulted pages. Assuming that programs have relatively stable
access patterns and that the replacement policy can consistently
identify pages of weak locality for swapping, the access history
recorded in this manner is sufficient to evaluate the spatial
locality of the sequence of pages to be swapped out.

When a sequence of pages is swapped out together and
sequentially written to the disk, they will be swapped in
together—or sequentially prefetched into the memory—in re-
sponse to a fault on any page in the sequence. However,
sequential disk access does not necessarily indicate efficient
swapping because for efficiency the prefetched pages must be
used to resolve future page faults before being evicted from
memory. In other words, the spatial locality for a sequence of
prefetched pages is characterized by how close in time they
are used to resolve page faults. Quantitatively the locality is
measured by the time gap between any two fault occurrences
on the pages in the sequence. Ideally it is not larger than the
lifetime of a swapped-in page, or the time period from its
swap-in to its subsequent swap-out.

In evaluating locality there are three goals in effectively
recording page access. First, the space overhead should be
small. Second, it must be possible to determine in O(1)
time whether a page sequence has appeared before. Third,
from the history information it should be possible to predict
whether future faults on the pages in the sequence would occur
together. To achieve these goals, for each process we build a
table, its access table, that is the same as the process’s page
table, except that (1) only pages that have had faults are in the

table; and (2) the leaf node of the tree-like table, equivalent
to the PTE (page table entry) in the Linux page table, is used
to store the times when page faults occur on its corresponding
page. We set a global clock that is incremented whenever a
page fault occurs in the system. For the page associated with
the fault we record the current clock time in the page’s access
table entry. We also record a page’s most recent swap-in time
to obtain the page’s most recent in-memory lifetime. When a
page is swapped out its most recent lifetime is calculated as the
difference between the current clock time and its swap-in time.
We compute a moving average of the lifetimes of any swapped
pages in the system and use it as a threshold to evaluate a page
sequence’s spatial locality. The average Lk is updated after
serving the kth request by Lk = (1−α)∗Lk−1+α∗Lifetime,
where Lifetime is the lifetime calculated for the most recently
swapped out page, and α is between 0 and 1 and is used
to control how quickly history information decays. In our
reported experiments α = 2/3 so that more recent lifetimes
are better represented. Our experiments show that system
performance is not sensitive to this parameter over a large
range. In the prototype we use 32 bits to represent a time.
(This allows a process to swap 16TB in its lifetime before
counter wrap, assuming 4KB pages. If this were an issue a
64-bit value could be used.) The space overhead for storing
timestamps is then 32 bits/4KB, or 1B/1KB, a very modest
0.1% of the virtual memory involved in page faults.

Only sequences of high spatial locality are eligible to be
swapped to disk. When there is a candidate sequence of pages
selected from the tail of the inactive list that belong to the
same process we use the process’s access table to determine
whether the sequence has sufficiently high spatial locality.
If the difference between any two pages’ access times is
greater than the system’s current average lifetime, or there are
anonymous pages in the sequence without history access times,
the sequence’s spatial locality is deemed low.

C. Scheduling Page Swapping

There are three steps for swapping out pages in HybridSwap:
selecting a candidate sequence, evaluating its spatial locality,
and determining swapping destinations. For each swap we
select a process and remove all of its pages from the last N
pages of the inactive list, where N is a parameter representing
the tradeoff between temporal locality and spatial locality. A
smaller N will ensure that only truly least recently used pages
are swapped but provides less opportunity for producing long
page sequences. In contrast, overly large N can benefit disk
efficiency but may lead to the replacement of recently used
pages. With today’s memory sizes the list can be relatively
long, so N can be large enough for high disk efficiency with-
out compromising the system’s temporal locality. In current
Linux kernels eight pages are replaced in each swap. Previous
research has suggested that disk access latency can be well
amortized with requests of 256KB or larger [25], so N is set
to p ∗ 128KB/s, where p is the number of processes with
pages in the tail area of the inactive list and s is the page size

(4KB). Sequence selection is rotated among the processes for
fair use of memory.

