
ThinDedup: An I/O Deduplication Scheme that
Minimizes Efficiency Loss due to Metadata Writes

Fan Ni†, Xingbo Wu⊥, Weijun Li‡, Song Jiang†
†University of Texas at Arlington, Arlington, Texas, USA ⊥University of Illinois at Chicago, Chicago, Illionois, USA

‡Shenzhen Dapu Microelectronics Co. Ltd, Shenzhen, China
†fan.ni@mavs.uta.edu address, ⊥wuxb@uic.edu, ‡liweijun@dputech.com, †song.jiang@uta.edu

Abstract—I/O deduplication is an important technique for
saving I/O bandwidth and storage space for storage systems.
However, it requires an additional level of address indirection,
and consequently needs to maintain corresponding metadata.
To meet requirements on data persistency and consistency, the
metadata writing is likely to make deduplication operations much
fatter, in terms of amount of additional writes on the critical
I/O path, than one might expect. In this paper we propose to
compress the data and insert metadata into data blocks to reduce
metadata writes. Assuming that performance-critical data are
usually compressible, we can mostly remove separate writes of
metadata out of the critical path of servicing users’ requests, and
make I/O deduplication much thinner. Accordingly the scheme is
named ThinDedup. In addition to metadata insertion, ThinDedup
also uses persistency of data fingerprints to evade enforcement of
write order between data and metadata. We have implemented
ThinDedup in the Linux kernel as a device mapper target to
provide block-level deduplication. Experimental results show,
compared to existing deduplication schemes, ThinDedup achieves
(much) higher (up to 3X) I/O throughput and lower latency
(reduced by up to 88%) without compromising data persistency.

Index Terms—Deduplication, compression, flush, consistency

I. INTRODUCTION

I/O Deduplication has been widely used in storage systems
for saving storage space [1]–[4]. With data growth at an
explosive rate, deduplication plays an important role at var-
ious computing environments, including data centers, portable
devices, and cyberphysical systems. Deduplication in primary
storage has “cascading benefits across all tiers”, contributing
to reduction of network and I/O loads to other storage tiers and
of space demand on all the tiers [5]. In addition, advantages
of inline deduplication are also well recognized [3]. It save
disk space and disk bandwidth in the first place.

However, even with these clear benefits inline deduplication
is rarely deployed for performance-sensitive primary storage
systems in production systems [3]. There are two main con-
cerns from the user side. One is degraded read performance
due to compromised locality. When data are deduplicated
on hard disks (HDDs), sequentiality of data layout can be
disrupted, leaving one or even multiple disk seeks during
originally sequential reads. This issue has been well addressed
by the iDedup scheme by performing selective deduplication
to retain data spatial locality [3]. The other concern, which

can be more challenging to tackle, is additional writes for
persistency of deduplication metadata.

Deduplication systems have to maintain mappings from
logical address space exposed to users of the storage system to
the physical address space supported by the storage devices1.
In particular the mapping is from a logical block number
(LBN) to a physical block number (PBN) for block-level
deduplication. To service a synchronous write request, the
corresponding address mapping must be persisted onto the
disk even when the data is deduplicated. In addition to address
mappings, there are other metadata whose persistency can be
expensive, including mapping between a data block’s finger-
print and its physical address, and a data block’s reference
count indicating number of logical block addresses mapped to
it. Furthermore, frequency of updating the metadata is high.
In many deduplication systems, out-of-place block writing is
used to enable efficient maintenance of consistency between a
block’s content and its fingerprint [3], [6], [7]. By arranging
the data of the out-of-place writes into a log, slow random
accesses can be turned into fast sequential ones. These benefits
come at the cost of high metadata maintenance cost – every
write causes a new LBA to PBA address mapping.

For high persistency and strong consistency of the system,
immediate persistency of the metadata is required, which poses
significant challenges to use of inline deduplication in the
primary storage. First, the metadata are small compared to
the data block size. Writing them through the block interface
of disks can introduce significant write amplification. Second,
many today’s applications prefer to quickly persist user data to
minimize chances of losing them in a trend where concern on
user experience exceeds that on consumption of resources [8].
This may neutralize the effort of collectively writing metadata
through batched service of requests for high I/O efficiency and
make metadata I/O even more expensive. Third, metadata may
be retained in non-volatile memory without being immediately
persisted on the disks. However, this requires special hardware
support, such as supercapacitor-backed RAM, which may not
be available. It is desired that a general-purpose solution does
not assume availability of such supports while still achieving
similar performance and persistency. Fourth, to maintain crash
consistency between metadata and data, one has to pay extra

1In this context the physical address is distinct from the one internal to
the storage devices. It refers to a logical address in the linear address space
exposed by the device(s)978-1-5386-6808-5/18/$31.00 ©2018 IEEE

cost to apply approaches such as journaling, shadowing-based
atomic write, or flush-ordered writes. These approaches incur
expensive disk flush operations and/or additional writes.

In this work we propose a deduplication scheme, named
ThinDedup, to address the challenges without requiring any
special hardware supports. The idea is to compress the data
in data blocks to make room for holding (critical) metadata.
Because the metadata are hidden in the data blocks, they
can be immediately persisted with data without concerns of
amplified write cost, increased latency, and frequent use of
flushes. To further reduce use of flushes for keeping data
and metadata order, we always store address mapping and
signature about the same data block together to enable non-
ordered writes of data and metadata. We note that in the
workloads of an online primary storage it is more common
to have data blocks that can be compressed [9]. In addition,
as we will show, to be effective ThinDedup only needs a small
percentage of data blocks to be slightly compressible.

