
RapidCDC: Leveraging Duplicate Locality to Accelerate
Chunking in CDC-based Deduplication Systems

Fan Ni∗
fan@netapp.com
NetApp, Inc.

Sunnyvale, CA

Song Jiang
song.jiang@uta.edu

University of Texas at Arlington
Arlington, Texas

ABSTRACT
I/O deduplication is a key technique for improving storage sys-
tems’ space and I/O efficiency. Among various deduplication tech-
niques content-defined chunking (CDC) based deduplication is the
most desired one for its high deduplication ratio. However, CDC is
compute-intensive and time-consuming, and has been recognized
as a major performance bottleneck of the CDC-based deduplication
system.

In this paper we leverage the existence of a property in the du-
plicate data, named duplicate locality, that reveals the fact that
multiple duplicate chunks are likely to occur together. In other
words, one duplicate chunk is likely to be immediately followed
by a sequence of contiguous duplicate chunks. The longer the se-
quence, the stronger the locality is. After a quantitative analysis of
duplicate locality in real-world data, we propose a suite of chunking
techniques that exploit the locality to remove almost all chunking
cost for deduplicatable chunks in CDC-based deduplication systems.
The resulting deduplication method, named RapidCDC, has two
salient features. One is that its efficiency is positively correlated
to the deduplication ratio. RapidCDC can be as fast as a fixed-size
chunking method when applied on data sets with high data redun-
dancy. The other feature is that its high efficiency does not rely
on high duplicate locality strength. These attractive features make
RapidCDC’s effectiveness almost guaranteed for datasets with high
deduplication ratio. Our experimental results with synthetic and
real-world datasets show that RapidCDC’s chunking speedup can
be up to 33× higher than regular CDC. Meanwhile, it maintains
(nearly) the same deduplication ratio.

CCS CONCEPTS
• Information systems→ Deduplication.

KEYWORDS
storage systems, deduplication, CDC, content-defined chunking,
locality

∗This work was done when he was a Ph.D student at the CSE Department of UT
Arlington.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6973-2/19/11. . . $15.00
https://doi.org/10.1145/3357223.3362731

ACM Reference Format:
Fan Ni and Song Jiang. 2019. RapidCDC: Leveraging Duplicate Locality
to Accelerate Chunking in CDC-based Deduplication Systems. In ACM
Symposium on Cloud Computing (SoCC ’19), November 20–23, 2019, Santa
Cruz, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3357223.3362731

1 INTRODUCTION
With explosive growth of data volume and rising demand on high
storage space efficiency and high performance, deduplication tech-
niques have been widely deployed in various storage systems,
including NetApp ONTAP system [20] and Dell EMC Data Do-
main [7].

In a storage systemwith deduplication technique deployed, when
multiple pieces of input data share identical contents, only one
copy is stored on the disk. To detect duplicates, the input data
stream (often files) is first partitioned into pieces, or chunks. And
accordingly the operation is called chunking. For each data chunk,
a collision-resistant hash function (e.g., SHA1) is applied on its
contents to generate the chunk’s fingerprint, an operation named
fingerprinting. Two chunks of data sharing a common fingerprint
are considered as having identical contents. And one of the chunk
is declared as a duplicate and is deduplicated. This is a common
practice and widely used in real-world production systems [7, 20].
There are two metrics to assess a deduplication technique, namely
deduplication ratio and deduplication speed.

The deduplication ratio is ratio of sizes of a data set before and
after a deduplication operation. It measures a deduplication sys-
tem’s capability of detecting duplicates from the input data. For
example, a deduplication ratio of 10 means 90% of the input data
are redundant and can be kept from being stored on the disk.

