
Freewrite: Creating (Almost) Zero-Cost Writes to SSD in
Applications

Chunyi Liu,†‡ Fan Ni,† Xingbo Wu,† Xiao Zhang,‡ Song Jiang†

†University of Texas at Arlington, Texas, USA ‡Northwestern Polytechnical University, Xi’an, China
†{chun.liu@uta.edu, fan.ni@mavs.uta.edu, xingbo.wu@mavs.uta.edu, song.jiang@uta.edu}

‡{corey@mail.nwpu.edu.cn, zhangxiao@nwpu.edu.cn}

ABSTRACT
While flash-based SSDs have much higher access speed than
hard disks, they have an Achilles heel, which is the service of
write requests. Not only is writing slower than reading but
also it can incur expensive garbage collection operations and
reduce SSDs’ lifetime. The deduplication technique can help
to avoid writing data objects whose contents have been on
the disk. A typical object is the disk block, for which a block-
level deduplication scheme can help identify duplicate ones
and avoid their writing. For the technique to be effective,
data written to the disk must not only be the same as those
currently on the disk but also be block-aligned.

In this work, we will show that many deduplication
opportunities are lost due to block misalignment, leading
to a substantially large number of unnecessary writes. As
case studies, we develop a scheme to retain alignments of the
data that are read from the disk in the file modifications by
using small additional spaces for two important applications,
a log-based key-value store (e.g., FAWN) and an LSM-tree
based key-value store (e.g., LevelDB). Our experiments show
that the proposed scheme can achieve up to 4.5X and 26% of
throughput improvement for FAWN and LevelDB systems,
respectively, with a less than 5% space overhead.

CCS Concepts
•Information systems → Data layout;

1. INTRODUCTION
Flash-based SSDs are high-performance storage devices

whose access speed is much faster than hard disks. Increas-
ingly more applications rely on its sustained high throughput
and low latency to provide performance-sensitive services.
These applications include databases [17, 14] and key-value
stores [9, 10, 2]. In addition to being power efficient,
a distinguished characteristic of SSDs is that they have
much lower access latency and their throughput is much less
sensitive to access sequentiality than hard disks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SYSTOR’17, May 22-24, 2017, Haifa, Israel
c© 2017 ACM. ISBN 978-1-4503-5035-8/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3078468.3078471

However, SSDs show an asymmetry between read and
write accesses in multiple aspects which complicates use of
the device. First, writes are slower than reads. For example,
writing and reading a 4KB page may take 200 µs and 25
µs, respectively [11, 1]. Writes entail identification of a
write address and updating the mapping table. Second,
the flash does not allow page overwrite. A page has to
be erased before new content can be written into it. Even
worse, the erasure operation has to be conducted at a unit
of block, which is much larger than a page (a block can have
64 or more pages [2]), and erasing a block takes around
1.5ms. If the block-level address mapping is used and a
write request is issued to overwrite a page in a block, all live
pages currently in the block must be migrated to an erased
block, adding cost to the service of the write request. Third,
writing can lead to expensive garbage collection operations,
which in turn can degrade write and read performance. This
issue is especially serious with lower-end SSDs whose over-
provisioning space is limited and for an SSD which is nearly
filled up. Garbage collection operations can also make SSD’s
performance less predictable [19]. Fourth, each flash page
has as low as a few thousands P/E (program/erase) cycles,
excessive writes compromise the SSD’s lifespan [21].

Deduplication is an effective approach to avoid writes to
the disk. Though it may compromise sequentiality of file
block layout on the disk [22], it is not a concern for SSDs
whose performance is less sensitive to the property. In many
scenarios, block-level deduplication, which partitions a file
into a number of fixed-size blocks and identifies duplicates
among the blocks, is preferred to file-level deduplication,
which attempts to find identical files, as the former is
more likely to find redundancy and thus reduces more
writes and saves more space [26]. Furthermore, block-level
deduplication can be deployed at a position in the I/O stack
close to the storage device [23, 7] or even within an SSD [6],
so that the benefit of deduplication can be transparently
received by the upper level software/applications.

