
WOJ: Enabling Write-Once Full-data Journaling in SSDs by
Using Weak-Hashing-based Deduplication

Fan Ni
University of Texas at Arlington

Arlington, Texas, US

fan.ni@mavs.uta.edu

Xingbo Wu
University of Illinois at Chicago

Chicago, Illinois, US

wuxb@uic.edu

Weijun Li
Shenzhen Dapu

Microelectronics Co. Ltd
Shenzhen, China

liweijun@dputech.com
Lei Wang

Beihang University
Beijing, China

wanglei@buaa.edu.cn

Song Jiang
University of Texas at Arlington

Arlington, Texas, US

song.jiang@uta.edu

Keywords
Journaling, File systems, Deduplication, SSD

1. INTRODUCTION
Journaling is a commonly used technique to ensure data

consistency in file systems, such as ext3 and ext4. With
journaling technique, file system updates are first recorded
in a journal (in the commit phase) and later applied to their
home locations in the file system (in the checkpoint phase).
Based on the contents recorded in the journal, file sytem can
be either in data or metadata journaling mode. With data
journaling mode enabled, all file system (data and meta-
data) updates are written to the journal before being written
to the files later on. In contrast, with metadata journaling
mode, only updated metadata are written to and protected
by the journal, while data are written directly to their home
locations in the files. File system users are usually reluc-
tant to use the data journaling mode as every modification
(data and metadata) to the file system is written twice, and
instead resort to metadata journaling for its fast speed.

However, metadata journaling has several limitations. First,
updated data blocks can be mixed with un-updated ones
in any order even with sequential write pattern if the sys-
tem crashes during the file’s overwriting. Second, it cannot
guarantee even the consistency of metadata. For example,
with the metadata journaling in the ordered mode in ext3
and ext4, the modify time (“mtime”) of a file may remain
unchanged after the file is updated. This metadata incon-
sistency can raise an issue with applications relying on the
mtime attribute to decide their next actions, including GNU
make and file integrity checks using signatures. Last but not
least, recent research has revealed that metadata journaling
is prone to introduce vulnerabilities to user-level applica-
tions as it reorders applications’ write operations for perfor-
mance [1]. To avoid the vulnerabilities, application devel-
opers have to be aware of write re-ordering in file systems
and eliminate their side effects with extra efforts in their
programs, such as inserting extra flushes between file sys-
tem operations to enforce the right order. However, it is not

IFIP WG 7.3 Performance 2018 Toulouse, France
Copyright is held by author/owner(s).

easy to avoid the vulnerabilities at the application level even
for expert programmers. These vulnerabilities are disclosed
in widely-used applications [2], including LevelDB and Git.

As Linus Torvalds stated ”Filesystem people should aim
to make ’badly written’ code ’just work’” [3], use of data
journaling adheres to the belief. With data journaling, file
system maintains a global write order and preserves applica-
tion order for both metadata and data, which provides the
strongest data consistency support for applications. Most
crash-consistency vulnerabilities can be avoided with data
journaling, and the remaining ones have minor consequences
and are readily to be masked or fixed [1, 2]. With the clear
advantages in providing data reliability and stronger file sys-
tem consistency support for applications, data journaling
becomes increasingly necessary. With the wide use of fast
SSDs, data journaling’s higher demand on write bandwidth
is likely to be accommodated and the once-thought expen-
sive journaling approach may become affordable.

While SSD can provide much higher write throughput to
potentially support data journaling well, its endurance be-
comes a new barrier to adoption of data journaling, which
doubles write traffic to the disk. For most flash-based SSDs,
each cell can only be written several thousand times in its
lifespan. In this way, addressing the write-twice issue is a
must for use of data journaling on SSDs. With data jour-
naling, the modifications made to the file systems are first
written to the journal and then to the files. Since the data
written to the files are identical to those to the journal, it is
possible to apply deduplication technique to avoid writing
the data twice. However, existing deduplication techniques
can be too expensive for fast SSDs in terms of computa-
tion, space, and synchronization overheads as they all rely
on collision-resistant fingerprints, or hash values computed
on data contents, to identify duplicate data. Example hash
functions include SHA-1 and MD5. The computation over-
head can be substantial as each block write requires com-
puting its fingerprint. According to our measurements, the
time spent on computing the fingerprint of a block can be
longer than writing the block to an NVMe SSD device, indi-
cating fingerprint computation becomes a new performance
bottleneck on the I/O path. While computing weaker fin-
gerprints, such as CRC32 values, can be tens or hundreds
of times faster, it can compromise correctness. In addition

to the computation cost, existing deduplication technique
consumes plenty of memory space for caching its metadata.
And it requires periodical synchronization of the metadata
onto the disk on a timely manner for data reliability and
short response time. Moreover, different types of metadata
should be persisted onto the disk in a particular order. All
these require frequent use of expensive flush operations.

In this work we propose a solution that is built in SSDs to
transparently support Write-Once data Journaling, named
WOJ. While it still uses block-deduplication to remove the
second writes, it addresses all three issues with the reg-
ular deduplication technique. First, WOJ can use ultra-
lightweight non-collision-resistant hashing to identify second
writes of duplicated blocks without compromising correct-
ness. Second, WOJ only maintains a small amount of meta-
data, which is thousand times smaller than that of regular
deduplication and can be fit in the SSD’s internal memory.
Third, WOJ integrates its block mapping with SSD’s FTL
and does not require frequent flushes from the host to the
device. Our experiments with a wide range of micro and
real-world benchmarks show that WOJ removes about half
of the writes in data journaling and provides significant per-
formance improvement over existing deduplication schemes.