A deduplication technique’s capability of detecting and remov-
ing redundancy mainly relies on its chunking method. For an input
file, either fixed-size chunking (FSC) or content-defined chunking
(CDC) methods can be used to partition it into chunks before their
fingerprints are computed and compared to detect duplicates. With
FSC, the file is partitioned into fixed-size chunks (e.g., 4KB) from
its beginning regardless of the data contents. However, FSC suffers
from the boundary-shift issue [18]. A small change (insertion or
deletion) at the beginning of a stored file may keep almost all du-
plicate contents in the minimally changed file from being detected
when it is written to the disk. CDC was proposed to addresses the
issue by detecting chunk boundaries based on the file contents.
With CDC, a chunk boundary is determined at a byte offset where
the contents in the range between the previous boundary and the
current offset satisfy a predefined chunking condition. This means
as long as the contents in the ranges still satisfy the condition, the

https://doi.org/10.1145/3357223.3362731
https://doi.org/10.1145/3357223.3362731
https://doi.org/10.1145/3357223.3362731

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Fan Ni and Song Jiang

Linux-tar
dr=4.06

Redis
dr=7.17

Neo4j
dr=19.04

0

20

40

60

80

100

T
im

e
(%

)

Chunking

Fingerprinting

Others

IO Busy

IO Idle

(a) Datasets of different deduplica-
tion ratios “dr”) on the hard disk.

Hdd
(138MB/s)

SATA SSD
(520MB/s)

NVMe SSD
 (1.20GB/s)

0

20

40

60

80

100

T
im

e
(%

)

Chunking

Fingerprinting

Others

IO Busy

IO Idle

(b) Dataset “Redis” on disks with dif-
ferent sequential write throughput.

Figure 1: Breakdown of CPU and disk times with regular CDC
deduplication of different datasets on different disks.

chunk boundaries can be retained. Existing studies have shown
that CDC can produce much higher deduplication ratio, often more
than 10×, than FSC [29].

Although CDC-based deduplications may provide much higher
deduplication ratio, its chunking process is very time-consuming. It
essentially has to scan the entire file byte-by-byte to avoid missing
any potential chunk boundary. Specifically, a common use of the
CDC method is to roll a fixed-size window across the file. At a byte
offset of the file it applies a hash function on the data covered in
the window and compares the generated hash value to a predefined
value. If matched, a chunk boundary is declared at the end of the
window. In principle, the window stops at every byte for computing
and comparing hash values. In reality, CDC needs to avoid a chunk
that is too small for lower deduplication metadata overhead or that
is too large for higher deduplication ratio. To this end, a minimum
chunk size and a maximum chunk size are pre-determined. When
a chunk boundary is detected, or a chunk is formed, CDC moves
the window forward by the minimum chunk size before it resumes
its byte-by-byte rolling. When the window rolls away from the last
boundary for the maximum chunk size without detecting a new
boundary, the current window position is declared as a boundary
(at the end of the window). It is noted that the hash function used
for chunk boundary detection is different from the one used for
fingerprinting. And it does not need to be collision-resistant.

Even with introduction of the minimum chunk size, a significant
portion of a file still has to be scanned with the hash function com-
putation during the window rolling. For a CDC system whose min-
imum, maximum, expected average chunk sizes are 4KB, 12KB, and
8KB, respectively, about half of the bytes in a file are scanned [36].
As an example, for a storage system admitting data at the speed
of 1GB/s the CDC deduplication subsystem must carry out around
500 million of such function computations per second so that the
subsystem itself does not become the storage system’s performance
bottleneck. However, it can be a serious challenge for the current
CDC technique to make the I/O devices, such as hard disks and
SSDs, instead of its own operations, be the performance bottleneck.

To illustrate whereabout of the bottleneck, we run the rolling-
window-based CDC deduplication on datasets of different dedupli-
cation ratios and residing on disks of different speeds. The datasets
are described in Table 1. Detailed experiment setup is depicted in
Section 4. In each experiment, duplication within each dataset is de-
tected and removed by a CDC deduplication system using Rabin as
its hash function for rolling window and SHA-1 as its fingerprinting

Linux-tar
dr=4.06

Redis
dr=7.17

Neo4j
dr=19.04

0

20

40

60

80

100

T
im

e
(%

)

Chunking

Fingerprinting

Others

IO Busy

IO Idle

(a) Datasets of different deduplica-
tion ratios (“dr”) on the hard disk.

Hdd
(138MB/s)

SATA SSD
(520MB/s)

NVMe SSD
(1.20GB/s)

0

20

40

60

80

100

T
im

e
(%

)

Chunking

Fingerprinting

Others

IO Busy

IO Idle

(b) Dataset “Redis” on disks with dif-
ferent sequential write throughput.