In summary, we made three contributions: 1) We address the
metadata issue by hiding only critical metadata in compressed
data blocks, and collocating two types of metadata, address
mapping and corresponding fingerprint, to minimize use of
flushes. 2) We design ThinDedup that can take advantage of
compressibility of data blocks with minimally added compres-
sion cost and leaving only a relatively small percentage of
data blocks compressed. 3) We extensively evaluate ThinD-
edup and the results show that ThinDedup can provide up
to 3× throughput compared to state-of-the-art deduplication
schemes. Meanwhile, the latency can be reduced by up to
88% without compromising the throughput.

II. THE DESIGN OF THINDEDUP
While insertion of metadata into compressed data blocks is

an appealing idea, there are a number of challenges to address
to make it truly effective. First, compression consumes CPU
cycles, and reading compressed data requires decompression
operations. While these costs are negligible compared to the
access times of hard disks, they might become a perfor-
mance issue for faster devices, such as SSDs. The design
should ensure that overhead of data block compression and
decompression is sufficiently low compared to the I/O time
even for SSDs. Second, to reduce (de)compression cost only
necessary data blocks are compressed. With compressed and
uncompressed data blocks co-existing on the disk, they should
be able to be identified with minimal metadata support and
overhead, and be managed efficiently. Third, when a data block
is deduplicated or is incompressible, its metadata cannot be
inserted into the block itself. The design has to make sure
that success of metadata insertion does not strongly rely on
small deduplication ratio or large percentage of compressible
blocks.

A. Window-based Metadata Persistence

In a deduplication system, there are two critical issues that
must be addressed in its design, which are persistency and
consistency. For persistency, a synchronous write request is
acknowledged only when the data is persisted on the disk.

Disk

B

ThinDedup

DC

C

Compress/Decompress Layer

B C

Deduplication Layer

B

C-Zone
A D CU-Zone

Flush Window

Data Block
Metadata

B

A

(a) Case I

Disk

B

ThinDedup

DC

Compress/Decompress Layer

B C

Deduplication Layer

B

C-Zone
A DU-Zone

Flush Window

Data Block
Metadata

C

B C

A

(b) Case II
Fig. 1: Cases of serving write requests in a flush window in
ThinDedup where explicit metadata persisting is avoided. There are
two cases based on the deduplication ratio and the compressibility of
blocks in a window. In the figure, four data blocks A, B, C, and D
in the same window are issued to ThinDedup system.

For consistency, with a loss of in-memory data structure,
possibly due to system crash, at any time, all data and
metadata on the disk must remain consistent to each other.
While immediate persistency and consistency can be too
expensive to achieve, we use window-based batch persistency
and fingerprint-assisted consistency in ThinDedup.

In ThinDedup, all incoming write requests are buffered in
memory until the total number of data blocks reaches a pre-
defined number threshold or the interval since the first request
arrives in the buffer reaches a time threshold. The window
size is defined by either of the thresholds, whichever reaches
first. At the end of a window, we calculate total amount of
metadata (except reference count of physical blocks) to be
updated, and select a data block for compression. If the block
can be compressed and the extra space made available by
the compression is large enough to hold the metadata, all
the metadata are inserted into the block (see Fig. 1a). If the
extra space is not large enough, only part of them is inserted.
Whenever there are still metadata remaining to be inserted,
another block is selected for compression. This process is
repeated until all metadata are inserted (see Fig. 1b), or all
the data blocks have been tried.

After this, all (compressed and uncompressed) blocks in the
window are written to the disk without using flushes to enforce
a particular order between them for high disk efficiency. If
there still exist some metadata that cannot be inserted into
data blocks, they will stay in their respective metadata blocks
and be written to the disk (see Fig. 2). After submitting the
block writes to the disk, ThinDedup issues a flush command
to the disk to make sure all the blocks are persisted. Only
after the flush is complete, the write requests that had been
buffered in the window are acknowledged indicating the data
have been safely written.

This design has several efforts on reducing I/O costs. First,
persistency with a window of data blocks improves write
locality exploited by the I/O scheduler. Second, with such a
window of data blocks, it would be relatively easy to find one
or more blocks that can be compressed to receive metadata,
even when deduplication ratio is high. Third, when data blocks

Disk

B

ThinDedup

DC

Compress/Decompress Layer

B C

Deduplication Layer

C-Zone
A DU-Zone

Flush Window

Data Block
Metadata

B C

B C

A

(a) Case I

Disk

B

ThinDedup

DC

Compress/Decompress Layer

Deduplication Layer

C-Zone
A DU-Zone

Flush Window

Data Block
Metadata

B C

A

(b) Case II
Fig. 2: Cases of serving write requests in a flush window in
ThinDedup where explicit metadata persisting is needed. There are
two cases based on the deduplication ratio and the compressibility
of blocks in a window. In the figure, four data blocks A, B, C, and
D in the same window are issued to ThinDedup system. In case I,
A and D are deduplicated and neither B nor C can be compressed,
and in case II, A, B, C and D are deduplicted and no data blocks are
written to disk in the window.