Spatial locality is evaluated for each selected candidate
sequence. If the result indicates weak locality the sequence
is swapped to SSD. Otherwise, in principle the sequence will
be sent to the disk. A sequence that is written to the disk is
recorded in the corresponding process’s access table using a
linked list embedded in the leaf nodes of the table recording
their virtual addresses. When a fault occurs on a page in
the sequence the first page of the sequence will be read in
synchronously, then the other pages of the sequence will be
asynchronously prefetched from the disk into memory.

While asynchronous prefetching of pages is expected to
allow their page faults to be resolved in memory, one defi-
ciency in the swapping-in operation is the long access latency
experienced by the read of the first page. To hide this latency,
for a sequence intended for swapping to the disk we examine
its pages’ history access times recorded in the access table
to see whether they had been accessed in a consistent order.
If so we order them in a list of ascending access times and
divide them into two segments. The first segment, the SSD
segment, will be swapped out to the SSD, and the second one
containing pages of longer access times, the disk segment,
will be swapped out to the disk. If there is a fault on the
page in the SSD segment both the SSD and disk segments
are immediately prefetched. The objective of this scheduling
is to hide the long disk access latency behind the time for
the process to do computation on the data from the SSD. To
determine the length of the SSD segment we need to compare
the data consumption rate of the process to the disk access
latency. To achieve this we track the time periods between any
two intermediate page faults for each process, and calculate
their moving average Tcompt with a formula similar to the
one used for calculating system average lifetime. We also
track the access latencies associated with each disk swap-in,
and calculate their moving average Tdisk−latency , also with a
similar formula. If Tdisk−latency/Tcompt is smaller than the
sequence size then it is the SSD segment size. Otherwise, the
entire sequence will be swapped to the SSD. Thus overly-
short sequences are swapped to the SSD even if they have
strong spatial locality. We do not need to explicitly evaluate
prefetch accuracy: inaccurate prefetching is due to changing
access pattern, and inconsistent patterns recorded in the access
table will automatically cancel future swapping of the involved
pages to the disk.

D. Building QoS Assurance into HybridSwap

HybridSwap is designed to judiciously select pages for
swapping to the disk to attain a good balance between reducing
SSD writes and retaining the performance advantage of SSD.
At the same time HybridSwap allows a user to specify the
prioritization of these two goals to influence how the tradeoff
is made for specific programs. We use the ratio of program
stall time due to page faults and its run time as the input. This
ratio is a mandatory upper bound on the cost of swapping
on a program’s run time. To implement this HybridSwap

dynamically maintains the ratio of current total stall time and
program execution time.

If no QoS requirement is specified page swapping will be
managed in the default manner. Otherwise, HybridSwap tracks
the ratio of the current ratio and the required ratio. If this
ratio, which we call the shift ratio, is larger than 1 we need to
shift subsequent swapping-page sequences towards the SSD.
Initially a sequence’s SSD segment is obtained as described in
Section III.C. If the shift ratio is larger than 1 the SSD segment
size is increased by this ratio (up to the entire sequence size). If
the shift ratio is still larger than 1 with almost all recent pages
swapped to SSD, the sequence is shifted towards memory in a
similar manner. Pages to be kept in memory are simply skipped
when selecting pages for swapping out. If the shift ratio is
consistently smaller than 1 by a certain margin, HybridSwap
will shift sequences towards SSD or the disk. To effectively
enforce the required ratio, HybridSwap initially places pages
on the SSD when a program starts to run.

IV. PERFORMANCE EVALUATION AND ANALYSIS

HybridSwap is implemented primarily in the Linux kernel
(2.6.35.7) and supports a user-level QoS tool. Most code
modifications are in the memory management system, for
example in the handle pte fault() function to record both
major and minor page faults in the access tables, and in
the shrink page list() function to select sequences for spatial-
locality evaluation and swapping out. At user level we use
a script to read the user-specified QoS requirement from the
command line. This tool is only needed for users requesting
a QoS requirement. We experimentally answer the following
questions.

• Can the number of I/O writes to SSD be significantly
reduced by using the hard disk?

• Can HybridSwap achieve performance comparable to
using SSD alone?

• Is HybridSwap effective for workloads with mixed mem-
ory access patterns or for very heavy workloads?

• What is the overhead of HybridSwap?