While the block-level deduplication can potentially re-
move writes of redundant data to the disk, it requires the
redundant data to be of block unit(s) long and block-aligned.
A common on-disk data processing is to read files into the
memory, insert new data and/or modify/delete existing data
in the file, and finally write the updated files back to the disk.
Often this process is conducted at byte offset(s) not aligned
to the block boundaries. To keep data in a file contiguously
laid out, or maintain a compact data layout, one may have
to shift data not being updated in the file to make room
for new data or eliminate the space left by the deleted data.

However, these shifted data, which are not modified and still
have a copy on the disk, may become not block aligned and
the deduplication system has to treat them as new blocks
and also write them to the disk. One such scenario is that
a user may read a (large) database file and then insert a
new (small) record at the beginning of the file. This may
cause the entire file to be written to the disk even with the
deduplication functionality enabled.

To address the issue, we propose a design, named freewrite,
that allows discontinuity in the file data layout, or leaves
unused spaces, named bubbles, scattered in a file, so that the
data do not have to be shifted and can remain block-aligned
for the deduplication system to recognize the redundancy
and avoid corresponding writes. Rationale behind the
freewrite idea is that the time overhead for writing the
bubbles to the disk and the space overhead for storing the
bubble in the disk can be much smaller than those for
re-writing the redundant data. In addition, by leveraging
the deduplication system available at the lower level, appli-
cations can quickly incorporate freewrite to reduce writes
without introducing metadata for managing locations of
data blocks in their new layout. While overheads due to
introduction of bubbles are expected to be small, a design
challenge is to make sure that the benefit from reduction
of writes (substantially) exceeds the overheads and/or the
overheads are within limits specified by users.

In this paper we make the following three contributions:

• We identify an opportunity of reducing writes by
leveraging the block-level deduplication system readily
available in the kernel or in the SSD disk. By
restructuring in-memory data layout before the data
are written to the disk, we keep many redundant data
block-aligned and avoid their writes to the disk.

• We design the freewrite scheme and implement it
in two representative key-value stores (LevelDB and
FAWN) to maximize saving of writes with minimal
overheads.

• We have experimentally evaluated freewrite in the two
applications with workloads of various characteristics.
The measurements show that freewrite can improve
throughout by up to 26% in the LevelDB system, by
up to about 4.5X in the FAWN system.

2. THE DESIGN
The core idea of freewrite is to retain alignments of file

data that have not been updated after they are loaded
into the memory. To this end, we need to address three
issues. First, one has to recognize these un-updated data
and know where their original alignments are. Second, with
the knowledge, one needs to develop a scheme determining a
layout for the data to be written back so that the alignments
can be retained and correctness of the data access is not
compromised. Third, the overheads introduced by the
scheme must be less than the performance gain and they
can be capped by thresholds specified by users.

Freewrite can be implemented either in the kernel as a
new feature of the file system or in individual applications.
While an implementation in the file system can minimize
programmers’ efforts, it requires applications to disclose
regions of a file that have been updated, or to supply the
original files for the file system to derive knowledge about the

Island Bubble

0Offset (x4KB)

Before Update

After Update

After Update
w/ Bubble

Update Ops Insert OverwriteDelete Insert

1 2 3 4 5 6 7 8 9

Figure 1: Example of file layouts after updates with or without

using bubbles.

un-updated data. To this end, the POSIX interface would
have to be changed, which is undesirable. On the other
hand, only moderate effort is needed to incorporate freewrite
into applications, and the effort can be well justified by its
performance advantage.

A common procedure of processing data in the form of
files on the disk is to load files into memory, update the
files, and write the the updated files back to the disk,
either to overwrite original files or write into newly created
file(s). The update operations may be deletion of existing
data, insertion of new data into the file(s), and overwriting
existing data. While insertion and deletion do not modify
data currently in the files, they may change positions of un-
updated data in a file during the writeback, which probably
makes the un-updated data un-block-aligned. By placing
padding, which we name bubbles, into the file(s), freewrite
can possibly keep them block-aligned for the deduplication
at the lower level to reduce writes. Often the data processing
is merely to re-organize the data with limited updates, so
the reduction of writes due to the re-alignment can be
significant.

