
Leveraging SSD’s Flexible Address Mapping to Accelerate Data Copy Operations

Fan Ni†, Xingbo Wu⊥, Weijun Li‡, Lei Wang±, Song Jiang†
†University of Texas at Arlington, Arlington, Texas, USA ⊥University of Illinois at Chicago, Chicago, Illinois, USA

‡Shenzhen Dapu Microelectronics Co. Ltd, Shenzhen, China ±Beihang University, Beijing, China
†fan.ni@mavs.uta.edu, ⊥wuxb@uic.edu, ‡liweijun@dputech.com, ±wanglei@buaa.edu.cn, †song.jiang@uta.edu

Abstract—On-disk data copy is commonly performed in
various software. Its current implementation with read and
write commands needs to go through the I/O stack, introducing
significant performance overhead. Actually when only one disk
is involved in a copy operation, the data do not have to be read
out of the device and the operation can be all performed within
it. Furthermore, if the device is an SSD supporting flexible
mapping from logical to physical addresses, the data do not
need to be physically duplicated and the data copy purpose
can be fulfilled by establishing a new address mapping. In the
paper, we propose a copy primitive for SSD to support copy of
block(s) of data within a device with almost zero cost regardless
of amount of data. We show that it is relatively easy to
implement the primitive, named copyless copy, or CC in short.
We also evaluate two example uses of CC, database journaling
and block-level deduplication, where the new primitive can
help for efficient data copy as the case study. Our experiments
with the use cases show that CC can dramatically increase the
software’s performance, reduce data writes to the device for
improving SSD’s endurance and space efficiency.

Keywords-SSD; FTL; address mapping; copy; deduplication;
journaling;

I. INTRODUCTION

Copying of on-disk data is common in various system
software and applications, including support of journaling
in file systems[1], disk defragmentation [2], replication of
files or directories requested by users and systems such as
OverlayFS [3], UnionFS [4], support of snapshots of logical
volume [5], and garbage collection in a log [6]. Its efficiency
can have a significant impact on the system’s performance,
reliability, and space efficiency, which usually conflict with
each other and are hardly to achieve at the same time.

Here is an example illustrating its implication on data
reliability. The journaling technique is employed to keep
a file system’s reliability by maintaining its metadata and
possibly data consistency. However, it relies on additional
copying of the metadata/data and costly synchronization
operations, such as flushes, to achieve the goal. Concerned
of the high cost, often users would have to tolerate risks
of data corruption by not writing data into the journal
to avoid their later copy to the file. While this so-called
metadata journal can substantially improve performance [7],
it is at the expense of data integrity. If the copy cost can
be significantly reduced or even eliminated, one can have
both high performance and data reliability in a file system.
Another example is about its implication on space efficiency.

Major costs of garbage collection and disk defragmentation
are attributed to data copy operations. Because the operation
is expensive, garbages in a log cannot be quickly collected
and the space held by them cannot be efficiently used. For
the same reason, the disk has to remain fragmented for an
extended period of time, which makes file systems, such
as Ext4, ineffective on using their extent-based allocation
feature and under-utilized space for metadata. If the cost of
data copy operation can be dramatically reduced, garbage
collection and defragmentation can be initiated whenever
there is such a need without concerns on the high cost.

Enabling Copy Functionality in Disks: A copy
operation copies a data block from one disk location to
another one. There are two fundamental misconceptions in
current practices about implementing and using the operation
that lead to its unnecessarily high cost and unacceptable
constraints on the design of upper-level software and ap-
plications.

First, when both the source and destination of the data
are on the same disk, the operation can be more efficient
performed if offloaded to the device. In this way, the soft-
ware only needs to issue a copy command with parameters
such as source and destination addresses and number of data
blocks to be copied. However, the copy operation is currently
treated as a software function that entails reading the data off
the disk and then writing back to it. With the disk operations
and possibly multiple layers of software involved and their
respective overheads added into the function’s execution,
there is no doubt that the cost of the copy operation is
much higher than what is necessary. While the side-effect
of leaving a copy of the data in the memory buffer may be
desired in some scenarios, reading the data into the buffer
does not have to be on the critical path of the copy operation.
Even if the data have been buffered in the memory, executing
the write-back operation is more expensive than in-disk
copying by consuming extra I/O bandwidth.

Second, implementing copy operations outside of the disk
creates a semantic gap between the upper-level software that
uses the functionality and the disk where the functionality is
actually performed. The association between two parties of
the operation, i.e., source and destination addresses, is only
known to the software. Positioning the disk as a dumb device
at the bottom of the I/O stack, current system design does not
make such knowledge available at the disk. However, with

such knowledge the disk can enable the functionality in place
with substantial convenience and performance advantage to
the software.

Enabling Copyless Copy in SSDs: For the flash-based
solid-state disk (SSD), the benefit of in-disk copy can be
more than saving I/O bandwidth and reducing pollution of
the system buffer. This is achieved by our proposed copyless
copy, or CC in short, that leverages SSD’s flexible address
mapping to enable a copy without physical data replication.

A block device, such as hard disk and SSD, usually
provides an indirection from logical block addresses (LBA),
which exposes to the upper-level software, to physical block
addresses (PBA). To this end, metadata needs to be main-
tained to facilitate the indirection so that operation requested
by the software can be carried out on the corresponding
physical blocks. For the hard disk, the metadata can be
made small as correlation of the two set of addresses is
well structured and remains stable. One example is that one
segment of contiguous logical addresses are mapped to a
segment of contiguous physical addresses on the same disk
track, and the mapping relation usually does not change
unless some unusual incidents, such as sector corruption,
occur. However, flash-based SSD has to provide a much
more flexible address mapping, allowing almost any LBA
to be mapped to any PBA. One reason is that flash memory
does not support write-in-place, or overwrite. That is, every
write to an LBA will be re-directed to a new PBA, rather
than to the PBA currently mapped to the LBA. Accordingly
the mapping from LBA to PBA is updated. A firmware in
modern SSDs, named flash translation layer (FTL), is in
charge of managing the address mapping table as well as
other corresponding data structures.