A. Experimental Setup

We conducted experiments on a Dell Poweredge server with
an Intel 2.4GHz dual-core processor and 4GB DRAM. Except
where otherwise stated we limited the memory available for
running processes to 1GB to intensify swapping and better
reveal performance differences between different swapping
strategies. The server is configured with a 160GB hard disk
(WDC WD1602 ABKS). We used two types of SSD devices
in the experiments, Intel SSDSA2M080G2GC, referred to as
Intel SSD, and OCZ-ONYX, referred to as OCZ SSD, with
performance characteristics summarized in Table I. Except
where otherwise stated the OCZ SSD is used for the exper-
iments. NCQ is enabled on the disk and SSDs. Per standard
practice we used CFQ [2] as the disk scheduler and NOOP [3]
as the SSD scheduler. We compared HybridSwap with the
swapping configuration using only an SSD, referred to as SSD-
Swap. Linux supports swapping on multiple storage devices

Intel SSD OCZ SSD Hard Disk
Capacity (GB) 80 32 160

Sequential Read (MB/s) 238 140 85
Sequential Write (MB/s) 125 110 70

Random Read (MB/s) 25 34 4
Random Write (MB/s) 10 4 0.8

Table I
CAPACITIES AND SEQUENTIAL/RANDOM READ/WRITE THROUGHPUT OF

TWO SSDS AND ONE HARD DISK. 4KB REQUESTS ARE USED.

with a pre-configured swapping traffic distribution. To compare
HybridSwap with a less-optimized hybrid swapping system,
we also used an SSD and a hard disk with 1:1 distribution as
a Linux-managed swapping space, referred to as RAID-Swap.
In RAID-Swap the swap space is equally striped on the SSD
and the disk, giving a data layout similar to RAID 0.

B. Benchmarks

We used four real-world memory-intensive benchmarks with
differing memory access patterns to form the workloads:
Memcached, ImageMagick, matrix inverse, and correlation
computation.

Memcached provides a high-performance distributed
caching infrastructure to form an in-memory key-value
cache [17]. We set up a Memcached client to issue requests
for storing (PUT) and retrieving (GET) data at the Memcached
server with different dispatch rates and key distributions.

ImageMagick (Image for short) is a software package pro-
viding command-line functionality for image editing [14]. In
the experiments we enlarge a file of 17MB by 200%, and
convert the file from its original JPG format to PNG format.

Matrix Inverse (Matrix for short) is a scientific computation
program from ALGLIB, an open-source and cross-platform
numerical analysis and data processing library [1]. The im-
plementation of matrix inverse in ALGLIB employs several
optimizations, such as efficient use of CPU cache, to achieve
maximal performance. The input matrix size is 4096*4096 in
the experiments.

Correlation Computation (CC for short) is also from AL-
GLIB. It finds the statistical dependence between two matrices
by calculating their correlation coefficient. The input matrix
size is 4096*4096 in the experiments.

C. Reduction of SSD Writes

A major goal of HybridSwap is to select appropriate pages
for swapping to disk to reduce writes to the SSD. We measured
the number of page writes for each of the four benchmarks,
running multiple concurrent instances to increase the aggregate
memory demand and create more complicated dynamic mem-
ory access patterns. Table II lists the total number of page
writes on the SSD for each of the four benchmarks when
only SSD is used and when both SSD and disk are used and
managed by HybridSwap.

For Memcached we ran five concurrent instances. To sim-
ulate the use of the caching service by applications running
on a client, we assume each instance has its own set of data
items for constant PUTs and GETs in a certain time period

Memcached(5) Image(2) CC(6) Matrix(7)
SSD-Swap 269,618 450,352 911,148 471,201

HybridSwap 170,316 273,477 712,660 396,291

Reduction
Ratio 37% 40% 22% 16%

Table II
NUMBER OF WRITES TO THE SSD WITH AND WITHOUT USE OF THE HARD

DISK MANAGED BY HYBRIDSWAP. THE NUMBER OF CONCURRENT
INSTANCES IS GIVEN IN PARENTHESES.