To this end, freewrite takes two steps. First, it tracks all
the updates that take place in each block retrieved from the
on-disk file. When the data are ready to be written back,
we know which blocks are modified, such as the first, fourth,
and sixth blocks illustrated in Figure 1(Before Update), and
which are not, such as the second, third, fifth, and seventh
blocks in Figure 1(Before Update). To accommodate the
updates, the current practice is to maintain a compact
layout as illustrated in Figure 1(After Update), in which
data are shifted to any byte-offsets in the file without leaving
any holes or garbage data in the written file. While the
unmodified blocks have copies on the disk, their alignments
can be compromised due to the compact layout, leading
to unnecessary writes. We name one or more contiguous
unmodified blocks surrounded by modified blocks or at the
file ends an island. With large islands, wastage of disk
bandwidth and increase of service time can be significant.
An island can stay block-aligned if a bubble (smaller than
a block) is inserted, as illustrated in Figure 1(After Update
with Bubbles).

Assume a block is of B bytes, a bubble is of f ∗ B bytes
(where 0 < f < 1), and the island immediately following the
bubble is of k blocks large (where k = 1, 2, ...). By inserting
such a bubble, freewrite removes writes of kB bytes at the
expense of additional write of f ∗ B bytes and extra space
of f ∗ B bytes on the disk. Freewrite has two thresholds to
limit the overheads. One is to cap costs of individual bubbles

(f/k), named bubble cap, and the other is to cap total cost
of bubbles in a file ((

∑n
i=1 fi)∗B/S, where n is bubble count

and S is size of the file being written), named global cap. To
be effective freewrite prefers a larger bubble cap to have a
higher chance to retain islands’ alignments, while the user
wants to impose a limit on the total overheads with a pre-
determined global cap. Once either cap is reached, freewrite
does not insert a bubble before the current island. Note that
there is at most one bubble between two adjacent islands.
For file data whose updates and write-backs are concurrent,
we use a buffer to hold the data pending for writing until an
island is identified if the writes are asynchronous. Otherwise,
recent island sizes are used to estimate the next one.

One complexity with freewrite is that metadata about
the bubbles’ locations and sizes must be recorded so that
the bubbles can be removed when the file is read and be
discounted when file offsets are computed. Persistency of
the metadata incurs additional overhead. Fortunately, in
many applications that maintain records in the file, bubbles
are simply invalid records and no additional metadata
maintenance is required.

3. IMPLEMENTATION
In this section, two key-value stores are used as examples

to explain how freewrite can be adopted to avoid SSD writes.

3.1 Use of Freewrite in LevelDB for Higher
Compaction Efficiency

LevelDB is a popular open-source key-value (KV) store
based on log-structured merge (LSM) trees and plays a
critical role in many data-intensive applications [5, 13,
12]. It uses a log structure to support high-performance
sequential writes. However, LevelDB has to pay a very
high cost to incrementally sort KV items distributed in
various levels of a tree structure, or to perform compaction
operation, to maintain an acceptable read performance [25].
Specifically, each level consists of a sequence of KV items
sorted by their keys and segmented into one or a number
of files, each of which is named an SSTable and is of about
the same size (e.g., 2MB). When both are filled, Level k+ 1
can be ten times as large as Level k (k = 1, 2, ...). A
compaction operation is to read one SSTable from Level k
and multiple SSTables from Level k+1 covering a similar key
range, merge-sort the two sorted lists of items, and write the
resulting sorted list to the disk as multiple new SSTables.
In this process, new KV items from Level k may be inserted
into the list at Level k+1, and KV items at Level k+1 may
be deleted by special DELETE KV items, or be replaced
by items with the same keys from Level k. While the list
at Level k + 1 can be much longer than that at Level k
(by up to ten times), we apply freewrite on the list at Level
k+ 1 to minimize writes of its un-updated data back to the
disk. The incorporation of freewrite is straightforward. As
each KV item contains its size, freewrite does not need to
track bubbles’ positions in a file. Because LevelDB records
KV items’ positions in corresponding SSTable files and uses
them to locate the items, freewrite does not need to track the
bubble sizes. In addition, the way for LevelDB to maintain
its on-disk metadata is not changed.