If the copy operation is implemented in SSDs, one can
entirely avoid physical data duplications by simply updating
the address mapping table. For example, copying a block
from one logical address (LBA1), which has been mapped
to physical address (PBA) where the data is stored, to
another logical address (LBA2), requires only adding a new
mapping from LBA2 to PBA into the metadata in the
FTL and remembering that now the PBA has one more
logical address mapped to it. Figure 1 shows an example
of copying data from one file to another with read/write
operations and CC, respectively. This COW (copy-on-write)-
style implementation of copy may raise the concern on
compromised spatial locality with future random writes into
the LBAs that have been involved in the copying if it was
proposed for the hard disk [8], which relies on the locality
to maintain high performance. However, for SSD such issue
does not exist. SSD always uses out-of-place write and
the locality is not expected anyway after random writes.
Moreover, performance of today’s SSD is little affected by
the locality [9], [10].

One remaining question about CC is whether it can indeed
avoid flash writes, or at least remove them out of critical path

LBA PBA

… …

123 50

456 52

… …

File Systems

pwrite(fd2, buf, 4096, 0)

Block Layer

Drivers

VFS

System calls

readBlock(123)

…

pread(fd1, buf, 4096, 0)
buf

writeBlock(456)

Page 50Page 49 Page 51 Page 52

…

LBA PBA

… …

123 50

456 50

… …

File Systems

Block Layer
Drivers

VFS

System calls

CC(123, 456)

…

copy(fd1, 0, fd2, 0, 4096)

…
(a) (b)

Page 50Page 49 Page 51

Data Write Command/AckData Read

Figure 1: Copying a 4KB block from the source file (fd1) to the
destination file (fd2) with read/write system calls (a) or CC (b).

of copy operations. As we have mentioned, CC does need
to update corresponding metadata, specifically the mapping
information and number of LBAs mapped to a PBA, and the
metadata must not be lost even after an unexpected power
loss. In SSDs at least recently used and updated metadata
are cached in the DRAM. While the metadata updated by
CC are not required to be written to the flash before the copy
operation is considered completed, a mechanism should be
in place to safeguard them against loss and corruption during
a power loss. Fortunately, today’s SSDs, including almost all
enterprise class SSDs and many consumer class ones, have
employed capacitors and techniques such as PLP (Power loss
protection) [11] or PLI (Power Loss Imminent) [12] to flush
the critical data in the buffer to the flash. Taking advantage
of this readily available mechanism, the proposed copy
operation can be truly copyless, or implemented without any
access of the flash.

Our Contributions: SSD has become the mainstream
storage device. With its clear performance advantage as
well as increasingly larger capacity and lower price, more
and more on-line processed data are stored on it. In the
paper, by introducing copyless copy (CC) into the SSD
we make several contributions: 1) We propose to leverage
the flexible address mapping readily available in SSDs to
perform copy operations within the device without physical
data replication for high efficiency. 2) By introducing CC
as a new primitive of SSDs, we design its implementation
logic on a generic SSD architecture to show its incorpo-
ration needs minimal efforts and its execution can be of
high efficiency. 3) To illustrate potential uses of CC, we
showcase its applications in two important systems, database
journaling and block-level deduplication. We show often
dramatic performance improvements with little or moderate
changes to the existing software, and the improvement of
SSD’s endurance and SSD’s usable capacity.

II. ENABLING COPYLESS COPY IN SSDS

The CC (copyless copy) primitive has three arguments,
which are source LBA, destination LBA, and number of

blocks to be copied. There are three design objectives for
enabling CC in an SSD architecture. First, its implemen-
tation should require minimal changes to the SSD’s FTL
logic. This helps the primitive to be widely and easily
incorporated into SSDs from various vendors. Though SSDs
usually share a common generic architecture [9], they may
have unique design and implementation specifics on aspects
such as organization of mapping table(s) as well as use and
maintenance of the table(s) for address translation. To min-
imize incompatibility with these existing implementations,
we need to avoid modifications of the data structures and
algorithms. Second, new data structures and operations on
them for enabling CC should represent simple extension of
existing ones, rather than disruptive ones that may produce
less-predictable implications on logic and performance of
existing operations, such as garbage collection. Third, while
CC can certainly reduce service time for writes involved in
the corresponding copy by only updating some metadata, it
should not affect read with use of the metadata.

Updating Address Mapping Table.: NAND flash
memory in SSDs does not support in-place write. Reading
or writing data are performed at the unit of page, whose
size can be a few kilobytes, such as 2KB, 4KB, or 8KB.
However, a page cannot be re-written until it is erased, and
the erase operation is performed in the unit of block, which
can be as large as 128 or 256 pages, or a few megabytes.
When a block is erased, idle pages in the block can be
re-allocated to serve out-of-place writes. Servicing a write
request entails allocation of idle page(s), writing the data,
and updating LBA-to-PBA address mapping. To service a
CC request, one only needs to simply remove the first
two steps, and maps the destination LBA(s) to the PBA(s)
mapped to by the source LBA(s).