Figure 2: Breakdown of CPU and disk times with RapidCDC
deduplication of different datasets on different disks.

function. The minimum, expected average, and maximum chunk
sizes are set at 4KB, 8KB, and 12KB, respectively. Non-deduplicated
data are asynchronously written to the disks, so that the CPU time
and disk time can be overlapped as much as possible. As shown
in Figure 1, the chunking phase consistently accounts for more
than 60% of the CPU time in a deduplication system regardless of
the input datasets, which limits the speed of data sent to the disk
for storing and causes low utilization of the I/O bandwidth (about
30% for Redis) as shown in Figure 1(a) when the hard disk is used
for data storage. The situation becomes worse when a fast SSD,
which provides much higher write bandwidth, is used. As shown
in Figure 1 (b), the utilization of the disk bandwidth drops to less
than 10% for Redis when an NVMe SSD is used. The results show
that for CDC-based deduplication systems, the system bottleneck
is not at the disk but on the CPU, where the chunking operation
contributes the most significant cost.

In the paper, we propose RapidCDC, a CDC acceleration tech-
nique that mostly removes the need of byte-by-byte window rolling
in the determination of chunk boundaries. The technique represents
a disruptive departure from existing chunking designs which have
always deemed the byte-by-byte detection as necessary. RapidCDC
leverages the duplicate locality, a phenomenon showing duplicate
chunks are likely to appear together in the data, to quickly jump to
potential chunk boundaries. In RapidCDC, a chunk’s fingerprint is
recorded along with the size of its next chunk in a file, which is used
as a hint to locate the most likely boundary of the next chunk once
a duplicate chunk is detected without byte-by-byte window rolling.
Our evaluation results with synthetic and real-world datasets show
that almost all of the chunking time can be removed for workloads
of high deduplication ratios. Figure 2 show the results with Rapid-
CDC, where chunking time is significantly reduced and the I/O
bandwidths are better utilized.

The paper is organized as follows. In Section 2, we give a quan-
titative analysis of the duplicate locality, which has not yet been
exploited for accelerating chunking speed, in real-world datasets.
We then exploit the locality to design RapidCDC, which includes
a suite of chunking techniques with different trade-offs between
performance risk and gain (Section 3). In Section 4, we extensively
evaluate the CDC deduplication strategies adopting these chunk-
ing techniques with synthetic and real-world datasets to assess
improvements of the chunking speed and entire deduplication sys-
tem’s performance.

RapidCDC: Leveraging Duplicate Locality to Accelerate Chunking in CDC-based Deduplication Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

10 20 40 80 209

of files

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

)

Duplicate chunks

Duplicate chunks in LQ sequences

(a) Linux-tar

10 20 40 80 90

of files

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

)

Duplicate chunks

Duplicate chunks in LQ sequences

(b) Debian

10 20 40 80 140

of files

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

)

Duplicate chunks

Duplicate chunks in LQ sequences

(c) Neo4j

10 20 40 80 1567

of files

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

)

Duplicate chunks

Duplicate chunks in LQ sequences

(d) Nodejs

10 20 40 80 501

of files

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

)

Duplicate chunks

Duplicate chunks in LQ sequences

(e) Wordpress

5 10 20 30 40

of files

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

)

Duplicate chunks

Duplicate chunks in LQ sequences

(f) Cassandra

5 10 20 30 34

of files

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

)

Duplicate chunks

Duplicate chunks in LQ sequences

(g) Redis

2 4 6 8 14

of files

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

)

Duplicate chunks

Duplicate chunks in LQ sequences

(h) Google-news

Figure 3: Percentage of all duplicate chunks and percentage of duplicate chunks in the LQ sequences among all chunks when
increasing number of files in a dataset are admitted into the system.

2 QUANTITATIVE ANALYSIS OF DUPLICATE
LOCALITY

Duplicate data are often generated as a result of limited updates
on existing data. Naturally when an update operation, such as
insertion, deletion, or overwrite, occurs at a file offset, there is a
tendency that file contents around the offset are more likely to be
updated. That is, the updates are likely to be unevenly distributed
in a dataset. In other words, non-updated data, or duplicates, are
likely to be contiguously laid out in a file. We name this layout of
duplicate data the duplicate locality. In the context of deduplication,
this locality refers to the phenomenon that duplicate chunks are
likely to stay together.