are well compressible, we can compress only one or a few
blocks for receiving all metadata associating with the writes in
the window and leave most blocks in a window uncompressed.
This has the potential to significantly reduce the compression
cost for higher write performance as well as the decompression
cost for higher read performance. Fourth, address mapping and
fingerprint about the same data block are stored together, either
inserted into a compressed data block or left in a metadata
block. Therefore, they will be atomically written to the disk.
Usually, a data block has to be written (persisted) before its
corresponding address mapping. This is often enforced with
a flush between the writes, a soft-update-style approach for
crash consistency [10]. However, by storing the data block’s
fingerprint together with the mapping entry ThinDedup allows
them to be persisted in any order without using a flush. This
doesn’t lead to a consistency issue. Assume that a system
crash happens when the mapping info is persisted but the
corresponding data block is not yet. As the mapping is stored
with the fingerprint, ThinDedup uses the fingerprint to verify
the data block at the address pointed to by the mapping and can
detect that the data block is not a valid one. Therefore, wrong
data will not be returned. Note that the address mappings and
fingerprints inserted into data blocks on the disk are not ready
for online use as they may not yet be reflected in on-disk data
structures regarding the deduplication’s metadata. However,
for a substantially long time period they are still in memory
for serving I/O requests before being forced out of memory.
Furthermore, after their persistency with the data blocks, they
will incrementally be committed to the data structure.

In a deduplication system a reference count is maintained
for each physical block tracking number of logical blocks
mapped to the physical block. Once the count is decremented
to 0, the physical block can be reclaimed for receiving new
data. Whenever a data block is updated, the old physical
block’s count cannot be decremented before incrementing new
physical blocks’s count and persistency of new data to prevent

data loss. Enforcing such an order for every update needs
many flushes. Instead, ThinDedup enforces the consistency
requirement in a much larger scale. For every certain (large)
number of windows ThinDedup first writes all increased
reference counts during the windows to the disk, followed with
a flush, and then writes all decreased counts. In this way, the
flush’s cost can be well amortized. A crash during the process
may leave inconsistency between reference counts and address
mappings. This is resolved by scanning the address mappings
touched during the windows.

B. Zone-based Data Persistence

ThinDedup has two types of data blocks to store on the
disk (compressed and uncompressed). However, a data block
itself cannot reveal its own type. Therefore, ThinDedup sets
up two types of space zone, each for holding blocks of
corresponding type. Specifically, C-Zone is to hold compressed
blocks with metadata inserted in them, and U-Zone is to hold
uncompressed (regular) data blocks. Figure. 1 and 2 show
examples how compressed and uncompressed data blocks are
stored in the C-Zone and U-Zone.

A zone holds a large number of blocks (e.g., a 4MB zone
can hold 1024 4KB blocks). We maintain a zone bitmap on the
disk, where each zone’s status is represented by two bits. There
are four possible statues: unallocated, U-Zone, uncommitted
C-Zone, and committed C-Zone. ThinDedup periodically (usu-
ally not during the period when the system is fully loaded)
writes the metadata embedded in the compressed blocks in
a C-Zone to the well-structured metadata area on the disk.
After the commitment, the C-Zone changes its status from
’uncommitted’ to ’committed’. Note that this commitment
usually does not involve reading the compressed blocks into
the memory, as recently used metadata are always retained in
the memory for high performance. Because a zone is relatively
large, the update of its status is frequent and the cost for
updating the status is very small.

The structured metadata area includes two arrays (an array
of logical-to-physical block address mapping entries and an
array of physical-address-to-reference-count entries) and a B+
tree for indexing fingerprints to their corresponding physical
addresses. However, they may not be up to date, as the newest
updates may be still only permanently stored in the C-Zones
and in the volatile memory. After an expected system crash,
the volatile updates are lost. Although the updates are also
available in the C-Zone(s), they are not yet well indexed and
readily usable. To recover the metadata, ThinDedup needs to
scan all compressed blocks that contain not-yet-committed
metadata to extract the metadata and commit them to the
metadata structure. Because zone statuses are synchronously
persisted, this scanning only needs to cover those zones whose
statuses are marked as ’uncommitted C-Zones’. Because C-
Zones are periodically committed, the zones that have to be
scanned during the recovery period is of small number and
ThinDedup’s impact on the recovery time is minimal.

The allocation of zone space is generally conducted in a
manner similar to that of a log-structured file. Whenever a

recently allocated zone is filled to its capacity with blocks of
the same type (either compressed or not), a new zone of the
same type is allocated. Zones are allocated sequentially and
the new zone is appended at the end of the log. Similar to a
log-structure file system, when serving a write to LBA that
has been mapped to a PBA ThinDedup does not overwrite
data in the PBA. Instead, it performs an out-of-place write
to a new PBA to ease the maintenance of metadata, in
particular, the consistency of a data block’s content and its
fingerprint. Correspondingly, reference count of the original
PBA block is decremented by one. When the count is reduced
to zero, space occupied by the corresponding block can be
reclaimed and reused. The common practice in log-structure
file systems for performing garbage collection in a selected
segment (equivalent to the zone in ThinDedup) is to copy all
live blocks out of the segment and make the entire segment
available for new allocations. However, ThinDedup does not
take the strategy to minimize metadata maintenance cost.
Migration of each live block can lead to a number of updates
on metadata, some of which may not be committed yet. These
metadata include LBA-to-PBA mappings, PBA-to-reference-
count entry, and fingerprint-to-PBA entry. As a major design
objective of ThinDedup is to minimize metadata write cost,
we leave the live blocks in a zone in place during space
reclamation and re-allocate the available space in the zone.
A downside of the strategy is that the spatial locality may be
compromised for sequential writes. While the impact is small
for SSD, it can potentially degrade I/O performance on the
hard disk. To this end, ThinDedup first selects zones with a
large number of contiguous idle blocks for space reclamation.
In the future, we will consider introducing operations for
defragmenting scattered idle spaces when the system is not
loaded. In the reuse of idle blocks in a zone, there are two
issues that have to be addressed effectively.