As long as the FTL uses the page-level address map-
ping, i.e., the SSD’s FTL allows an LBA to map to any
PBA in the physical address space, the CC primitive can
be seamlessly enabled in current FTL designs. With the
increasingly large RAM space and existence of the access
locality in the SSD’s workloads, the page-level mapping has
been widely used [13], [14], [15]. To save consumption of
DRAM space block-level mapping [16], [17] was proposed,
where the mapping scheme only determines the physical
block address for an LBA and leaves its in-block offset
(page) address the same as that of the lowest bits in the
LBA. Being concerned with the high garbage collection cost
of the mapping scheme, researchers have proposed hybrid
mapping, where the mapping of an LBA to a fixed offset in
a physical block is postponed [18], [19]. Because multiple
pages in a block share one common entry in a block mapping
table for translation from a logical block address to a
physical block address, we cannot update the table according
to a destination address in a CC operation. Instead, we
attach a page-level-style extension to any table entry where
CC’s destination addresses have been mapped. Essentially

the extension contains pointer(s) to the CC’s source pages.
While page-level mapping has advantages on addressing
flexibility, space utilization, and write amplification, we will
assume a page-level mapping hereafter, though the CC’s
implementation in FTL can also be applied to other styles
of mappings with adaptation to their specific addressing
schemes.

Expanding Valid Bit and Using Shadow OOB.:
Besides an address mapping structure, SSD maintains two
types of important metadata. One is the valid bit indicating
whether a physical page in a block contains valid data.
A page can be reclaimed and erased if its valid bit is
cleared. The other is a 128B out-of-band (OOB) region
associated with each physical page. The space is atomically
written to the flash with the writing of the page. In addition
to error-detection information, the LBA currently mapped
to the page is stored in the region. With the mapping
information about individual physical pages distributed in
the flash, the address mapping table can be rebuilt even if
the table or part of it gets lost accidentally for reasons such
as power failure. However, rebuilding the table based on the
mapping information embedded in the OOB region requires
scanning every page in the SSD, which is slow and may
significantly compromise availability of the device especially
for a large-capacity SSD. Therefore, SSDs designed for
performance are usually equipped with super-capacitors to
prevent metadata in the RAM from being lost before they
are persisted to the flash during a power loss.

To implement the CC primitive, we only need to enhance
these two types of metadata (and introduce additions to
the address mapping table if a block-level-style mapping
scheme is used in the existing FTL). The first enhancement
is to replace the valid bit with a n-bit reference count. We
name all LBAs that are mapped to a common PBA by
the CC primitive the PBA’s tag LBAs. A PBA’s reference
count tracks number of tag LBAs of the PBA, and an n-
bit reference count supports up to 2n − 1 tag LBAs for
a PBA. A reference count of zero is equivalent to a valid
bit indicating the physical page is invalid and ready for
reclamation. Whenever a new destination LBA (specified in
a CC request) is mapped to a PBA, the PBA’s reference
count is incremented by one. Whenever there is a write to a
PBA’s tag LBA, the PBA’s reference count is decremented by
one. This is similar to the COW (copy-on-write) operation
in other memory or file management systems [20], [21].
However, as flash’s use of out-of-place writes, the space
required by a COW write is not more than that with a regular
write. In other words, one CC operation involving k pages
indeed removes writing of k pages, even when future COW
writes to these pages are considered. While each physical
page has limited erase/program cycles (typically 10,000 to
100,000), using CC can improve the SSD’s endurance.

Most uses of address translation in an SSD are to translate
an LBA to its mapped PBA. Meanwhile, there is one

scenario where a translation from PBA to LBA is required,
which is to relocate a live page to a different physical page
address. Two example uses of the operation are garbage
collection and static wear-levelling. To collect garbage, or
the invalid pages, in a block and make the block ready
for erase, the FTL needs to relocate all live pages out of
it. In another example, because flash memory has limited
write/erase cycles, the FTL usually attempts to spread writes
evenly across the SSD space. However, less frequently
updated data can make the physical pages storing them less
used. To address the issue, static wear leveling operation
relocates the data in the page to a different location. In both
examples, LBA that is mapped to the physical page being
relocated (PBA) can be found in the OOB region associated
with the PBA, and using the LBA the mapping for the LBA
can be updated to the new PBA. With introduction of the
CC primitive this logic of address updating would require
little change if the OOB region could be updated, i.e., when
a CC request is executed on the PBA, a new LBA was added
into the OOB, and when the COW write is executed on the
PBA, the corresponding LBA is removed from the OOB.
The only difference is to operate possibly on multiple LBAs
in an OOB region. However, usually the OOB region cannot
be updated without re-writing its corresponding page (after
an erase). To address this challenge, we create a shadow
OOB, which can contain up to 2n LBAs (n is number of
bits for a reference count), in the SSD’s DRAM for any
physical page involved in a CC request to track its current
tag LBA(s). The shadow OOB entry is removed when its
corresponding physical page becomes invalid (or when its
reference count becomes zero). For efficiency, shadow OOB
entries usually are not immediately persisted after being
updated. If the FTL relies on LBA information in the OOB
regions to recover a corrupted LBA-to-PBA address mapping
table, the entries need to be flushed to the flash with the
power from a capacitor whenever there is a sudden loss of
power.

The space held by the shadow OOB entries and time
spent on their maintenance and use can be well justified.
For each shadow OOB entry, there is a space saving of one
or more physical pages on the flash and a time saving of one
or more page writes. These savings further reduce garbage
collection cost and improve the flash’s endurance, as use of
CC essentially increases the over-provisioning space, which
is directly related to SSDs’ performance [22]. Meanwhile,
use of the OOB entries is usually not on the critical path of
servicing users’ read/write/CC requests. With the mapping
table and its operations being minimally changed, we can
dramatically accelerate the copy operation without affecting
performance of regular read and write operations.