We are aware that duplicate locality has been identified and
leveraged to improve various aspects of a deduplication system,
including efforts on reducing the size of the in-memory chunk in-
dex [6, 15, 32] and on reducing file fragmentation and disk seeks for
better read performance in a deduplication system [26]. However,
the implication of the locality on improvement of chunking speed
has not been considered at all. In particular, it’s not well studied
how the strength of the locality is affected by file updates, such
as those in versions of software packages, which is a significant
source of data duplication in backup storage systems. We address
the issue in this section.

Because chunks are not very large in practice (usually tens of
KBs) for high deduplication ratio, the duplicate locality at the chunk
granularity tends to be strong. We use the number of contigu-
ous deduplicatable chunks immediately following the first dedu-
plicatable chunk to quantify the locality. These deduplicatable
chunks constitute a chunk sequence, named locality-quantification
sequence, or LQ sequence in short. Existence of such sequences
motivates our proposed RapidCDC that may significantly reduce

chunking cost. The longer the sequences are, the stronger the lo-
cality is. There are two scenarios where the sequences’ length is
always 0. One is that there are not any duplicate chunks. And the
other is that any duplicate chunk is isolated. To investigate the
existence and strength of the locality, we examine the percentage
of chunks in the sequences (Figure 3) and the sequence lengths’
distribution (Figure 4) for a selected group of real-world datasets.
As detailed in Table 1, the datasets cover various application do-
mains, including Linux source code as tar files ("Linux-tar"), Linux
distribution as docker images ("Debian"), graph database ("Neo4j"),
JavaScript-based runtime environment packages ("Nodejs"), Word-
Press container images ("Wordpress"), Apache Cassandra snapshot
images ("Cassandra"), Redis key-value store backup images ("Re-
dis"), and daily Google news archives ("Google-news"). As the in-
vestigation is on locality in terms of chunk sequences, we use a
rolling-window-based CDC method to obtain the chunks. We use
the 4KB-8KB-12KB configuration (for the minimum, expected aver-
age, and maximum chunk sizes, respectively) in the chunking.

In each experiment files in a dataset are sent to the CDC dedupli-
cation system one at a time. When a certain number of files, such as
10, 20, up to the total file count in the dataset, are admitted into the
system, we count all duplicate chunks and those duplicate chunks
in the LQ sequences, and show their respective percentages over
the total number of chunks at the time in Figure 3. The percentage
of all duplicate chunks, shown as the the upper lines in the figures
and named accordingly as upper percentage, positively correlates
to the deduplication ratio. In contrast, the percentage of chunks in
the LQ sequences, named lower percentage, exhibits the existence
of duplicate locality. The gap between the two percentages indi-
cates the percentage of isolated duplicates, or duplicates with zero
duplicate locality. As we observe the two percentages for each data

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Fan Ni and Song Jiang

22 25 28 211

Sequence length of duplicate chunks

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

) 209

80

40

20

10

(a) Linux-tar

22 25 28 211

Sequence length of duplicate chunks

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

) 90

80

40

20

10

(b) Debian

22 25 28 211

Sequence length of duplicate chunks

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

) 140

80

40

20

10

(c) Neo4j

22 25 28 211

Sequence length of duplicate chunks

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

) 1567

80

40

20

10

(d) Nodejs

22 25 28 211

Sequence length of duplicate chunks

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

) 501

80

40

20

10

(e) Wordpress

22 25 28 211

Sequence length of duplicate chunks

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

) 40

30

20

10

5

(f) Cassandra

22 25 28 211

Sequence length of duplicate chunks

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

) 34

30

20

10

5

(g) Redis

22 25 28 211

Sequence length of duplicate chunks

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

u
n

ks
(%

) 14

8

6

4

2

(h) Google-news

Figure 4: CDF (Cumulative Distribution Function) curves of LQ sequence lengths when a certain number of files in a dataset
are admitted into the system. Numbers of currently admitted files are shown in the legend.

set when different number of files are admitted in Figure 3, their
gap is small (mostly less than 5% and up to 10%), and the majority
of duplicate chunks are in the LQ sequences. Another observation
is that these two percentages are correlated. A dataset of a higher
deduplication ratio has higher upper percentages. It accordingly has
higher lower percentages, which makes RapidCDC more effective,
as to be revealed in the next section.