3.2 Use of Freewrite in FAWN for Higher
Garbage Collection Efficiency

FAWN is a key-value store whose KV items are persis-
tently stored on an on-flash data log file [2]. The item
locations, or offsets in the log file, are tracked by an in-
memory index structure, which is a hash table. The index
can be rebuilt from the data log even if it is not persisted
immediately. To this end, upon a delete request FAWN
appends a DELETE marker at the log tail to invalidate the
corresponding item in the log. In the log-structured store,
any update operations for servicing delete and overwrite
requests leave reclaimable spaces, or trash, in the log.
Periodically garbage collection is carried out to copy all
valid items to a new log file and then remove the old
log file. In the process, some physical disk writes can be
removed by a block-level deduplication if un-updated data
can keep their block alignments in the old log. Respecting
the two thresholds (bubble cap and global cap), freewrite
opportunistically inserts bubbles into the new log to keep
selected data blocks aligned. Similar to that in LevelDB,
freewrite in FAWN does not need to maintain its own
metadata about bubble locations and sizes. Instead, each
bubble is self-identifiable by following a regular KV item’s
format with a special key that is outside of the valid key
range. A side effect of the approach is that bubbles smaller
than a key size cannot be used.

As files with bubbles inserted by freewrite cannot be
directly used by programs unaware of the new file format,
we built a tool to remove bubbles from a file and turn it into
a regular one. For files constantly updated in a certain time
period, freewrite’s advantage can be substantial if bubbled
are allowed in the period.

4. PERFORMANCE EVALUATION
To evaluate freewrite’s performance, we implemented it

into LevelDB [13] and FAWN [2], and extensively evaluate
them to reveal its performance behaviors.

4.1 Experiment Setup
For the evaluation of freewrite in LevelDB, we instrument

LevelDB 1.1 on its compaction operation to enable freewrite.
In the experiments, the key size is fixed at 8 bytes. The
value size of each item is 512 bytes unless stated otherwise.
Each SSTable is 2MB large, and we send PUTs (writes)
requests to the system until the KV store reaches 1GB.
Among the PUTs, there are about 4% requests for repeated
keys, which represent overwrites, or equivalently delete and
then insert operations. A LevelDB store of 1GB usually
has four levels, where compaction operations occur between
every two adjacent levels. For the evaluation of freewrite in
FAWN, we implement a prototype for a single server. We
place the same workloads on the FAWN system as those on
the LevelDB system. The measurements were taken after
the store is created and when garbage collection is initiated.
Unless stated otherwise, we set bubble cap at 12.5%, or 512B
out of a 4KB block size, and the global cap is set at 5% of
the total data size. To enable deduplication at the block
layer, we use Dmdedup [23], a device mapper target in the
kernel (Linux v4.7.1 in). The experiments were conducted
on a Dell R630 server with two Xeon E5-2680v3 CPUs, each
has twelve cores and 30MB LLC. The server is equipped
with 128GB DDR4 memory, and a Samsung 840 EVO 1TB
SSD.

To show freewrite’s effectiveness for improving applica-
tions’ performance with various access patterns, we use three

key distributions in the workloads. In the first workload,
all keys are uniformly distributed in a given key range.
In the second workload, keys are also distributed in the
range. However, they are clustered. Within each cluster
they are 20 items of continuous keys. This represents the
workload scenario where an object, such as a database file,
is split into smaller KV items for storage with data spatial
locality preserved. Google’s BigTable is such an example [5].
The third workload is a mixture of the above two key
distributions, where there are five uniformly distributed keys
between every two key clusters. Unless stated explicitly, the
experiment results are collected with the mixed workload in
following discussions.

4.2 Experiment Results
Below we present the experiment results on the two

systems with different workloads.