III. USE CASES OF THE CC PRIMITIVE

The CC primitive can be employed in various application
scenarios and system software as long as block copying is

involved. Generally, there are three opportunities of using
CC in the software. One is existence of explicit copy
operations, the second is to identify hidden copy operations,
and the third is to create CC-applicable copy operations. Due
to space limitation, we only discuss the the first two in the
below.

For the first opportunity, data block copy operations have
been in the existing software, and the software requires
few modifications to take advantage of CC and immediately
benefits from its performance advantage. This opportunity
is substantially present in journaling operations, either in
applications (such as SQLite [23]), or in file systems (such as
Ext3 and Ext4 [7]), and in file-level Copy-on-write (COW)
operations used in OverlayFS [24] and UnionFS [4] for
creating COW containers from templates. For the second
opportunity, the software may make efforts to determine
whether data to be written has been resident on the same
disk using techniques such as fingerprint comparison. If
yes, an expensive disk write operation can be transformed
into a very-low-cost CC operation (we will show how this
approach can achieve a much higher I/O efficiency than a
conventional deduplication system in Section III-B).

As an SSD device with the CC primitive enabled is not
available yet, we implement it on the host Linux server at
the generic operating system block device layer as a device
mapper target [25], which maps a physical block device
into a higher level virtual block device. Within the mapper
we did not re-implement the entire FTL. Instead, we map
literally every block address received at the virtual device
to the same (LBA) address at the SSD. For the simulated
CC primitive at the virtual device interface we avoid actual
writes to the destination (LBA) address(es) at the SSD and
maintain reference counts and shadow OOBs to help redirect
affected block accesses. The virtual device periodically
(once every second) persists these metadata onto a reserve
space on the SSD. We believe this implementation emulating
a hypothetical one within SSD carries a comparable, or even
higher, request service cost as additional host-SSD com-
munications are required, and the experiment measurements
to be reported represent conservative results. In the design
we assume block size at the device’s interface is equal to
or larger than the SSD’s flash page size. Otherwise, even
writing a block of data would require reading a flash page.
To make the CC functionality available to user-level code,
we provide a system call that supports CC copy between
blocks in one or two files.

All our experiments were conducted on a Dell R630 server
with two Xeon E5-2680v3 2.50GHz CPUs, each has twelve
cores and 30MB last-level cache. The server equips with
128GB DDR4 memory, and a Samsung 840 EVO 1TB SSD.

A. Replace Existing Copy Operations with CC
In the below we will use SQLite [23] as an example

to show how CC can be directly applied to accelerate

journaling by replacing existing copy operations.
The journaling technique has been used for data consis-

tency in face of application or system crashes and providing
transaction support for databases and file systems, where
an auxiliary log is maintained to record changes (write-
ahead or redo log) or old data (rollback or undo log)
before the changes are applied to the data. Journaling can
be expensive when there is an extra write for every new
or to-be-modified block. Concerned about the high cost,
some file system users resort to use logical journals, in
which only changes to metadata are logged. However, this
may leave unlogged data and logged metadata inconsistent
with each other, and causing data corruption. A database
system, such as InnoDB [26], the default storage engine for
MySQL, and SQLite, arguably the most widely deployed
database engine [23], can use both redo log and redo log.
As redo log has a number of disadvantages, such as its
demand on support of shared memory primitive and extra
checkpointing operation, undo log, which is SQLite’s default
logging method, can be a preferred choice [27]. However,
using undo log can make the system slower, as copy old
data blocks into the log stays on the critical path of a
transaction’s execution – it has to be completed before the
original data can be modified. The CC technique helps
remove the bottleneck.

Applying CC in SQLite is straightforward, as SQLite uses
page-level granularity and writes the entire original data
pages along with the page numbers to the log as a new
log record. One issue is that pages in the log file may not
be page-aligned as they are mixed with the page number
information. To address the issue, we set up a header page
in a log file and collect the page numbers, total number
of pages, and each page’s checksum for removing one disk
flush operation [28] into the page, and make the remaining
data pages aligned, facilitating the use of CC to copy the
data to the log. In the experiment, we use SQLite 3.16.2 with
undo log, and configure the page size to 4KB. In addition to
comparing the CC-enhanced SQLite, named Journal-CC, to
the stock SQLite, named Journal-Stock, we also compare
it to SQLite whose logging is disabled, named Journal-
Disabled.

The benchmark is the one selected from a suite of bench-
marks released by Google to compare performance of var-
ious databases, including SQLite, to that of LevelDB [29].
In the configuration, we let the selected benchmark for
SQLite (db bench sqlite3.cc) issue a stream of (one million)
requests, each for inserting a key and its associated value
of certain size into the database. The keys can be issued
in either sequential or random orders. The data records, or
pairs of key and value, are indexed in a B tree. The database
has a synchronous option, which can be configured to either
FULL mode or OFF mode. In the FULL mode, xSync will be
issued after a write, such as writing a log record or data file,
and cleaning a log record. All contents are safely written to

10 100 1000
Value Size (Bytes)

0

50000

100000

150000

200000

250000

Th
ro

ug
hp

ut
 (o

ps
/s

ec
) Journal-Disabled

Journal-CC
Journal-Stock

(a) synchronous=OFF

10 100 1000
Value Size (Bytes)

0

50

100

150

200

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Journal-Disabled
Journal-CC
Journal-Stock

(b) synchronous=FULL

Figure 2: Throughput of SQLite.