Memcached
(packets/s) Image(s) CC(s) Matrix(s)

SSD-Swap 16,734 108 431 864
HybridSwap 16,597 103 400 860

Improv. Ratio -0.8% 4.6% 7.1% 0.5%

Table III
PERFORMANCE OF THE BENCHMARKS WHEN EITHER SSD-SWAP OR

HYBRIDSWAP IS USED. MEMCACHED’S PERFORMANCE IS IN TERMS OF
THROUGHPUT (QUERIES/SEC), AND THE OTHERS IN RUNTIME (SEC)

before operating on another set of items. Item size is uniformly
distributed between 64KB and 256KB. The total item size is
1.95GB, for 0.95GB data on the swap space and the rest in the
1GB main memory. Memcached is pre-populated using PUTs,
then the client simultaneously issues queries to different data
sets in different Memcached instances, with each set receiving
500 queries at a time. HybridSwap detects relatively strong
spatial locality in memory accesses when the same set of data
items is accessed together more than once, and reduces writes
to the SSD by 37%. Because only sets of data items of strong
locality are placed on disk, and the sequential disk bandwidth
is comparable to the non-sequential bandwidth of the SSD,
we observed only 0.8% slowdown in the rate of query transfer
between Memcached and the client (Table III).

We ran two concurrent instances of Image, which has a
sequential memory access pattern and requires 2.4GB memory.
An interesting observation is that not only is the number of
I/O writes reduced by 40% (Table II), but the run time of the
benchmark is also reduced by 4.6% (Table III). One reason is
that aggressive prefetching by HybridSwap based on sequences
on the hard disk reduces the total number of major faults
from 53,557 to 37,929 (29% reduction), and transforms the
remaining faults to minor faults (hits on prefetched pages). A
second is that the SSD and hard disk can concurrently serve
requests with higher aggregate I/O bandwidth than SSD alone.

We ran six instances of CC, which requires 3.4GB memory.
The results show that 22% of writes to SSD are eliminated
by HybridSwap due to its detection of access sequences with
strong locality and their efficient swapping to disk. However,
there is a greater fraction of writes to SSD than for Image,
which is explained by the sequences generated by the two
benchmarks. Figure 1 shows the cumulative distributions of
their sequence sizes. For CC and Image, 87% and 75% of
the sequences have fewer than 30 pages, respectively, that is,
CC has more shorter sequences. With short sequences, even
if they are qualified to be swapped to the disk, pages in their
SSD segments can be a larger proportion of the sequences and

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

P
er

ce
nt

ag
e

(%
)

Sequence Size (pages)

CC
Image

Figure 1. Cumulative distributions of sequence sizes for Image and CC.

are stored on the SSD. Accordingly, the relative performance
of CC is greater than that of Image (Table III).

Because the Matrix benchmark has small memory demand
(260MB) we ran seven instances to stress the swap devices.
Though it produces a significant number of short sequences,
HybridSwap can still exploit the detected locality to carry out
disk-based swapping without compromising performance, with
writes to SSD reduced by 16%. Our measurements show that
the swapped-out data is distributed on the SSD and hard disk
at a ratio of 5:1 when the swap space reaches its maximal size.

In the experiments presented in the next several sections we
select only one or a subset of the benchmarks that is most
appropriate for revealing specific aspects of HybridSwap.

D. Effectiveness of Sequence-based Prefetching

HybridSwap records access history to identify sequences
of strong locality for swapping to disk and to enable effec-
tive prefetching afterward. Lacking information with which
to predict page faults, Linux conservatively sets a limit of
eight pages for each prefetch. In contrast, HybridSwap can
prefetch as many as 64 pages in one swapping-in. In this
section we compare the number of major page faults associated
with HybridSwap, SSD-Swap, and RAID-Swap when running
CC. As shown in Figure 2, HybridSwap reduces page faults
by 49% and 39% compared to SSD-Swap and RAID-Swap,
respectively. By exploiting consistent page access patterns
such as row-based, column-based, and diagonal-based access,
HybridSwap can detect a large number of long sequences of
strong spatial locality. There are two factors contributing to
HybridSwap’s small major-page-fault count. One is the high
I/O efficiency in its page swap-in, which helps make pages
available in memory before they are requested to resolve faults.
The other is the accuracy of its prefetching, which makes the
swapped-in pages become the targets of minor page faults.
Using only one device, SSD-Swap has the most major faults.