Throughput with different access patterns.
Figure 2 shows the throughput and total amount of

data written to the disk, including those from users and
caused by compaction operations, in LevelDB with and
without freewrite. In the experiment the highest throughput
improvement (about 22%) is seen with the workload of
clustered keys, in which updates are concentrated in some
smaller ranges and it is more likely that blocks are left
entirely un-updated and freewrite can keep their alignments
by inserting bubbles to remove their writes. In contrast,
with a purely uniform key distribution, a data block at Level
k + 1 is more likely to receive update(s). From Figure 2b
we can see that a higher percentage of data (about 24%)
are kept from being written to the disk with the workload
of clustered keys.

Similar trend is observed in the FAWN system in its
GC operations shown in Figure 3. However, the through-
put improvement and reduction of data written to the
disk are much more significant (by up to 4.5X and 8.2X,
respectively). One reason is that the measurements for
the LevelDB systems include the initial execution phase
where few compaction operations are triggered. For the
FAWN systems the measurements are specifically about the
efficiency of the GC operation.

To understand the impact of freewrite on the performance
of LevelDB in the different phases of the store building, we
show its throughput at different execution time periods in
Figure 4. At the beginning, there is little difference between
the systems with and without freewrite because there are
few compaction operations at this time. When the store
grows, the compaction operations are more frequent, and
the throughput decreases significantly due to the high write
amplification introduced by the compaction (about 20 in
our measurements as shown in Figure 2b). At this time,
freewrite helps to improve the throughput as some blocks’
writing can be removed. With freewrite, the execution time
of building a 1GB LevelDB store is reduced by about 21%
(from about 683 seconds to about 539 seconds).

Throughput with different KV item sizes.
To understand impact of KV item size on the effectiveness

of freewrite, we change the value size from 128 bytes to 1K
bytes in the experiments for LevelDB and FAWN. Figure 5a
shows the throughput and amount of data written to the
disk with different value sizes for the LevelDB systems. The

Uniform Clustered Mixed0
500

1000
1500
2000
2500
3000
3500

Th
ro

ug
hp

ut
 (#

Re
qs

/S
ec

)

LevelDB with Freewrite
Stock LevelDB

(a) Throughput

Uniform Clustered Mixed0

5

10

15

20

25

Da
ta

 W
rit

te
n

(G
B)

LevelDB with Freewrite
Stock LevelDB

(b) Total Data Written

Figure 2: Throughput and amount of data written to the
disk in LevelDB with and without freewrite for different
access patterns.

Uniform Clustered Mixed0k
250k
500k
750k

1000k
1250k
1500k
1750k
2000k

Th
ro

ug
hp

ut
 (#

Re
qs

/S
ec

)

FAWN with Freewrite
Stock FAWN

(a) Throughput

Uniform Clustered Mixed0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Da
ta

 W
rit

te
n

(G
B)

FAWN with Freewrite
Stock FAWN

(b) Total Data Written

Figure 3: Throughput and the amount of data written to
the disk in FAWN with and without freewrite for different
access patterns.

highest improvement, which is about 26%, is achieved with
a reduction of about 29% of written data at the value size of
1KB. Figure 6 shows the throughput and amount of written
data for the FAWN systems. The performance trend is
similar, except that the improvement is more significant
for FAWN. The highest improvement is about 2.5X and
more than 75% of written data are removed when the
item size is 1KB. When the KV item size increases, the
number of updates in each compaction becomes smaller and
fewer blocks are updated. Correspondingly more blocks are
un-updated and are available for freewrite to retain their
alignments and to remove their writing.

Sensitivity analysis.
Although inserting bubbles for keeping un-updated blocks’

alignments creates opportunities for deduplication, it may
increase I/O and space overheads. While we keep the global
cap at a default 5%, we vary bubble cap, or the allowed
maximum bubble size in term of its percentage of the block
size, to see its impact on throughput improvement and total
space overhead for the FAWN system. The results are
shown in Figure 7a and Figure 7b, respectively. With a
larger bubble cap, there are more opportunities to insert
bubbles to keep un-updated data blocks aligned and then
de-duplicated (as shown in Figure 8), and accordingly there
are higher improvements. When the threshold is 96%, the
improvement of throughput is about 1.9X while still less
than 5% disk space is used for bubbles.