10 100 1000
Value Size (Bytes)

0.0

2.5

5.0

7.5

10.0

12.5

La
te

nc
y

(m
ic

ro
se

c/
op

)

Journal-Disabled
Journal-CC

Journal-Stock

(a) synchronous=OFF

10 100 1000
Value Size (Bytes)

0

5000

10000

15000

La
te

nc
y

(m
ic

ro
se

c/
op

)

Journal-Disabled
Journal-CC
Journal-Stock

(b) synchronous=FULL

Figure 3: Latency of SQLite.

the disk before proceeding with subsequent requests, data
safety and their consistency are ensured even in case of
power failure. In the OFF mode, SQLite continues as soon
as it has passed data to the operating system without waiting
them to be persisted on the disk. Data and its consistency
are protected if the SQLite applications fail as long as there
is not a power loss and the operating system does not
crash [30].

Figures 2 and 3 show the throughput and latency of
Journal-Disabled, Journal-CC, and Journal-Stock with ran-
dom keys and different value sizes when the synchronous
option is FULL or OFF, respectively. All the measurements
are reported by the benchmark itself. As we can see, with the
synchronous OFF mode, the CC operation helps significantly
improve SQLite’s performance. For example, with ran-
dom access, Journal-CC’s improvements of throughput over
Journal-Stock are 1.76X, 1.75X, and 1.63X, respectively.
The improvements for sequential access are similar (not
shown due to space limitation), implying that spatial access
locality plays a less important role on SSD’s performance.
While the CC operation may compromise the locality on
SSD, its impact is minimal. Journal-CC with small values is
shown to have slightly higher performance advantage. The
reason is that the same number of smaller values may reside
in fewer pages, leading to fewer writes to the data files.
However, each request causes writing of one log record, and
the write amount is little affected by the value size. While
CC helps to reduce the log-record write, it enjoys relatively
higher performance advantage with smaller values.

The performance trend in terms of latency is similar. As
we can see, Journal-CC’s latency is almost always larger
than that of Journal-Disabled by 2ms with different values.
For example, their respective latencies for 100Byte-values

are 4ms and 6ms. As use of CC operation can remove all
the cost with logging data pages and leave only one metadata
page for logging, the consistent latency gap corresponds to
this one-page logging cost (Journal-Disabled does not have
any logging cost).

When synchronous option is FULL, the improvements by
Journal-CC is relatively small, mostly at around 10%. In this
mode, there are two or even more flushes with service of
each request, flushes are expensive and their cost dominates
the execution time. Removal of data writing cost in Journal-
CC becomes less significant. It is noted that as SQLite is
commonly used in embedded systems, such as smart phones,
a power failure is less likely, and a synchronous OFF mode
is sufficient to protect the data.

B. Identifying Hidden Copy Opportunity
While introduction of the CC primitive makes it possible

for copying blocks to be much cheaper than writing blocks
of data into the SSD, we consider opportunity of converting
writing operations into copy operations to take advantage of
CC’s performance advantage. To this end, for each block
of data to be written we try to identify a block currently
on the SSD with the exactly same content. If such a block
is found, we replace the write with a CC from the block.
When there are potentially a large number of redundant
blocks on the SSD, this optimization assisted by CC can
substantially improve write performance, make the disk
space less occupied, and reduce wearing on the flash. These
are benefits also claimed by a block-level deduplication
system. However, we will explain and experimentally show
why our CC-Assisted Writing design, named CCAW, has a
clear advantage.

Design of the CC-Assisted Writing Scheme.: Like
a deduplication system, CCAW uses a cryptographic hash
function, such as MD5, to compute a signature for any block
of data written to a logical block address (LBA) on the
disk. When there have been multiple blocks of the same
content on the disk, one signature can be associated to
multiple LBAs (of the blocks). We maintain a signature
table of mappings, each for a signature to LBA(s). By
looking into the table with signature of the data to be written
one knows whether a write can be transformed into a CC
copying. Specifically, suppose that the original request is
writing a block of data to disk address (LBAdest), and the
signature of the block is found in the signature table. From
possibly multiple LBAs associated with the signature CCAW
can picks any one, say LBAsrc. Then a CC copying from
LBAsrc to LBAdest replaces the original write.

However, the signature table needs to be carefully main-
tained. First, before a primitive of CC copying from LBAsrc

to LBAdest is issued, we have to ensure that LBAdest is
removed from the signature table if it had been associated
with a signature in the table to prevent it from mistakenly
being identified as a copy source using its out-of-date signa-

ture. Furthermore, only after the CC primitive is complete
can we associate LBAdest to the signature of the currently
written data for a similar reason. Second, for high efficiency
we have to keep the table in the memory, whose size is
between 0.1% and 0.5% of the amount of data on the SSD,
depending on its duplication ratio. As an example, for a
1TB SSD filled with data, the table size is between 1GB and
5GB. Compared to the proposal of keeping a similar table in
the SSD’s RAM to enable in-SSD deduplication [31], using
host memory to cache the table is much more affordable. If
indeed the memory space is limited, CCAW shrinks the in-
memory table by either discarding some less used entries
or swapping them to the disk without compromising its
correctness. Third, to maximize the opportunity for using CC
to improve performance after a system restarts or recovers
from a failure, it is necessary to keep a copy of the signature
table on the disk, so that it can be loaded into memory to
immediately help identify duplicate data on the disk, rather
than rebuilding the table incrementally from scratch. To
this end, it seems that we need to keep the on-disk table
consistent to the in-memory table at any time so that an
unexpected system failure does not invalidate the entire on-
disk table. However, it is too costly to maintain a real-time
consistency by writing to the disk with every update on
the in-memory table. To address the issue, we partition the
table into a number of small segments (4MB by default),
and invalidate an on-disk segment once there is an update
in it for the first time. The segment will be re-validated
after all updates in it are later batch committed to the disk.
The invalidation is infrequent compared to the table updates.
In this way, a tradeoff is well made between usability of
the on-disk table after a failure and additional I/O cost for
maintaining the consistency.