E. Effect of Memory Size

Memory size is inversely correlated to the amount of data
swapped out of the memory so we can vary the memory
size to influence the swapping intensity and correspond-
ingly affect the relative performance characteristics of Hy-
bridSwap. In the following experiments we ran Memcached
with different amounts of memory to determine whether the
program’s relative throughput is substantially affected by a

 0

 15000

 30000

 45000

 60000

 75000

 90000

 105000

 120000

SSD-Swap
RAID-Swap

HybridSwap

N
um

be
r o

f M
aj

or
 P

ag
e

Fa
ul

ts

110,694

92,317

56,497

Figure 2. Number of major faults when running the CC benchmark with
SSD-Swap, RAID-Swap, and HybridSwap. For SSD-Swap and RAID-Swap
we use the Linux default read-ahead policy.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000
 24000
 26000

512 1024 1536 2048

A
vg

. N
um

be
r o

f Q
ue

rie
s

pe
r S

ec
on

d

RAM Memory Size (MB)

SSD-Swap
RAID-Swap
HybridSwap

Figure 3. Memcached throughput in terms of average number of queries per
second with different memory sizes and different swapping schemes.

swapping-intensive workload. We increase the memory size
from 512MB, 1024MB, 1536MB, to 2048MB. As shown
in Figure 3, when memory size is small the throughput of
Memcached in terms of average number of queries served
per second is higher for SSD-Swap than for HybridSwap.
However, the loss in throughput is small—only 5.5%—and is
accompanied by a 40% reduction of writes to SSD. Compared
to RAID-Swap, HybridSwap’s throughput is higher by 22%
because Linux does not form sequences that enable effective
prefetching. As the memory size increases more accesses can
be served in memory, resulting in correspondingly increasing
throughput. When the memory size is 2GB, 98% of the pro-
grams’ working set is in memory and there is little difference
between the throughputs of the three schemes.

F. Insights into HybridSwap Performance

Next we investigate how the relative performance of Hy-
bridSwap and SSD-Swap changes with differing SSD devices,
and why the performance of HybridSwap is much higher even
though both use the same combination of SSD and disk. We
ran Image and measured its run time and total number of writes
to each SSD type using each of the three swapping schemes,
as shown in Table IV. Table I shows that the difference in
throughput of the two SSD devices ranges from approximately
15% to 150%. However, the relative performance shown in
both programs’ runtimes and number of major page faults is
minimally affected by the SSD types. The reason is that in
HybridSwap SSD is mainly used for random access and the

SSD-Swap RAID-Swap HybridSwap
OCZ 108/53557 144/64160 103/37929
Intel 104/58459 143/62457 104/35218

Table IV
RUN TIME/NUMBER OF MAJOR FAULTS DURING THE EXECUTIONS OF THE

IMAGE BENCHMARK WITH DIFFERENT SWAPPING SCHEMES AND
DIFFERENT TYPES OF SSDS.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 40.26 40.29 40.32 40.35 40.38 40.41 40.44

Lo
gi

ca
l B

lo
ck

 N
um

be
r (

LB
N

)

Time (Seconds)

(a)

HybridSwap

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 40.26 40.29 40.32 40.35 40.38 40.41 40.44

Lo
gi

ca
l B

lo
ck

 N
um

be
r (

LB
N

)

Time (Seconds)

(b)

RAID-Swap

Figure 4. Disk addresses, in terms LBNs of data access on the hard disk in
a sampled execution period with HybridSwap (a) and RAID-Swap (b).

disk is used to serve sequential access, and the random access
performance of both SSDs is much greater than disk.

Table IV also shows that HybridSwap consistently and
significantly outperforms RAID-Swap by reducing both writes
to SSD and runtime for both types of SSD devices. This
is a consequence of different access patterns on the disk.
Figures 4(a) and 4(b) show access addresses on the hard disk
in terms of disk LBN (logical block number) for HybridSwap
and RAID-Swap, in a sampled execution period of 0.2 sec-
onds. The lines connecting consecutively accessed blocks are
indicative of disk head movement. When RAID-Swap is used
the disk head frequently moves in a disk area whose LBNs
range from 30 to 700,000 indicating low I/O efficiency and
high page-fault service time. When HybridSwap is used pages
in the same sequence are written and read sequentially. This
shows that HybridSwap’s performance, which is comparable to
that of SSD-Swap and is much higher than that of RAID-Swap,
should be mainly attributed to its improved disk efficiency.