5. RELATED WORK
The importance of reducing writes to the SSD to improve

I/O performance and to extend their lifespan are well
recognized and many efforts have been made. Addressing
the same issue as we do, studies related to this paper include
efforts on reducing write requests to the SSD and reusing
existing data on the SSD devices.

0 100 200 300 400 500 600
Time (s)

5k

10k

15k

20k

25k

Th
ro

ug
hp

ut
 (#

Re
qs

/S
ec

)

Stock LevelDB
LevelDB with Freewrite

Figure 4: Throughput of the LevelDB systems with
and without freewrite for the workload with mixed key
distribution at different phases of the execution.

128 256 512 1K
KV Value Size (bytes)

0k

1k

2k

3k

4k

5k

Th
ro

ug
hp

ut
 (#

Re
qs

/S
ec

)

LevelDB with Freewrite
Stock LevelDB

(a) Throughput

128 256 512 1K
KV Value Size (bytes)

0

5

10

15

20

25

30

Da
ta

 W
rit

te
n

(G
B)

LevelDB with Freewrite
Stock LevelDB

(b) Total Data Written

Figure 5: Throughput and amount of data written to the
disk in the LevelDB systems with and without freewrite with
different value sizes.

Efforts on Reducing Writes to the SSD.
Realizing small updates to on-SSD blocks may not justify

re-writing entire blocks, I-CASH redirects the updates to
the hard disk and uses the SSD to store infrequently
updated and mostly read blocks [28]. Similarly, Delta-FTL
redirects small updates, the deltas, to an assumed non-
volatile memory and leverages locality in the workloads to
merge multiple writes into one block write [24]. In the work
reading one block may require two reads to different devices
and re-construction of the block. Instead of re-directing
small updates, Griffin identifies and redirects access of
frequently updated blocks to the hard disk to reduce writes
to the SSD [21]. However, as the hard disk has a much worse
I/O performance than the SSD, performance of applications
is compromised. In contrast, leveraging existing block-level
deduplication freewrite trades a fraction of SSD space for
potentially much reduced writes.

Efforts on Reusing Data on the SSD.
Essentially freewrite reuses data currently on the SSD to

avoid writes. Data deduplication has been widely used in
various storage systems to achieve the same goal [15, 6,
18]. For this effort made at the block level freewrite is a
complementary technique to create opportunities for it to be
more effective. If the constraint of block-based operations
is removed, one alternative to freewrite is to introduce
content-defined-chunking (CDC) based deduplication [3, 16,
27] into applications to detect, manage, and avoid dupli-
cations at variable-sized chunks. However, the CDC-based
duplication detection and management of metadata can be
very expensive [8]. Compared to freewrite, modifications
to applications required by CDC-based deduplication can
be extensive. VT-trees [20] uses a variant of LSM-tree to
avoid copying of unchanged data blocks from old SSTables
to new ones, so that writes during compactions can be
reduced. However, it needs to maintain an additional layer

128 256 512 1K
KV Value Size (bytes)

0k

200k

400k

600k

800k

1000k

Th
ro

ug
hp

ut
 (#

Re
qs

/S
ec

)

FAWN with Freewrite
Stock FAWN

(a) Throughput

128 256 512 1K
KV Value Size (bytes)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Da
ta

 W
rit

te
n

(G
B)

FAWN with Freewrite
Stock FAWN

(b) Total Data Written

Figure 6: Throughput and amount of data written to the
disk in the FAWN systems with and without freewrite with
different value sizes.