The first issue is about efficient maintenance of block status.
To determine whether a block is idle, we maintain a bitmap
for a zone, each bit for a block. The bitmap needs to be
up-to-date so that allocated blocks are not re-allocated until
their reference counts reach zero. For correctness and space
efficiency the bitmap needs to be updated whenever a block
is allocated or a block’s reference count turns into zero. The
bitmaps are small enough to be kept in memory and keeping
the maps in the memory up-to-date is efficient. However,
immediately updating them on the disk is not affordable in
ThinDedup. In theory, after a loss of up-to-date bitmaps in the
memory due to a power failure or system crash, the bitmaps
on the disk can be brought up to date by scanning all the
block mappings. However, such a recovery process can be too
long. To reduce number of zones that have to be scanned in
the recovery, we assign each zone a one-bit flag indicating
whether the zone’s in-memory bitmap is consistent to the one
on the disk (’clean’) or not (’dirty’). When a clean bitmap
is to be updated, ThinDedup changes its status to ’dirty’ and
synchronously write it to the disk. The following updates on
the bitmap will not incur any I/O operation until the bitmap
is scheduled to be persisted. Because of spatial locality in the

block write and allocation, the number of dirty bitmaps would
be limited. When an idle block in a committed C-Zone is
re-allocated and receives a new block of data, the zone must
change its status to ’uncommitted’ to reflect the fact that there
are embedded and uncommitted metadata in the zone. While
this status change also needs to be persisted, we co-locate the
bitmap and the commitment status about a zone and persist
them together to save an I/O operation.

When a compressed block is written into a committed C-
Zone, its embedded metadata is not yet committed. So the
second issue is how to efficiently distinguish blocks whose
embedded metadata have been committed from the new writ-
ten ones that have un-committed embedded metadata to avoid
committing them again. To this end, ThinDedup maintains a
clock for each type of metadata. The clock ticks when a new
metadata entry of the type is generated, and current clock
reading becomes a timestamp attached to the entry. When
each metadata entry has its unique timestamp, only an entry
with a larger timestamp can overwrite one with a smaller
timestamp during the commitment. When a C-Zone completes
its commitment and changes its status to ’committed’, for each
type of metadata it records the largest timestamp among all of
its blocks as the zone’s timestamp for this type. In this way,
new metadata can be easily recognized as their timestamps are
larger than the zone’s. When the zone is committed again, only
the new ones are considered for being committed. Because
there is a possibility that the metadata entries in the structured
metadata area can be newer ones, ThinDedup always compares
timestamps during the commitment to make sure that old
entries do not overwrite newer ones.

III. PERFORMANCE EVALUATION

We implemented ThinDedup at the generic operating system
block device layer as a device mapper target in Linux kernel
4.7.1. The design follows the basic block read/write interfaces
of Dmdedup [6]. We extensively conducted experiments on
the prototype to evaluate its performance.

A. Experiment Setup
In our evaluation, we use 4KB as block size and calculate a

128-bit MD5 value for each block as its fingerprint. The LBA
and PBA are 8 bytes, respectively, and an 8-byte timestamp
is used to serialize the metadata entries. Thus, the metadata
about a block write to be inserted in a compressed data block
is 40 Bytes (16B LBA→PBA+16B fingerprint+8B timestamp),
which is only about 1% of the block size. We use a fast
compression algorithm (LZ4 [11]) for data (de)compression.
On the server used in the evaluation, the algorithm can produce
about 700MB/s and 2.45GB/s throughputs for compressing
and decompressing 4KB blocks, respectively. Regarding win-
dow size, we test windows of different sizes in the evaluation.
As write requests are continuously fed into the system, we use
number of blocks requested for writing to define window size.
Zone size is 4MB. C-Zones start to be committed when there
are two or more uncommitted C-Zones in the system.

The experiments are conducted on a server with two Xeon
E5-2680v3 2.50GHz CPUs, each has twelve cores and 30MB

last-level cache. The server equips with 128GB DDR4 mem-
ory, a 320GB Western Digital Caviar Blue SATA disk and a
1TB Crucial/Micron SSD. For the hard disk, its 90th percentile
latencies of sequential and random writes of 4KB block are
8.33ms and 13.36ms, respectively. For the SSD device, the
latencies are 5.67ms and 5.71ms, respectively.

In the evaluation, we compare ThinDedup with three other
block-layer deduplication schemes. Among them, ideal rep-
resents an ideal (but unrealistic) scenario for producing the
optimal performance, where metadata are cached in memory
and only data blocks are written to the disk. OrderedWrites
is similar to ThinDedup except that its metadata are not
inserted into data blocks. Instead, at the end of a window,
all dirty data blocks are batch written to the disk, followed
by a flush to establish the order, and then all critical metadata
(mainly the block mappings) are batch written to the metadata
structure on the disk. This scheme represents the upper-bound
performance of the OrderMergeDedup [7] scheme, which uses
flushes to enforce order and uses I/O delay and merging to
exploit write locality. OrderedWrites limits the number of
flushes for ordering to only one and allows requests within
a window to be scheduled freely. However, OrderedWrites
does not always ensure metadata consistency on the disk.
After a crash, all metadata are restored to a consistent state
by scanning the persisted critical metadata. Dmdedup is an
open-source deduplication system using page shadowing to
maintain on-disk metadata consistency. It uses Linux’s on-disk
Copy-on-Write (COW) B-tree implementation to organize the
metadata, and each metadata update involves several metadata
page write operations and flushes. This scheme can keep the
metadata and data always consistent, and does not require a
recovery for consistency after a crash.