G. Multiple-program Concurrency

Concurrently running multiple programs could potentially
lead to swapping of a large number of random pages and
reduced disk efficiency. We use the Matrix benchmark to eval-
uate the performance of HybridSwap with varying concurrency

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000
 55000
 60000

4 5 6 7

N
um

be
r o

f M
aj

or
 P

ag
e

Fa
ul

ts

Concurrency

(a)

SSD-Swap
RAID-Swap
HybridSwap

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

4 5 6 7

To
ta

l I
/O

 T
im

e
fo

r S
w

ap
pi

ng
 (S

)

Concurrency

(b)

Figure 5. Major faults (a) and total I/O time (b) spent on the swapping in
the running of the Matrix benchmark with varying degrees of concurrency.

from 4, 5, 6, to 7 program instances.
With four concurrent instances there are only 0.2GB of data

to be swapped out and the I/O time spent on faults accounts
for only 1.7% of total execution time. As the concurrency
increases the total number of page faults increases by 32 times
(Figure 5(a)), and I/O time for swapping increases by 4.5 times
(Figure 5(b)). From the figures we make three observations: (1)
When the system has a swapping-intensive workload, RAID-
Swap produces many more major page faults and spends much
more I/O time on swapping; (2) SSD-Swap cannot sustain
performance for workloads with highly intensive swapping
because the bandwidth of one SSD can be overwhelmed; and,
(3) HybridSwap maintains a small major fault count and low
swapping time even with very high concurrency. This suggests
that a heavy workload does not prevent HybridSwap from
forming sequences and efficiently using the disk for swapping.

When HybridSwap is used 49% of page faults are eliminated
by effective swap-page prefetching based on faults history.
Because pages are read and written sequentially on the disk and
from the two devices in parallel, HybridSwap achieves even
better performance than SSD-Swap. Total swap I/O time is
reduced by 20% and 43% compared to SSD-Swap and RAID-
Swap, respectively.

H. Bounding the Page Fault Penalty

While swapping data to the storage devices, especially hard
disk, can severely extend a program’s run time, HybridSwap
provides a means to bound the page fault penalty on run time.
To demonstrate this QoS control we run three instances of
Image. Figure 6(a) shows that the ratio of the aggregate page
fault penalty and the runtime, as a function of elapsed run
time, without any QoS requirement. Because no instance has

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 50 90 130 170

P
ag

e
Fa

ul
t P

en
al

ty
 /

R
un

tim
e

Runtime (Seconds)

 (a) HybridSwap

Image 1
Image 2
Image 3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 60 110 160 210 260 310 360

P
ag

e
Fa

ul
t P

en
al

ty
 /

R
un

tim
e

Runtime (Seconds)

 (b) HybridSwap with Qos Assurance

Qos Requirement for Image 1

Image 1
Image 2
Image 3

Figure 6. Running three instances of Image with HybridSwap when a QoS
requirement in terms of a bound on the ratio of the aggregate page fault penalty
and the runtime is not specified (a) or is specified (b).

a bound on the ratio, all three make best effort in the use of
virtual memory and their respective ratio’s curves are nearly
identical. Initially the ratios rise as each builds up its respective
working set and page faults increase as more of their working
sets are swapped. In the curves there are segments that are not
continuous because we only sample the ratio at each swap-out
to reduce the overhead. We next attempt to set a bound on
the ratio for one or more of the instances to prioritize their
performance. Because the memory size is limited, which is
smaller than one instance’s working set, an instance prioritized
with a tighter bound would move some or all of its working
set that would be placed on the hard disk without a QoS
requirement to the SSD. Figure 6(b) shows the ratios of the
instances when we set a bound of 70% on the ratio of Image
instance 1. By enforcing the QoS requirement HybridSwap
does keep this instance’s ratio below the bound. Concurrently,
the other two instances’ ratios approach 90% and execution
times are significantly extended. We note that Instance 1’s
execution time is reduced by only 10% and a tighter bound
on the instance may not be realized because the use of the
hard disk has already been highly optimized in HybridSwap
and the relative performance advantage of the SSD is limited.
We expect that a faster SSD (or SSD RAID) or larger memory
can more effectively reveal the QoS control.