To further see the strength of the duplicate locality, quantified by
the length of the LQ sequence, we show the percentage of chunks
that stay in an LQ sequence whose length is smaller than a certain
threshold for different datasets at the time when different numbers
of files are admitted in Figure 4. From the figure we can see that only
a small percentage of chunks are in very short LQ sequences (e.g.,
those of 8 or fewer chunks). For some datasets of high deduplication
ratio, such as Debian and Wordpress, there can be more than 50%
of chunks are in the LQ sequences whose lengths are longer than
64 chunks. Across all the datasets and with various number of
admitted files a majority of duplicate chunks stay in relatively
long sequences, demonstrating strong duplicate locality. This is
an encouraging result. Interestingly, as we will show, RapidCDC’s
effectiveness is not sensitive to the locality’s strength. Instead, it
is correlated only to the percentage of chunks in LQ sequences of
any lengths.

3 THE DESIGN OF RAPIDCDC
The key technique of RapidCDC is to exploit the duplicate locality
in the datasets to enable a chunking method which detects chunk
boundaries without a byte-by-byte window rolling. Due to the
existence of the locality, immediately following a current dedupli-
cateable chunk, denoted B1 in Figure 5, in a file named Filenew ,
the next chunk (B2) is likely also to be a duplicate. The question is

Figure 5: An illustration of the idea of RapidCDC for rapidly
determining chunk boundaries.Ak and Bk , where k = 1, 2, or
3, are chunks. FPk are fingerprints of chunk Ak . And sk are
size (in bytes) of chunk Ak .

where the end boundary of B2 is. To this end, current CDC methods
would take a window rolling over a potentially large number of
bytes, one byte at a time with hash function calculation and com-
parison. The number is the difference between B2’s size and the
minimum chunk size, which is usually a count of a few thousands
of bytes or more.

3.1 Quickly Reaching Next chunk’s Boundary
Let’s assume the fingerprint of Chunk B1 in File Filenew matches
Fingerprint FP1, which is currently recorded and associated with
a unique (physical) chunk of data in the storage system, that is
mapped to by at least one logical chunk. Assume one of the logical
chunks is Chunk A1 in a file named Filestored that is currently
stored on the disk, as illustrated in Figure 5. In a CDC deduplication
system each file has a recipe recording the mapping between each
of its logical chunks and its mapped physical chunk for rebuilding
file content [9, 16, 25, 27–30]. Because the system maintains the
mapping from fingerprints to their respective physical chunks, a
file’s recipe only needs to record its chunks’ fingerprints along with

RapidCDC: Leveraging Duplicate Locality to Accelerate Chunking in CDC-based Deduplication Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

their respective chunk sizes in the order of their occurrence in the
file. For example, Filestored ’s recipe is composed of a sequence of
records [..., (FP1, s1), (FP2, s2), ...], where s1 and s2 are corresponding
chunks’ sizes.

As B1 in Filenew has the same fingerprint (and exact data con-
tent) as that of A1 in Filestored , their respective next chunks, B2
and A2, are likely to have the same content. Accordingly, we may
use s2, Chunk A2’s size, in Filestored ’s recipe as a hint of B2’s size,
and directly move the rolling window on Filenew to the correspond-
ing file offset, P2, as shown in Figure 5. The key enabling operation
is to obtain the size s2 from the duplicate chunk A1. A naive ap-
proach is to maintain a pointer for each fingerprint pointing to its
corresponding recipe record (e.g., from Fingerprint FP1 to (FP1, s1),
the record in Filestored ’s recipe). For example, we can follow this
relationship chain to obtain s2 after learning that B1 is a duplicate
chunk: B1 → FP1 → (FP1, s1) → (FP2, s2) → s2. While this ap-
proach works, it unnecessarily increases complexity and overhead
by involving recipes in the operation. A recipe may be lost after
its corresponding file is removed, making corresponding pointers
invalid. Furthermore, some of its fingerprints may appear in other
files’ recipes. The pointers to the fingerprints in the file whose
recipe will be removed may need to be adjusted. It can be expensive
to make the adjustments in response to changes of recipes. While
a fingerprint can be associated with multiple logical chunks, or
multiple recipe records, it may be attached with multiple pointers.
This can further increase the cost of maintaining the pointers.