Evaluation of the CCAW Scheme.: To evaluate the
CCAW scheme, we implement a prototype in the device
mapper target where the CC primitive is enabled [25]. We
use 4KB block size and 128-bit MD5 signature for a block.
We generate synthetic block write traces and issue them
continuously to the SSD. Each write is to a random LBA
address in a 120GB volume on the SSD. In generation
of the traces, we control the percentage of blocks whose
writes can be converted into the CC operations among
all written blocks, or conversion ratio. In the experiments
we find that CCAW can improve the write throughput by
almost 1/(1 − conversion ratio), which is expected as
CC removes actual disk writes in the percentage of the
conversion ratio. To make a stronger case for CCAW’s
performance advantage, we focus on a comparison with
a block-level deduplication system on the host server. For
every write converted to a CC copying, it is removed from
the stream of write requests to the disk, or deduplicated, in
the deduplication system.

If CCAW is considered as a deduplication scheme, it
represents a software-hardware co-design. However, existing

1 10 100 1000
Window Size

0

5

10

15

Th
ro

ug
hp

ut
 (*

1K
 b

lk
s/

se
c) CCAW

DEDUP

(a) Dedup Ratio=2

1 10 100 1000
Window Size

0

10

20

30

Th
ro

ug
hp

ut
 (*

1K
 b

lk
s/

se
c) CCAW

DEDUP

(b) Dedup Ratio=8

Figure 4: Throughput of CCAW and the deduplication system
(DEDUP) with various deduplication ratios and window sizes.

systems have to maintain critical metadata required by
deduplication all by themselves. First, they have to introduce
a new layer of indirection from an address space exposed
to upper-level software using the deduplication service to
the LBA address space exposed by the disk, and maintain
corresponding mappings. They also track reference count for
each block in addition to the management of fingerprints.
Second, they need to provide necessary persistency and
consistency to the metadata. To this end, they have to use
additional writes to persist metadata and flushes to enforce
write order between metadata and data. For example, the
address mappings, which can be (much) smaller than a
block size, need to be frequently persisted to the disk in the
unit of block. Regarding consistency, incrementing reference
count for an LBA has to be performed before this LBA
is mapped to by a new deduplicated block. The address
mapping must be persisted after writing of the corresponding
non-deduplicated block is complete. Expensive flushes are
required to enforce the orders.

For comparison, we implement a recently proposed dedu-
plication scheme, OrderMergeDedup [32], which makes
substantial efforts to reduce metadata writes and flushes,
and use it as a representative of block-level deduplication
system, named DEDUP in short. In the implementation,
write requests are grouped into windows according to their
arrival time. Metadata related to requests in a window are
persisted after all data writes are issued and a flush is
complete. After the batched metadata write, another flush is
issued to ensure all requests in the window are successfully
serviced. For a fair comparison we also add a flush at the
end of each window for CCAW. In the experiments, we vary
window size (in terms of number of blocks for writing) and
deduplication ratio, which is 1/(1− conversion ratio).

Figure 4 shows the write throughput of CCAW and
DEDUP with various deduplication ratios and window sizes.
As shown, at a certain deduplication ratio increasing window
size can substantially improve both systems’ throughput, as
it reduces frequency of issuing flushes and writing metadata.
Because DEDUP carries higher overheads with the two
operations, its throughput is more significantly improved
due to the reduced frequency than CCAW’s. However, for
each window size CCAW’s throughput is much higher

0 5 10 15 20 25

Latency (ms)

0

20

40

60

80

100

Pe
rc

en
til

e
(%

)

CCAW
DEDUP

(a) Window Size=10

0 10 20 30 40 50

Latency (ms)

0

20

40

60

80

100

Pe
rc

en
til

e
(%

)

CCAW
DEDUP

(b) Window Size=100

Figure 5: CDF curves of write latency for CCAW and DEDUP
with various window sizes when deduplication ratio is 2.

Segment I Segment II Segment III
0

2500

5000

7500

10000

12500

15000

17500

Th
ro

ug
hp

ut
 (b

lo
ck

s/
se

c) CCAW DEDUP

(a) Window Size=10

Segment I Segment II Segment III
0

5000

10000

15000

20000

25000

Th
ro

ug
hp

ut
 (b

lo
ck

s/
se

c) CCAW DEDUP

(b) Window Size=100

Figure 6: Throughput of CCAW and DEDUP with a real-
world trace for various window sizes. Three segments (Segment
I, II, and III) of traces are used with deduplication ratios being
1.42, 1.55, and 4.22, respectively.

than DEDUP’s by eliminating most metadata writes and
extra flushes. For example, with a deduplication ratio of
2, CCAW’s improvements are 3.1×, 2.3×, 2.2×, and 2.0×
at window sizes of 1, 10, 100, and 1000, respectively,
over DEDUP. With a higher deduplication ratio, metadata
operations, which can be mostly removed in CCAW, account
for a higher portion of request service time in DEDUP. As
expected, with a higher ratio, higher throughput improve-
ments are made by CCAW. For example, at a window size of
10, the improvements are 2.37× and 4.39× for deduplication
ratios of 2 and 8, respectively, over DEDUP.