I. Runtime Overhead Analysis

The runtime overhead of HybridSwap has two major com-
ponents: the time for checking the access tables to determine
the spatial locality of candidate sequences and the time for
searching access tables for sequences to be prefetched when
major page faults occur. Even though these operations are on

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Image CC Matrix

R
un

ni
ng

 T
im

e
(S

ec
on

ds
) With Trail Management

W/O Trail Management

Figure 7. Run times of the Image, CC, and Matrix benchmarks with and
without sequences-related operations invoked.

critical I/O time, the time overhead is inconsequential because
the time for operations on the in-memory data structure is
at least two orders of magnitude less than disk latency and
even SSD latency. In this section we quantitatively analyze
the overhead of HybridSwap. Instead of directly measuring
the overhead we measure the increase in program runtime
attributable to the sequence-related operations. More specif-
ically, we measure the runtimes of three selected benchmarks
(Image, CC, and Matrix) with RAID-Swap and compare them
to the runtimes with RAID-Swap with the function module
for these operations added. In the latter case, we ensure that
the operations be carried out as they do in HybridSwap. The
results are shown in Figure 7. The runtime overhead is less
than 1% on average for all the benchmarks.

V. SUMMARY AND CONCLUSIONS

We propose using a hard disk in addition to SSD to
support virtual memory in hosting swap space subject to two
constraints: significant write traffic to the swap space should
be directed to the disk to improve SSD lifetime, and the
performance of the hybrid swapping system should not be
significantly less than that of an SSD-only system.

Our design of such a system ensured that (1) temporal
locality is effectively exploited so that the memory is fully
utilized; (2) spatial locality is effectively exploited so that
the disk does not become a performance bottleneck; (3) the
swapping of pages to the SSD and to the hard disk is scheduled
such that the SSD is used only to serve page faults when it
can achieve better performance than the disk; and, (4) the use
of SSD and hard disk is coordinated so that the throughput
potential of the disk is realized but its access latency is avoided.

We implemented the proposed HybridSwap scheme in Linux
and experimentally compared HybridSwap to an SSD-only
solution and to an SSD/disk array as swap devices in Linux
using applications with diverse memory access patterns. Our
evaluation shows that HybridSwap can reduce writes to the
SSD by up to 40% with the system’s performance comparable
to that with pure SSD swapping.

ACKNOWLEDGMENT

This work was supported by US National Science Founda-
tion under CAREER CCF 0845711, CNS 1117772, and CNS
1217948. This work was also funded in part by the Accelerated

Strategic Computing program of the Department of Energy.
Los Alamos National Laboratory is operated by Los Alamos
National Security LLC for the US Department of Energy under
contract DE-AC52-06NA25396.

REFERENCES

[1] Alglib, a Cross-platform Numerical Analysis and Data Process-
ing Library, 2012. http://www.alglib.net/.

[2] J. Axboe. Completely Fair Queueing (CFQ) Scheduler, 2010.
http://en.wikipedia.org/wiki/CFQ.

[3] J. Axboe. Noop Scheduler, 2010. http://en.wikipedia.org/wiki/
Noop.

[4] A. Badam and V. S. Pai. SSDAlloc: Hybrid SSD/RAM Memory
Management Made Easy. In the 8th USENIX Symposium
on Networked Systems Design and Implementation. USENIX,
2011.

[5] A. T. Campbell. A Quality of Service Architecture. In Ph.D
Thesis, Computing Department, Lancaster University, 1996.

[6] F. Chen, D. Koufaty, and X. Zhang. Hystor: Making the Best
Use of Solid State Drives in High Performance Storage Systems.
In International Conference on Supercomputing, 2011.

[7] M. M. Franceschini and L. Lastras-Montano. Improving Read
Performance of Phase Change Memories via Write Cancellation
and Write Pausing. In the 16th IEEE International Symposium
on High Performance Computer Architecture, 2010.

[8] R. F. Freitas and W. W. Wilcke. Storage-class Memory: The
Next Storage System Technology. In IBM Journal of Research
and Development, 52, 2008.