6% 12% 24% 48% 96%
Bubble Cap

0
25
50
75

100
125
150
175
200

Th
ro

ug
hp

ut
 Im

pr
ov

em
en

t(%
)

(a) Thruput Improvement

6% 12% 24% 48% 96%
Bubble Cap

0

1

2

3

4

W
as

te
d

Bu
bb

le
 S

pa
ce

(%
)

(b) Space Overhead

Figure 7: Throughput improvements and the space overhead
in terms of percentage of the disk space used for storing
bubbles with different bubble caps in the FAWN system.
The workload with the mixed key distribution.

of index structures in the application and may require
extensive modifications to the application. In contrast,
freewrite leverages readily available off-the-shelf block-level
deduplication at the storage system to minimize extra efforts
in the application to reduce writes, and thus makes the
technique highly applicable. NetApp [4] proposed to pad
zeros at the end of modified files in a file backup volume
to retain other files’ block alignment for effective fixed-size
block deduplication. The padded zeros serve a purpose
similar to that of bubbles in freewrite. However, insertion of
bubbles is not limited at the end of a file to only retain
alignments of files following it. For large files, retaining
alignments for blocks within a file is also important. To this
end, freewrite produces more deduplication opportunities
by using a more intelligent bubble management technique
within individual files.

6. CONCLUSIONS
In the paper, we propose freewrite to enable almost zero-

cost writes to SSDs. With freewrite, alignments of un-
updated blocks to be written to the disk are retained, which
creates deduplication opportunities for the readily available
block-level deduplication system at a lower system level and
significantly reduces writes to the SSD. We experimentally
demonstrate freewrite’s efficacy in two widely used KV store
systems. The results show that it achieves substantial
performance improvements with low space overheads.

7. ACKNOWLEDGMENTS
We are grateful to the paper’s shepherd, Philip Shilane,

and anonymous reviewers who helped to improve the paper’s
quality. This work was supported by US National Science
Foundation under CNS 1527076 and partially by NSF of
China under Grant No.61472323.

6% 12% 24% 48% 96%
Bubble Cap

0

10

20

30

40

Pe
rc

en
ta

ge
 o

f
bl

oc
ks

 w
ith

 b
ub

bl
e

(%
)

Figure 8: The percentage of blocks with bubble inserted
when different bubble caps are used.

8. REFERENCES
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,

M. Manasse, and R. Panigrahy. Design Tradeoffs for
SSD Performance. In USENIX 2008 Annual Technical
Conference, ATC’08, pages 57–70, 2008.

[2] D. G. Andersen, J. Franklin, M. Kaminsky,
A. Phanishayee, L. Tan, and V. Vasudevan. FAWN: A
Fast Array of Wimpy Nodes. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems
principles, pages 1–14. ACM, 2009.

[3] A. Z. Broder. Some Applications of Rabin’s
Fingerprinting Method. In Sequences II, pages
143–152. Springer, 1993.

[4] P. Buschman. Deduplication and Incremental
Acceleration in Bacula with NetApp Technologies,
2012.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A Distributed Storage System for
Structured Data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

[6] F. Chen, T. Luo, and X. Zhang. CAFTL: A
Content-aware Flash Translation Layer Enhancing the
Lifespan of Flash Memory Based Solid State Drives.
In Proceedings of the 9th USENIX Conference on File
and Stroage Technologies, 2011.

[7] Z. Chen and K. Shen. Ordermergededup: Efficient,
Failure-Consistent Deduplication on Flash. In 14th
USENIX Conference on File and Storage Technologies
(FAST 16), pages 291–299, 2016.

[8] Y. Cui, Z. Lai, X. Wang, N. Dai, and C. Miao.
Quicksync: Improving Synchronization Efficiency for
Mobile Cloud Storage Services. In Proceedings of the
21st Annual International Conference on Mobile
Computing and Networking. ACM, 2015.

[9] B. Debnath, S. Sengupta, and J. Li. FlashStore: High
Throughput Persistent Key-Value Store. Proceedings
of the VLDB Endowment, 3(1-2):1414–1425, 2010.

[10] B. Debnath, S. Sengupta, and J. Li. SkimpyStash:
RAM Space Skimpy Key-Value Store on Flash-based
Storage. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data,
pages 25–36. ACM, 2011.

[11] C. Dirik and B. Jacob. The Performance of PC
Solid-State Disks (SSDs) As a Function of Bandwidth,
Concurrency, Device Architecture, and System
Organization. In Proceedings of the 36th Annual
International Symposium on Computer Architecture,
ISCA ’09, pages 279–289. ACM, 2009.

[12] Facebook. RocksDB. http://rocksdb.org/, 2013.