Figure 5 shows CDF curves of write latencies for CCAW
and DEDUP with window size being 10 and 100 and dedu-
plication ratio being 2. The latency measures the time period
from a request entering a window to its service completion.
A higher throughput can be achieved by increasing the
window size at the expense of higher latency. However,
CCAW can retain low latency even if the window size
increases. For example, at a window size of 100, 80% of
requests have latency lower than 10ms in CCAW, while only
30% of requests have latency lower than 10ms in DEDUP.
If one wants to reduce DEDUP’s latency, at a window size
of 10 its 80 percentile latency can be reduced to 11ms with
its throughput reduced to only 24% of that at the window
size of 100.

Figure 6 shows the throughput for a real-world trace
collected on a mail server at FIU [33]. It covers requests in
21 continuous days. We selects three segments, each for a
day, with distinct deduplication ratios. In the experiment, the

system is warmed up with requests preceding the selected
segments. In general CCAW achieves a higher throughput
than DEDUP at a rate in a range from 7% to 331%. The
lower improvements occur when read requests dominate the
workload (e.g., Segment II), the window size is large, and/or,
the deduplication rate is low.

IV. RELATED WORK

There are many efforts related to the CC work, including
reduction of SSD writes, and offloading data transfer.

Removal of SSD Writes: SSD’s write is especially ex-
pensive as it is slow and incurs subsequent erase and garbage
collections. To address this issue, Delta-FTL replaces a full-
block re-write with a postponed partial block write if the
change made in the new write is small [34]. However, for
synchronous writes persistency of the partial block data can
be an issue. CAFTL implements a block-level deduplication
in the SSD modified FTL [31]. We have demonstrated that
CC can help to enable an efficienct deduplication system
at the host. In contrast, the all-in-SSD deduplication has a
few drawbacks. First, it may complicate FTL logic and a
large amount of metadata including finerprints, are requried
to be held in SSD’s DRAM, which can otherwise be used
to cache hot data. Second, processor in the SSD, which is
much less powerful than the one on the host, has to calculate
fingerprints. Using a hardware-software co-dedesign, CC-
assiated deduplication well addresses the problems.

Offloading Data Transfer Operation: Data transfer
operations are often offloaded to reduce involvement main
CPU and data movements. For example, data transfer be-
tween memory and the disk is offloaded to direct memory
access (DMA) engine [35]. Intel proposes I/O Acceleration
Technology (I/OAT) to enable DMA between memory and
NIC [36]. The zero-copy technology eliminates data transfer
between user and kernel spaces during data transfer between
files on devices such as disks and network sockets [37], [38].
Examples include TransmitFile function [39] in Windows
and sendfile system calls in Linux.

The EXTENDED COPY (XCOPY) command in SCSI
standard is another example of offloading data copying
operation to copy manager, which copies data from source to
destination devices [40]. It is commonly used for accelerate
backup tasks. Though main CPU or even the host server is
not involved in the execution, I/O accesses are not reduced:
data are still read from and then written to device(s).

In contrast, the CC primitive offloads the copy operation
to the FTL engine in SSD. A unique feature is that CC com-
pletely eliminates data writes in its service of copy requests,
and achieves an almost-zero-cost copying on storage devices,
rather than just a zero-copy for in-memory data transfer, by
leveraging SSD’s flexible address mapping capability.

V. CONCLUSION

In this paper, we propose Copyless Copy, an SSD prim-
itive, to enable highly efficient data block copying. With

the primitive, the copy operation can be performed by only
updating metadata without physical data read and write.
We showcase its applications in a wide range of important
systems and user software and experimentally demonstrate
its significant performance benefits with little or moderate
changes of the existing software. It also helps with SSD’s
endurance and effective capacity.

ACKNOWLEDGMENT

We are grateful to the reviewers for their valuable com-
ments and feedback. This work was supported in part by
Song Jiang’s UTA startup fund. Weijun Li was supported
by Shenzhen Peacock Plan (KQTD2015091716453118). Lei
Wang was supported by National Natural Science Founda-
tion of China (No. 61672073).

REFERENCES

[1] S. C. Tweedie, “Journaling the Linux ext2fs Filesystem,” in
The Fourth Annual Linux Expo, 1998.

[2] J. K. Edwards and J. Heller, “File system defragmentation
technique via write allocation,” 2005, uS Patent 6,978,283.

[3] N. Stahl and A. Khan, “Copy-on-write mapping file system,”
2004, uS Patent App. 10/841,808.

[4] D. Quigley, J. Sipek, C. P. Wright, and E. Zadok, “Unionfs:
User-and community-oriented development of a unification
filesystem,” in Proceedings of the 2006 Linux Symposium,
vol. 2, 2006, pp. 349–362.

[5] M. Hasenstein, “The logical volume manager (LVM),” White
paper, 2001.

[6] D. Woodhouse, “JFFS: The journalling flash file system,” in
Ottawa linux symposium, vol. 2001, 2001.

[7] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Analysis and Evolution of Journaling File Sys-
tems,” in Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ser. ATEC ’05. Berkeley, CA,
USA: USENIX Association, 2005, pp. 8–8.

[8] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti,
“iDedup: Latency-aware, Inline Data Deduplication
for Primary Storage,” in Proceedings of the 10th
USENIX Conference on File and Storage Technolo-
gies, ser. FAST’12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 24–24. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2208461.2208485

[9] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Man-
asse, and R. Panigrahy, “Design Tradeoffs for SSD Perfor-
mance,” in USENIX 2008 Annual Technical Conference, ser.
ATC’08, Berkeley, CA, USA, 2008, pp. 57–70.

[10] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrin-
sic characteristics and system implications of flash memory
based solid state drives,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 37. ACM, 2009, pp. 181–192.

[11] Samsung, “Samsung: Power loss protection (PLP) – Protect
your data against sudden power loss,” https://goo.gl/0CMk0a.