To address this issue, RapidCDC adopts a much simpler andmore
efficient method. The CDC-based deduplication process always
starts from the beginning of a file and moves sequentially towards
the end of the file. For any two consecutive chucks in a file, say A1
andA2, we record the size ofA2, say s2, along with the fingerprint of
A1, say FP1. In the example shown in Figure 5, the duplicate chunk
B1 can use a simpler relationship chain (B1 → FP1 → s2) to obtain
the suggested size (s2) of its next chunk B2 without knowledge
about recipes. Chunks with a certain fingerprint may appear in
different files, and accordingly be followed with chunks of different
sizes. Therefore, we allow a list of next-chunk sizes, named size
list, to be attached to a fingerprint. Because the size of a chunk
falls within a relatively small range (between the minimum and
maximum sizes), the size can be efficiently represented (e.g., 2 bytes
for a range of [2KB-64KB]). As a fingerprint itself needs tens of bytes
for its storage (e.g., 20 bytes for a SHA-1 fingerprint), recording a
few next-chunk sizes with a fingerprint is well affordable.

The next-chunk sizes attached to a fingerprint are actually hints
of next chunk’s boundary position. With such a hint, the rolling
window can directly jump to the suggested position. If the position
is accepted, RapidCDC avoids rolling the window one byte at a
time for thousands of times to reach the next chunk boundary.
We will detail criteria of the acceptance in the next section. If not
accepted, it will try another next-chunk size in the size list of the
duplicate chunk’s fingerprint. Only when none of the sizes in the
list is accepted, RapidCDC moves the window back to the position
which is the last chunk boundary plus the minimum chunk size,
or the position that a regular CDC would use after the last chunk
boundary is detected. It then rolls the window byte-by-byte as the
regular CDC does until a new duplicate chunk is found. Once a
new duplicate chunk is found, RapidCDC’s window jumps again

attempting to take advantage of the expected duplicate locality. In
this way, RapidCDC can flexibly switch its window rolling between
a fast forwarding mode and a byte-by-byte slow movement mode
to maximally exploit duplicate locality and perform chunking as
fast as possible.

3.2 Accepting Suggested Chunk Boundaries
After a duplicate chunk is detected, we retrieve the size list attached
to its fingerprint, which provides hints for possible sizes of its next
chunk, or its next chunk’s possible end boundaries. We will check
each of the sizes in the order in which they appear in the list until
a chunk size (or the corresponding chunk boundary) is accepted or
none of them can be accepted. There are four candidate acceptance
criteria possibly adopted in RapidCDC, each with different trade-
offs between performance gain and risk of performance penalty.
A RapidCDC deduplication scheme may incorporate any one of
the criteria. And a suggested chunk boundary is accepted when it
satisfies the criterion.

• FF (Fast-forwarding only). The suggested chunk boundary
is always accepted without further checking at the file off-
set. This is the most aggressive criterion for fast chunking.
However, it may cause loss of deduplication opportunities
by choosing boundaries that do not satisfy the predefined
chunking condition and thus produce unique chunks, which
could hurt deduplication ratio. However, our experiments
with real-world datasets indicate the risk is very low due
to RapidCDC’s ability of switching to the byte-by-byte de-
tection whenever non-deduplicatable chunk is found (see
Section 4.3).

• FF+RWT (Rolling Window Test). The suggested boundary
is verified by checking the contents in the rolling window
that ends at the suggested boundary position. As a regular
CDC does, the hash value of the contents in the window is
computed and compared to the pre-determined value. Only
when they are equal and accordingly a valid chunk is formed,
the boundary is accepted.

• FF+MT (Marker Test). Instead of computing hash value of
the window in the FF+RWT criterion, which can involve
tens or hundreds of bytes, in FF+MT RapidCDC compares
the last byte, treated as a marker, of the two chunks under
consideration (e.g., A2 and B2 in Figure 5 after duplicate
chunks A1 and B1 are found.). The boundary is accepted if
the two bytes are the same. This criterion requires recording
last byte of a chunk along with its size in the size list. This
marker-byte comparison needs only a few instructions, and
is faster than the rolling window test.