B. Experiment Results with Synthetic Workloads
We generate synthetic block write traces and issue them

continuously to each of the deduplication systems. For the
traces we test different window sizes, deduplication ratios and
compressibility ratios. The deduplication ratio is the ratio of
numbers of data blocks written to the disk before and after
the deduplication. The compressibility ratio is the ratio of data
blocks that can be compressed among all blocks in a window
to be written to the disk. A compression ratio of 1.25 means
about 20% of the block space can be compressed for holding
metadata. We also test random and sequential access patterns.
For random access, data blocks’ logic address is randomly
distributed in a 120GB address space. In the evaluation, the
experiments are conducted on both hard disk (HDD) and SSD.

Figure 3 shows the write throughput with the four dedu-
plication schemes using different window sizes with various
access patterns and storage devices. As shown in all cases
ThinDedup produces much higher throughput than that of
OrderedWrites and Dmdedup. In particular, with random ac-
cesses ThinDedup has a larger improvement than sequential
ones due to the fact that random accesses cause more meta-
data page writes and ThinDedup avoids most of them by
inserting the metadata in compressed data blocks. Generally,

using larger window size helps increase relative performance
advantage of ThinDedup as it is more likely to find data
blocks for compression to avoid expensive explicit metadata
writes. However, when the window is too large, for example
256 in Fig. 3, the improvement can become smaller as all
benefits from compression have been exploited by ThinDedup
while OrderedWrites and Dmdedup favor large windows. For
example, ThinDedup achieves the highest improvement when
window size is 64, which is about 3X compared to that of
OrderedWrites, and the improvement is 2.73X and 2.88X
when the window size is 32 and 128 respectively. With se-
quential access on the SSD, the improvements reduce to 1.9X
and 1.77X for 32 and 128 window size, respectively. While
data blocks are written sequentially, random access in the
logical address space does lead to random access on the disk.
Furthermore, sequential access helps reduce amplification of
metadata write, as multiple metadata entries are more likely
located in the same metadata blocks. This is why even on
SSD, which is less sensitive to access pattern, sequential
access receives a higher throughput than random access. In
comparison, Dmdedup consistently has the lowest throughput,
as it involves the largest number of metadata writes and flush
operations for strong consistency. Throughput of ThinDedup
is close to that of the Ideal’s deduplication. This is especially
the case with the use of SSD, as our measurements show
that ThinDedup removes more than 95% of the metadata
and the remaining metadata writes introduces relatively low
overhead. On the hard disk, write of the small amount of
leftover metadata produces a larger performance loss.

It is obvious that increasing window size can help substan-
tially increase throughput in all the systems. However, it also
deteriorates request latency, which measures the period from
the time when a request enters a scheduling window to the
time when the window of requests are serviced. Figure 4 shows
CDF curves of request latency with different window sizes for
the four systems on the hard disk. For a given window size,
ThinDedup has a latency much lower than OrderedWrites and
Dmdedup, and close to that of Ideal. With a larger window
size the latency can be significantly increased (though through-
put also greatly increases). For example, the 80th percentile
latencies of ThinDedup and OrderedWrites with a 32-block
window and random access are increased to 3.5X and 3.2X,
respectively, when the window size increases to 256. However,
Fig. 3a shows that ThinDedup has about the same throughput
(about 2000 blocks/sec) at a 32-block window as that of
OrderedWrites at a 256-block window. That indicates that
ThinDedup can achieve higher throughput without having to
significantly increase the window and compromising latency.
For sequential access, Fig. 3b shows that ThinDedup at a
32-block window has a throughput (about 2000 blocks/sec)
similar to that of OrderedWrites at 64-block window. However,
it can have a lower latency, as seen in Figs. 4c and 4d.

While throughputs of random access on SSD for ThinDedup
with a 8-block window and OrderedWrites with a 16-block
window are similar (about 2000 blocks/second), we show their
latency in Fig. 5. We find that this increase of window size

1 2 4 8 16 32 64 128 256
Window Size

0

1000

2000

3000

4000

5000

6000
T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(a) Random Access to HDD

1 2 4 8 16 32 64 128 256
Window Size

0

1000

2000

3000

4000

5000

6000

7000

8000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(b) Sequential Access to HDD

1 2 4 8 16 32 64 128 256
Window Size

0

5000

10000

15000

20000

25000

30000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(c) Random Access to SSD

1 2 4 8 16 32 64 128 256
Window Size

0

5000

10000

15000

20000

25000

30000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(d) Sequential Access to SSD
Fig. 3: Write throughput for varying window sizes. The deduplication ratio is 2 and compressibility ratio is 80%.

0 30 60 90 120 150 180

Latency (ms)

0

20

40

60

80

100

P
e
rc

e
n
ti

le
 (

%
)

Ideal

ThinDedup

OrderedWrites

Dmdedup

(a) Window size=32, Random

0 30 60 90 120 150 180

Latency (ms)

0

20

40

60

80

100

P
e
rc

e
n
ti

le
 (

%
)

Ideal

ThinDedup

OrderedWrites

Dmdedup

(b) Window size=256, Random

0 30 60 90 120 150 180

Latency (ms)

0

20

40

60

80

100

P
e
rc

e
n
ti

le
 (

%
)

Ideal

ThinDedup

OrderedWrites

Dmdedup

(c) Window size=32, Sequential

0 30 60 90 120 150 180

Latency (ms)

0

20

40

60

80

100

P
e
rc

e
n
ti

le
 (

%
)

Ideal

ThinDedup

OrderedWrites

Dmdedup

(d) Window size=64, Sequential
Fig. 4: Write latency on the HDD with different window sizes. The deduplication ratio is 2 and compressibility ratio is 80%.