2. DESIGN OF WOJ
The design of WOJ addresses two main challenges: (1)

use of ultra-lightweight fingerprints without compromising
correctness, and (2) caching very small amount of metadata
whose size is decoupled from the SSD’s capacity.

WOJ uses non-collision-resistant fingerprints to detect du-
plicate blocks in the second writes in data journaling with
very low overheads. The key difference in its use of fin-
gerprints from regular deduplication is that WOJ does not
need to determine the existence of a duplicate block in the
second write (in checkpoint phase) as it is guaranteed by
the journaling operation, which is “all new data is written
to the journal first, and then to its final location” [4]. As
long as a fingerprint is not shared by more than one block
in the journal, it can be used to identify the corresponding
block in the checkpoint phase (even if non-collision-resistant
fingerprints are used) and avoid writing it to the disk.

To facilitate the identification, WOJ maintains a finger-
print pool. A fingerprint is inserted in the pool and used
for detecting duplicate blocks in the checkpoint phase only
when two conditions are satisfied. First, the fingerprint is
computed over the contents of a block in the commit phase.
Second, the fingerprint is unique. For each fingerprint in the
pool, it is associated with a unique physical page address
(PPA) where the corresponding block of data is stored. In
the commit phase, When a block is written into the journal,
its fingerprint is computed (1.1 in Figure 1) and the pool is
searched for the fingerprint. If not found, it is added into
the pool (1.3 in Figure 1). Otherwise, a collision occurs (1.2
in Figure 1). To avoid mis-deduplication, the fingerprint is
marked as invalid and deduplication attempt on blocks with
the fingerprint is aborted. The fingerprint pool can be very
small, whose size is capped by number of blocks in a journal.
Note that a journal is usually configured as a few hundreds
of megabytes to several gigabytes. A fingerprint is removed
from the pool right after it is used for a successful removal
of a second write. Otherwise, it will be removed when the
space for its corresponding block is reclaimed in the jour-
nal. In either case the lifetime of a fingerprint in the pool

A B C M
Running Transaction

Memory

A B C M A B C M……

1 Commit Phase
 1.1 compute WFP (weak fingerprint) for each block to write;
 1.2 if the WFP is in the WFP pool:
 mark the WFP as invalid;
 1.3 else:
 insert the WFP to the WFP pool;
 1.4 write the block to the journal area;
2 Checkpoint Phase
 2.1 compute WFP for each block to write;
 2.2 if the WFP is in the WFP pool and it is valid:
 add new LPA->PPA entry to the address mapping table;
 add new PPA->LPA to the reverse mapping table;
 remove the matched WFP from the WFP pool;
 2.3 else:
 write the block to its home location;

Layout of journaling file system on the SSD

Fa, Fb, Fc, Fm

 WFP Pool

1.1Fa, Fb, Fc, Fm

JournalHome locations

1.2

2.1

1.3 1.4

2.2

2.3

Figure 1: Operations in WOJ for committing and
checkpointing blocks. Fa, Fb, Fc, and Fm are weak
fingerprints of blocks A, B, C, and M , respectively.

is short and the collision is expected to be rare. Note that
WOJ does not de-duplicate blocks within a journal.

In the checkpoint phase, for each writing block, its finger-
print is computed and compared to those in the pool (2.1
in Figure 1). If it matches a valid fingerprint (one that has
not experienced any collision), the block write is dedupli-
cated (2.2 in Figure 1). Only an entry in the FTL’s address
mapping table (from a block’s logical page address (LPA)
to its logical page address (PPA)) is updated to reflect that
the block’s LPA is mapped to PPA of the block with the
matching fingerprint. If the block matches an invalid finger-
print (2.3 in Figure 1), it is written to the disk as usual.

The design of WOJ also considers other aspects for its
efficient use in an SSD, including mechanism of passing file-
system-level knowledge to SSD to enable WOJ and data
structures for efficient garbage collection and wear leveling.

3. ACKNOWLEDGEMENTS
This work was mainly supported by US National Science

Foundation under CNS 1527076. In addition, Weijun Li was
supported by Shenzhen Peacock Plan (KQTD20150917164
53118), and Lei Wang was supported by National Natural
Science Foundation of China (No. 61672073).

4. REFERENCES
[1] T. S. Pillai, R. Alagappan, L. Lu, V. Chidambaram,

A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
Application Crash Consistency and Performance with
CCFS, in: FAST’17, USENIX Association, Berkeley,
CA, USA, 2017, pp. 181–196.

[2] T. S. Pillai, V. Chidambaram, R. Alagappan,
S. Al-Kiswany, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, All file systems are not created equal:
On the complexity of crafting crash-consistent
applications, in: OSDI’14, USENIX Association,
Berkeley, CA, USA, 2014, pp. 433–448.

[3] L. Torvalds, Linux 2.6.29.,
https://lwn.net/Articles/326505/ (2009).

[4] L. Kernel, Ext4 Filesystem, https://www.kernel.org/
doc/Documentation/filesystems/ext4.txt (2017).