[13] S. Ghemawat and J. Dean. Leveldb.

https://github.com/google/leveldb, 2011.

[14] W.-H. Kang, S.-W. Lee, B. Moon, Y.-S. Kee, and
M. Oh. Durable Write Cache in Flash Memory SSD
for Relational and NoSQL Databases. In Proceedings
of the 2014 ACM SIGMOD international conference
on Management of data, pages 529–540. ACM, 2014.

[15] J. Kim, C. Lee, S. Lee, I. Son, J. Choi, S. Yoon, H.-u.
Lee, S. Kang, Y. Won, and J. Cha. Deduplication in
SSDs: Model and Quantitative Analysis. In Mass
Storage Systems and Technologies (MSST), 2012
IEEE 28th Symposium on, pages 1–12. IEEE, 2012.

[16] E. Kruus, C. Ungureanu, and C. Dubnicki. Bimodal
Content Defined Chunking for Backup Streams. In
Proceedings of the 8th USENIX Conference on File
and Storage Technologies, FAST’10, pages 18–18,
Berkeley, CA, USA, 2010. USENIX Association.

[17] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W.
Kim. A Case for Flash Memory SSD in Enterprise
Database Applications. In Proceedings of the 2008
ACM SIGMOD international conference on
Management of data, pages 1075–1086. ACM, 2008.

[18] D. Meister and A. Brinkmann. dedupv1: Improving
Deduplication Throughput using Solid State Drives
(SSD). In Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, pages 1–6.
IEEE, 2010.

[19] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and
Y. Wang. SDF: Software-Defined Flash for Web-scale
Internet Storage Systems. SIGARCH Comput. Archit.
News, 42(1):471–484, Feb. 2014.

[20] P. Shetty, R. P. Spillane, R. Malpani, B. Andrews,
J. Seyster, and E. Zadok. Building
Workload-Independent Storage with VT-trees. In 11th
USENIX Conference on File and Storage Technologies
(FAST 16), pages 17–30. USENIX Association, 2013.

[21] G. Soundararajan, V. Prabhakaran, M. Balakrishnan,
and T. Wobber. Extending SSD Lifetimes with
Disk-based Write Caches. In Proceedings of the 8th
USENIX Conference on File and Storage
Technologies, FAST’10. USENIX Association, 2010.

[22] K. Srinivasan, T. Bisson, G. Goodson, and
K. Voruganti. iDedup: Latency-Aware, Inline Data
Deduplication for Primary Storage. In Proceedings of
the 10th USENIX Conference on File and Storage
Technologies, FAST’12, pages 24–24, Berkeley, CA,
USA, 2012. USENIX Association.

[23] V. Tarasov, D. Jain, G. Kuenning, S. Mandal,
K. Palanisami, P. Shilane, S. Trehan, and E. Zadok.
Dmdedup: Device Mapper Target for Data
Deduplication. In Ottawa Linux Symp., Ottawa,
Canada, 2014.

[24] G. Wu and X. He. Delta-FTL: Improving SSD
Lifetime via Exploiting Content Locality. In
Proceedings of the 7th ACM european conference on
Computer Systems, pages 253–266. ACM, 2012.

[25] X. Wu, Y. Xu, Z. Shao, and S. Jiang. LSM-trie: an
LSM-tree-based Ultra-Large Key-Value Store for
Small Data. In Proceedings of the 2015 USENIX
Conference on Usenix Annual Technical Conference,
pages 71–82. USENIX Association, 2015.

[26] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane,
Y. Hua, M. Fu, Y. Zhang, and Y. Zhou. A

Comprehensive Study of the Past, Present, and Future
of Data Deduplication. Proceedings of the IEEE,
104(9):1681–1710, 2016.

[27] W. Xia, H. Jiang, D. Feng, L. Tian, M. Fu, and
Y. Zhou. Ddelta: A Deduplication-inspired Fast Delta
Compression Approach. Performance Evaluation,
79:258–272, 2014.

[28] Q. Yang and J. Ren. I-CASH : Intelligently Coupled
Array of SSD and HDD. In High Performance
Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on. IEEE, 2011.