0 15 30 45 60

Latency (ms)

0

20

40

60

80

100

P
e
rc

e
n
ti

le
 (

%
)

Ideal

ThinDedup

OrderedWrites

Dmdedup

(a) Window Size = 8

0 15 30 45 60

Latency (ms)

0

20

40

60

80

100

P
e
rc

e
n
ti

le
 (

%
)

Ideal

ThinDedup

OrderedWrites

Dmdedup

(b) Window Size = 16
Fig. 5: Random write latency on SSD with different window
sizes. Deduplication ratio is 2 and compressibility ratio is 80%.

does not significantly impact the latency. SSD has a much
higher speed than the hard disk. The I/O time spent for a win-
dow of requests is mainly dominated by the flush operations.
While increasing window size does not require more flushes,
the impact is small. However, because ThinDedup reduces one
flush with its fingerprint-assisted consistency for each window,
its latency is significantly smaller than OrderedWrites.

To investigate how deduplication ratio affects throughput of
the systems, we change the ratio in traces of different access
patterns on the hard disk and SSD. The results are shown
in Fig. 6. As shown, the Ideal system keeps increasing its
throughput with increase of the ratio as more writes of data
blocks are removed. For other systems, deduplication of a data
block only removes write of data blocks, and metadata remain.
For OrderedWrites and Dmdedup, higher deduplication ratio
does not help increase throughput. As data blocks are sequen-
tially written, the improvement due to reduction of number of
data blocks is limited. While ThinDedup maintains a higher
throughput than these two systems, its throughput has minimal
increase with the increase of deduplication ratio, and even has
small decrease. With a high deduplication ratio, many data
blocks in a window are removed, and it is hard to remove
metadata by finding compressible data blocks to insert them,
and more metadata have to be explicitly written to the disk.
Fig. 7 shows the percentage of metadata blocks that have to be
explicitly written to the disk due to inability of being inserted
into data blocks (compared to number of written metadata

blocks with zero insertion). As we can see, if the deduplication
ratio is relatively small (a ratio of around 2 is common [12])
or the window size is large, almost all writes of metadata
blocks can be removed. Fig. 6 also shows that ThinDedup’s
throughput is almost the same as that of the Ideal system
on the SSD. On an SSD, write of a few leftover metadata
blocks in ThinDedup has minimal impact on its performance.
Meanwhile, its removal of a flush per window does give its
advantage over the other two systems.

To understand the impact of data compressibility, we show
ThinDedup’s throughput on the hard disk under different
data compressibility ratios in Fig. 8. As we can see, with a
reasonably large window sizes (16 or 32), as long as the ratio
is 40% or higher, or 40% or more of data blocks in a window
can be compressed, ThinDedup can receive its full benefit.
With a high compressibility ratio (e.g., 80%) and window size
(e.g., 32), a high data block compression ratio (e.g, 1.5), and a
moderate deduplication ratio (e.g., 2), only about 10% of the
data blocks need to be compressed and only a small percentage
of zones on the disk are C-Zones (e.g., 10%). Considering the
high throughput of the (de)compression operations and the low
percentage of C-Zone, the performance degradation caused by
the (de)compression operations is negligible.

C. Experiment Results with Real-world Workloads
To evaluate ThinDedup under realistic workloads, we use

publicly available FIU traces, which includes three traces
collected on production systems at Florida International Uni-
versity: Web, Mail, and Homes [13]. Each trace covers re-
quests in 21 continuous days. Access pattern in the trace is
relatively consistent across the duration of 21 days. However,
the deduplication ratio varies substantially across the days. To
highlight correlation of the trace characteristic with its running
performance, we choose three write-intensive segments from
each trace, each segment representing one-day-long accesses
of distinct deduplication ratio. In an experiment, the system
is warmed up with requests preceding the tested segment of
requests. Table I lists the days on which segments are chosen

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Deduplication Ratio

0

500

1000

1500

2000
T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(a) Random write to HDD

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Deduplication Ratio

0

500

1000

1500

2000

2500

3000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(b) Sequential write to HDD

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Deduplication Ratio

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(c) Random write to SSD

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Deduplication Ratio

0

1000

2000

3000

4000

5000

6000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(d) Sequential write to SSD
Fig. 6: Throughput under different deduplication ratios. The window size is 8 and compressibility ratio is 80%.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Deduplication Ratio

0

10

20

30

40

50

60

70

80

90

P
e
rc

e
n
ta

g
e
 o

f
m

e
ta

d
a
ta

 p
a
g
e
s

p
e
rs

is
te

d

Window Size = 4

Window Size = 8

Window Size = 16

(a) Random access

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Deduplication Ratio

0

10

20

30

40

50

60

70

80

90

P
e
rc

e
n
ta

g
e
 o

f
m

e
ta

d
a
ta

 p
a
g
e
s

p
e
rs

is
te

d
 (

%
)

Window Size = 4

Window Size = 8

Window Size = 16

(b) Sequential access
Fig. 7: Percentage of metadata blocks written to disk with different
deduplication ratio. The compressibility ratio is 80%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Compressibility Ratio

0

500

1000

1500

2000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c)

Window Size = 8

Window Size = 16

Window Size = 32

(a) Random Access

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Compressibility Ratio

0

500

1000

1500

2000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c)

Window Size = 8

Window Size = 16

Window Size = 32

(b) Sequential Access
Fig. 8: ThinDedup’s throughput on HDD with different data
compressibility. The deduplication ratio is 2.

and their deduplication ratios. The traces only contain finger-
prints without real data. We assume a compressibility ratio
of 80% (80% of blocks are compressible) and a compression
ratio of 1.25 (each compressible block can contribute 20% of
its space), which is a conservative and reasonable assumption
according to [14]. The window size is 8.