• FF+RWT+FPT (Fingerprint Test). This is the most stringent
criterion. After the boundary passes the rolling window test
as that in FF+RWT, FF+RWT+FPT additionally computes the
fingerprint of the chunk delimited by the suggested boundary
and tests whether the fingerprint currently exists (or whether
the chunk is a duplicate). Only if the second test is also passed
is the boundary accepted. By computing the fingerprint, this
verification process is the most expensive one. However, if
the fingerprint test is passed, the chunk is confirmed to be a

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Fan Ni and Song Jiang

(a) Creation of fingerprints and their size lists. (b) Updating size lists

Figure 6: Maintenance of size lists

duplicate chunk and can be readily deduplicated. Otherwise,
it has a relatively high performance penalty.

3.3 Maintaining List of Next-chunk Sizes
As each fingerprint is associated with a size list providing hints on
next chunk’s end boundary, maintenance and use of the hints can
be performance-critical. As illustrated in Figure 6(a), File A is sent
to the CDC deduplication system for storage. Assuming chunks of
File A cannot be deduplicated. When its first chunk’s fingerprint
(FP1) is added to the system’s fingerprint pool, its size list is created.
When the file’s second chunk is determined, its size (s2) is added
to FP1’s size list as its first member. A list can grow. In Figure 6(b)
File A′ also has a chunk whose fingerprint is FP1. But the chunk is
followed with a chunk of a different size (s ′2 , s2). s

′
2 is then added

to FP1’s list, which is now < s ′2, s2 >.
The size list is an ordered list. Once the fingerprint of a chunk

in the file matches one already stored in the system, the size values
in the fingerprint’s size list will be checked one by one for next
chunk boundary, until a boundary is accepted, in the order as they
appear in the list. Consequently, the order can have an impact on
the chunking performance. An acceptance of a file offset suggested
by a size value as the next chunk boundary is termed a hit on the
size value; otherwise, a miss on the value. Each miss may carry a
miss penalty, depending on which of the four acceptance criteria is
used. Therefore, we should place size values that are more likely
to produce hits at the front of the list. To this end, we use the LRU
(Least Recently Used) policy, which always places the most recently
hit value at the front, including new value just added into the list.

Figure 7 shows size lists after FilesA and B are stored and before
File C is stored. FP1’s list is < s2 > before File B is stored. After
File B is stored, it becomes < s ′2, s2 >, where the newer size value
s ′2 is placed at the head. After File C is stored, the list becomes
< s2, s ′2 > as s2 is hit. A common scenario is that a file is incre-
mentally updated generating a sequence of file versions, with each
version resulting from updating of its previous one. Use of the LRU
policy can maximize the chance of hit at the first size value in a list.
As shown in Figure 7, due to existence of duplicate locality, after
sufficient history access sequences are available (Files A and B), a
new file (File C) can flexibly exploit the locality in multiple chunk
sequences.

Keeping multiple size values in a size list can track different
sequence patterns to minimize the probability of switching back to
the window’s slow movement mode. As the list is managed with

Figure 7: Use of size lists to accelerate CDC (the shown size
lists reflect their contents after Files A and B are stored and
before File C is stored.)

LRU, a low-hit-ratio size value can be replaced out of the list follow-
ing admitting a new value. However, the list should not be too long.
In addition to potentially excessive space overhead, it may cause
low-hit-ratio size values to stay in the list for a long time period
and experience misses. Any miss on a size value carries a penalty,
because the cost of using the value for boundary acceptance check,
such as that for the FF+RWT+FPT criterion, can be substantial.
Therefore, the list should be reasonably short to keep low-hit-ratio
values out of the list.

3.4 Likeness of chunks produced by RapidCDC
and regular CDC

By opportunistically jumping to the next chunk boundaries, Rapid-
CDC may produce chunk boundaries that are different from those
produced by the regular CDC that always uses byte-by-bytewindow
rolling. This does not compromise correctness of the deduplication
storage system, as deduplication of any chunks requires match-
ing of their fingerprints with those in the system. However, the
difference of the chunk set produced by RapidCDC may impact
the chance of successful matching, or the deduplication ratio. To
understand the impact, we use the set of chunks produced by the
regular CDC as the baseline and investigate the likeness of chunks
produced by RapidCDC and regular CDC.