[9] M. B. G. Soundararajan, V. Prabhakaran and T. Wobber. Ex-
tending SSD Lifetimes with Disk-based Write Caches. In the
8th USENIX Conference on File and Storage Technologies.
USENIX, 2010.

[10] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson,
E. Yaakobi, P. H. Siegel, and J. K. Wolf. Characterizing Flash
Memory: Anomalies, Observations and Applications. In the
42nd Annual IEEE/ACM International Symposium on Microar-
chitecture. IEEE/ACM, 2009.

[11] L. M. Grupp, J. D. Davis, and S. Swanson. The Bleak Future
of NAND Flash Memory. In the USENIX Conference on File
and Storage Technologies. USENIX, 2012.

[12] S. M. Hand. Self-paging in the Nemesis Operating System.
In the Third Symposium on Operating Systems Design and
Implementation, 1999.

[13] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka.
Write Amplification Analysis in Flash-based Solid State Drives.
In SYSTOR’09: The Israeli Experimental Systems Conference,
2009.

[14] Imagemagick, 2012. http://www.imagemagick.org/script/index.
php.

[15] T. Johnson and D. Shasha. 2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm. In
International Conference on Very Large Data Bases, 1994.

[16] S. Ko, S. Jun, Y. Ryu, O. Kwon, and K. Koh. A New
Linux Swap System for Flash Memory Storage Devices. In
International Conference on Computational Sciences and its
Applications, 2008.

[17] Memcached, 2011. http:/memcached.org/.

[18] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal,
E. Schares, F. Trivedi, E. Goodness, and L. R. Nevill. Bit
Error Rate in NAND Flash Memories. In IEEE International
Reliability Physics Symposium, 2008.

[19] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi. Operating
System Support for NVM+DRAM Hybrid Main Memory. In
the 12th Conference on Hot Topics in Operating Systems, 2009.

[20] M.Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Las-
tras, and B. Abali. Enhancing Lifetime and Security of PCM-
based Main Memory with Start-gap Wear Levelings. In the 42nd
Annual IEEE/ACM International Symposium on Microarchitec-
ture. IEEE/ACM, 2009.

[21] H. Payer, M. A. Sanvido, Z. Bandic, and C. M. Kirsch. Combo
Drive: Optimizing Cost and Performance in a Heterogeneous
Storage Device. In the 1st Workshop on Integrating Solid-state
Memory into the Storage Hierarchy, 2009.

[22] T. Pritchett and M. Thottethodi. Sievestore: A Highly-selective,
Ensembel-level Disk Cache for Cost-performance. In Proceed-
ing of 37th International Symposium on Computer Architecture.
ACM, 2010.

[23] J. Ren and Q. Yang. I-Cash: Intelligently Coupled Array of SSD
and HDD. In the 17th IEEE Symposium on High Performance
Computer Architecture, 2011.

[24] M. Saxena and M. M. Swift. FlashVM: Virtual Memory
Management on Flash. In Proceeding of the 2010 USENIX
Annual Technical Conference. USENIX, 2010.

[25] S. W. Schlosser, J. Schindler, S. Papadomanolakis, M. Shao,
A. Ailamaki, C. Faloutsos, and G. R. Ganger. On Multidimen-
sional Data and Modern Disks. In the 4th USENIX Conference
on File and Storage Technologies. USENIX, 2005.

[26] M. Srinivasan and P. Saab. Flashcache: a General
Purpose Writeback Block Cache for Linux, 2011.
https://github.com/facebook/flashcache.

[27] C. Wang, S. Vazhkudai, X. Ma, F. Meng, Y. Kim, and C. Eagel-
mann. NVMalloc: Exposing an Aggregate SSD Store as a
Memory Partition in Extreme-scale Machines. In The 26th IEEE
International Parallel and Distributed Processing Symposium,
2012.

[28] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A Durable and
Energy Efficient Main Memory using Phase Change Memory
Technology. In the 36th International Symposium on Computer
Architecture, 2009.

[29] X. Zhang, K. Davis, and S. Jiang. iTransformer: Using SSD
to Improve Disk Scheduling for High-performance I/O. In the
26th IEEE International Parallel and Distributed Processing
Symposium, 2012.