[12] Intel Corporation, “Intel: Power Loss Imminent (PLI) Tech-
nology,” https://goo.gl/zfHXzD, 2014.

[13] A. Ban, “Flash file system,” April 1995, uS Patent 5,404,485.

[14] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A Flash Trans-
lation Layer Employing Demand-based Selective Caching of
Page-level Address Mappings,” in Proceedings of the 14th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ser. ASPLOS
XIV. New York, NY, USA: ACM, 2009, pp. 229–240.

[15] D. Ma, J. Feng, and G. Li, “LazyFTL: A Page-level Flash
Translation Layer Optimized for NAND Flash Memory,”
in Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’11. New
York, NY, USA: ACM, 2011, pp. 1–12.

[16] D. Liu, T. Wang, Y. Wang, Z. Qin, and Z. Shao, “A block-
level flash memory management scheme for reducing write
activities in PCM-based embedded systems,” in Proceedings
of the Conference on Design, Automation and Test in Europe.
EDA Consortium, 2012, pp. 1447–1450.

[17] Z. Qin, Y. Wang, D. Liu, and Z. Shao, “Demand-based block-
level address mapping in large-scale NAND flash storage
systems,” in Hardware/Software Codesign and System Syn-
thesis (CODES+ ISSS), 2010 IEEE/ACM/IFIP International
Conference on. IEEE, 2010, pp. 173–182.

[18] D. Jung, J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “Superblock
FTL: a superblock-based flash translation layer with a hybrid
address translation scheme,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 9, no. 4, p. 40, 2010.

[19] D. Park, B. Debnath, and D. Du, “CFTL: A convertible
flash translation layer adaptive to data access patterns,” ACM
SIGMETRICS Performance Evaluation Review, vol. 38, no. 1,
pp. 365–366, 2010.

[20] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-
tree filesystem,” ACM Transactions on Storage (TOS), vol. 9,
no. 3, p. 9, 2013.

[21] D. Hitz, M. Malcolm, J. Lau, and B. Rakitzis, “Copy on
write file system consistency and block usage,” May 2005,
uS Patent 6,892,211.

[22] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka,
“Write Amplification Analysis in Flash-based Solid State
Drives,” in Proceedings of SYSTOR 2009: The Israeli Exper-
imental Systems Conference, ser. SYSTOR ’09. New York,
NY, USA: ACM, 2009, pp. 10:1–10:9.

[23] P. domain, “SQLite Home Page,” https://sqlite.org/, 2000.

[24] N. Brown, “Overlay Filesystem,” http://goo.gl/VlBg98, 2014.

[25] Wikimedia Foundation, Inc, “Linux Device Mapper,”
https://en.wikipedia.org/wiki/Device mapper.

[26] P. Frühwirt, M. Huber, M. Mulazzani, and E. R. Weippl,
“Innodb database forensics,” in 2010 24th IEEE International
Conference on Advanced Information Networking and Appli-
cations. IEEE, 2010, pp. 1028–1036.

[27] P. domain, “SQLite Home Page,”
https://www.sqlite.org/wal.html, 2000.

[28] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S.
Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
IRON File Systems, ser. SOSP ’05. New York, NY, USA:
ACM, 2005.

[29] Symas Corporation, “Database microbenchmarks,”
http://www.lmdb.tech/bench/microbench/.

[30] P. domain, “SQLite: PRAGMA Statements,”
https://www.sqlite.org/pragma.html#pragma synchronous,
2000.

[31] F. Chen, T. Luo, and X. Zhang, “CAFTL: A Content-aware
Flash Translation Layer Enhancing the Lifespan of Flash
Memory Based Solid State Drives,” in Proceedings of the
9th USENIX Conference on File and Stroage Technologies,
ser. FAST’11. Berkeley, CA, USA: USENIX Association,
2011, pp. 6–6.

[32] Z. Chen and K. Shen, “OrderMergeDedup: Efficient, Failure-
consistent Deduplication on Flash,” in Proceedings of the
14th Usenix Conference on File and Storage Technologies,
ser. FAST’16. Berkeley, CA, USA: USENIX Association,
2016, pp. 291–299.

[33] R. Koller and R. Rangaswami, “I/O Deduplication: Utiliz-
ing Content Similarity to Improve I/O Performance,” Trans.
Storage, vol. 6, no. 3, pp. 13:1–13:26, Sep. 2010.

[34] G. Wu and X. He, “Delta-FTL: Improving SSD Lifetime via
Exploiting Content Locality,” in Proceedings of the 7th ACM
European Conference on Computer Systems, ser. EuroSys ’12.
New York, NY, USA: ACM, 2012, pp. 253–266.

[35] G. V. Kabenjian, “Method and apparatus for performing
efficient direct memory access data transfers,” March 1997,
uS Patent 5,613,162.

[36] K. Lauritzen, T. Sawicki, T. Stachura, and C. E. Wilson,
“Intel (R) I/O acceleration technology improves network
performance, reliability and efficiently,” Technology@ Intel
Magazine, pp. 3–11, 2005.

[37] D. Stancevic, “Zero copy I: user-mode perspective,” Linux
Journal, vol. 2003, no. 105, p. 3, 2003.

[38] M. N. Thadani and Y. A. Khalidi, An efficient zero-copy I/O
framework for UNIX. Citeseer, 1995.

[39] Microsoft, “Transmitfile func-
tion,” https://msdn.microsoft.com/en-
us/library/windows/desktop/ms740565(v=vs.85).aspx.

[40] T10.org, “EXTENDED COPY command,”
www.t10.org/ftp/t10/document.99/99-143r1.pdf, 1999.