Figures 9 and 10 show the throughput of trace segments on
the hard disk and on SSD. Across the test cases ThinDedup
produces the highest throughput, while Dmdedup’s throughput
is much worse than the two systems. Compared to Ordered-
Writes, ThinDedup improves throughput by 19% to 112%
on the hard disk and 7% to 91% on the SSD. Consistent to
observations on synthetic workloads, a very high deduplication
ratio reduces ThinDedup’s advantage (see throughput of the
Mail trace with the ratios of 16.08 and 9.73 in Fig. 9c
and 10c, respectively). A higher ratio reduces opportunity of
finding compressible blocks. As we expected, improvements
of ThinDedup on the SSD is smaller than those on the hard
disk with the same trace segment as SSD’s performance is
less sensitive to random writes. However, SSD’s performance
is still heavily affected by flushes, which ThinDedup manages
to reduce. Also, considering the amount of data blocks written
to the disk when the deduplication ratio is extremely high (e.g.
16.08), about 27.8% of the metadata writes can be avoided.
This is important for SSD, which has limited lifespan. We can
also see that a high deduplication ratio (e.g., 16.08 and 9.73

TABLE I: Characteristics of FIU traces
Trace Selected Day Dedup. Ratio

WebVM 4,8,12 1.60, 1.35, 1.16
Homes 11,12,13 1.77, 2.80 , 4.63
Mail 1, 2, 5 5.43, 16.08, 9.73

1.6 1.35 1.16

Deduplication Ratio

0

100

200

300

400

500

600

700

Th
ro

ug
hp

ut
 (

bl
oc

ks
/s

ec
)

ThinDedup

OrderedWrites

Dmdedup

(a) WebVM

1.77 2.8 4.63

Deduplication Ratio

0

100

200

300

400

500

600

700

Th
ro

ug
hp

ut
 (

bl
oc

ks
/s

ec
)

ThinDedup

OrderedWrites

Dmdedup

(b) Homes

5.43 16.08 9.73

Deduplication Ratio

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (

bl
oc

ks
/s

ec
)

ThinDedup

OrderedWrites

Dmdedup

(c) Mail
Fig. 9: Throughput of different trace segments on HDD.

in Fig. 9c and 10c, respectively) does not necessarily lead to
substantial improvement of throughput, though many writes of
data blocks can be removed. As data blocks are sequentially
written, cost of persisting metadata can dominate the I/O cost
in the deduplication. This highlights the importance of address-
ing the metadata issue in an online primary deduplication.

IV. RELATED WORK

Related work includes I/O deduplication, crash consistency
maintenance and data compression in storage systems.

a) Deduplication in storage systems: Many previous
studies focus on deduplication in backup and archival storage
systems [4], [15]–[17] instead of primary storage systems
where improving deduplication ratio for space saving is the
main goal [17], [18]. Moreover, as data has backups during
the deduplication operation, consistency is usually not a major
concern for offline deduplication. While this is not the case for
inline deduplication in primary storage system [3], [5], [19],
[20], where performance is a key concern, many efforts have
been made to minimize the performance overhead. As dedu-
plication causes fragmentation, the read performance may be
degraded as sequential accesses are turned into random ones.
Srinivasan et al. [3] try to minimize fragmentation caused by
deduplication and improve the read performance of hard-disk-
based primary storage systems. This work is complimentary
ours as ThinDedup addresses issues also on primary storage.
ThinDedup is to improve performance with more efficient
management of metadata persistency and consistency.

How to handle deduplication metadata efficiently is of great
importance for good performance. DBLK [20] uses multi-layer
bloom filter to reduce metadata retrieval cost and cannot help
much with the efficiency of metadata persistency. Meister et

1.6 1.35 1.16

Deduplication Ratio

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (

bl
oc

ks
/s

ec
)

ThinDedup

OrderedWrites

Dmdedup

(a) WebVM

1.77 2.8 4.63

Deduplication Ratio

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (

bl
oc

ks
/s

ec
)

ThinDedup

OrderedWrites

Dmdedup

(b) Homes

5.43 16.08 9.73

Deduplication Ratio

0

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
 (

bl
oc

ks
/s

ec
)

ThinDedup

OrderedWrites

Dmdedup

(c) Mail
Fig. 10: Throughput of different trace segments on the SSD.

al. [19] propose to store metadata on a faster storage device
(SSD) while data are still stored on the hard disk. However,
this does not address the write amplification issue due to
writing small metadata through block interface. The benefit
of the design diminishes when data blocks are also stored on
SSDs. ThinDedup minimizes performance loss due to frequent
metadata writes without requiring any special hardware.

b) Data compression in storage systems: Data compres-
sion technique has been widely used in storage systems to save
space and improve I/O performance. in [21], process data that
are to be written back are compressed for saving memory
space and staying in memory longer. Makatos et al. [22]
use online I/O compression to improve I/O performance for
SSD-based cache. Li et al. [23] combines compression and
deduplication to make a space-efficient SSD cache for primary
storage. ThinDedup uses the data compression for a different
purpose. The space saved is to store small but performance-
critical metadata rather than more data. Wu et al. [24] propose
the Selfie technique to compress data block to make room for
storing address mapping in the virtual disk system. Selfie only
compresses a data block to store its own metadata, and if the
block cannot be compressed, it has to give up. Thindedup can
insert any metadata in a window to a compressed block in a
window, and it is very like to find a block for compression.

V. CONCLUSION

In this paper we describe ThinDedup, an efficient dedu-
plication scheme designed to minimize the performance loss
due to metadata persistency. By embedding metadata into the
compressed data blocks, ThinDedup removes most of metadata
persisting operations out of the critical path. It also uses
window-based batch persistency to amortize the high flush
overhead. To provide crash consistency, ThinDedup stores
fingerprint together with block mapping to remove requirement
on the write ordering. Experiments with micro benchmarks
and real-world workloads demonstrate that compared to other
state-of-the-art approaches, ThinDedup provides up to 3X
throughput. Meanwhile, the write latency can be reduced by
up to 88% without compromising the throughput.

ACKNOWLEDGMENT

We are grateful to reviewers of the paper for their construc-
tive comments, which helps to improve the papers quality.
This work was mainly supported by US National Science
Foundation under CNS 1527076. In addition, Weijun Li was
supported by Shenzhen Peacock Plan (KQTD20150917164
53118).

REFERENCES

[1] F. Chen, T. Luo, and X. Zhang, “Caftl: A content-aware flash translation
layer enhancing the lifespan of flash memory based solid state drives.”
in FAST, vol. 11, 2011.

[2] S. Quinlan and S. Dorward, “Venti: A new approach to archival storage.”
in FAST, vol. 2, 2002, pp. 89–101.

[3] K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voruganti, “idedup:
latency-aware, inline data deduplication for primary storage.” in FAST,
vol. 12, 2012, pp. 1–14.

[4] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck in the
data domain deduplication file system.” in Fast, vol. 8, 2008, pp. 1–14.

[5] L. DuBois, M. Amaldas, and E. Sheppard, “Key considerations as
deduplication evolves into primary storage,” White Paper, vol. 223310,
2011.

[6] V. Tarasov, D. Jain, G. Kuenning, S. Mandal, K. Palanisami, P. Shilane,
S. Trehan, and E. Zadok, “Dmdedup: Device mapper target for data
deduplication,” in 2014 Ottawa Linux Symposium, 2014.

[7] Z. Chen and K. Shen, “Ordermergededup: Efficient, failure-consistent
deduplication on flash,” in 14th USENIX Conference on File and Storage
Technologies (FAST 16), 2016, pp. 291–299.

[8] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “A file is not a file: understanding the i/o behavior of
apple desktop applications,” ACM Transactions on Computer Systems
(TOCS), vol. 30, no. 3, p. 10, 2012.

[9] C. Constantinescu, J. Glider, and D. Chambliss, “Mixing deduplication
and compression on active data sets,” in 2011 Data Compression
Conference. IEEE, 2011, pp. 393–402.

[10] G. R. Ganger, M. K. McKusick, C. A. Soules, and Y. N. Patt, “Soft
updates: a solution to the metadata update problem in file systems,”
ACM Transactions on Computer Systems (TOCS), vol. 18, no. 2, pp.
127–153, 2000.

[11] Y. Collet, “lz4,” http://cyan4973.github.io/lz4/, 2015.
[12] M. Lu, D. Chambliss, J. Glider, and C. Constantinescu, “Insights for

data reduction in primary storage: a practical analysis,” in Proceedings
of the 5th Annual International Systems and Storage Conference. ACM,
2012, p. 17.

[13] R. Koller and R. Rangaswami, “I/o deduplication: Utilizing content
similarity to improve i/o performance,” ACM Transactions on Storage
(TOS), vol. 6, no. 3, p. 13, 2010.

[14] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Cham-
ness, and W. Hsu, “Characteristics of backup workloads in production
systems.” in FAST, vol. 4, 2012, p. 500.

[15] W. Dong, F. Douglis, K. Li, R. H. Patterson, S. Reddy, and P. Shilane,
“Tradeoffs in scalable data routing for deduplication clusters.” in FAST,
vol. 11, 2011, pp. 15–29.

[16] F. Guo and P. Efstathopoulos, “Building a high-performance deduplica-
tion system.” in USENIX Annual Technical Conference, 2011.

[17] S. Quinlan and S. Dorward, “Venti: A new approach to archival storage.”
in FAST, vol. 2, 2002, pp. 89–101.

[18] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” in ACM SIGOPS Operating Systems Review,
vol. 35. ACM, 2001, pp. 174–187.

[19] D. Meister and A. Brinkmann, “dedupv1: Improving deduplication
throughput using solid state drives (ssd),” in 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST). IEEE, 2010, pp.
1–6.

[20] Y. Tsuchiya and T. Watanabe, “Dblk: Deduplication for primary block
storage,” in 2011 IEEE 27th Symposium on Mass Storage Systems and
Technologies (MSST). IEEE, 2011, pp. 1–5.

[21] S. Jennings, “Transparent memory compression in linux,” 2013.
[22] T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris, and A. Bilas,

“Using transparent compression to improve ssd-based i/o caches,” in
Proceedings of the 5th European conference on Computer systems.
ACM, 2010, pp. 1–14.

[23] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and G. Wallace,
“Nitro: a capacity-optimized ssd cache for primary storage,” in 2014
USENIX Annual Technical Conference (USENIX ATC 14), 2014, pp.
501–512.

[24] X. Wu, Z. Shao, and S. Jiang, “Selfie: co-locating metadata and data
to enable fast virtual block devices,” in Proceedings of the 8th ACM
International Systems and Storage Conference. ACM, 2015, p. 2.