In the investigation, We would like to see the sequence of chunk
boundaries produced by RapidCDC is (almost) the same as that
by the regular CDC. Let’s first assume use of the FF+RWT+FPT
boundary acceptance criterion in RapidCDC. With this criterion,

RapidCDC: Leveraging Duplicate Locality to Accelerate Chunking in CDC-based Deduplication Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

RapidCDC does not add any fingerprints obtained in its fast forward-
ing mode to the system’s fingerprint pool. That is, all fingerprints
in the pool are for chunks identified by a regular rolling window
test, the same as the regular CDC. Therefore, a chunk accepted by
the FF+RWT+FPT criterion is exactly the same as that identified by
the regular CDC. That is, if we use the FF+RWT+FPT criterion, we
can guarantee RapidCDC produces the same sequence of chunks as
the regular CDC. And the deduplication ratio of such a RapidCDC
is the same as that of the regular CDC.

Now let’s assume the FF+RWT criterion is adopted in RapidCDC
to chunk a file. Suppose that the current chunk is a duplicate and
ends at the boundary at P1. And Suppose that the P1 boundary is
identified by both RapidCDC and the regular CDC. Further we as-
sume that the next chunk boundary identified by the regular CDC is
P2. And the next chunk boundary identified by the RapidCDC under
its fast forwarding mode is P ′2. Let’s see how likely P ′2 is different
from P2. First. P ′2 cannot appear before P2. Otherwise, the regular
CDC would choose P ′2, instead of P2, as its next chunk boundary.
Second, every size value in a RapidCDC’s size list is obtained by
window rolling. For the rolling window to produce a size from P1
to P ′2, the file content in the window at P2 must be updated so that
the window test at P2 fails, and the test at P ′2 must succeed. In the
current file both tests at P2 and P ′2 succeed. This means the content
of the window at P2 is different from that where the size from P1
to P ′2 is obtained. And a new chunk demarcated by P1 and P ′2 is
unlikely to be a duplicate chunk. Having a non-duplicate chunk will
force RapidCDC to switch back to its regular byte-by-byte sliding
window mode, and to produce chunk boundaries same as those
by regular CDC. That is, chunks different from those produced by
the window rolling are occasional and much less likely to see their
duplicates. Furthermore, generation of such chunks discontinues
once the byte-by-byte slow movement mode kicks in.

The analysis with the FF+MT criterion is similar. For the FF cri-
terion, we will experimentally evaluate the impact of its aggressive
chunking approach on the deduplication ratio.

4 EVALUATIONS
To evaluate the performance of RapidCDC, we conduct extensive
experiments with both synthetic and real-world datasets.

4.1 Experimental Setup
The Systems in Evaluation. In RapidCDC’s implementation

we choose the rolling-window-based CDC as its slow movement
mode, which is used in production systems. The RapidCDC pro-
totype can be configured with one of the four chunk boundary
acceptance criteria (FF, FF+RWT, FF+MT, or FF+RWT+FPT). The
default hash function applied on the content of the window to iden-
tify chunk boundaries is Rabin [23], which is an efficient rolling
hash function that can reuse its hash computation of data that
still remains in the window when the window shifts forward. This
function has been widely used in CDC-based deduplication sys-
tem implementations [14, 17, 18, 21, 33, 38]. The rolling window
size is set to 48 bytes. In the evaluation, we also include a more
lightweight hash, Gear [34]), to replace Rabin to reveal how the
function’s cost impacts RapidCDC’s performance advantage. The
default minimum/expected average/maximum chunk sizes used in

the RapidCDC prototype are 4KB/8KB/12KB, respectively, which is
the configuration adopted in the Dell-EMCData Domain system [7].
In the evaluation we also evaluate a configuration with a larger
range of chunk size (2KB/16KB/64KB), which is used in LBFS, a
low-bandwidth network file system using the CDC-based dedupli-
cation technique to reduce network traffic [18]. The prototype uses
SHA-1 to compute a chunk’s fingerprint. The implementation has
about 2400 lines of C code. By default, we use one thread. We also
conduct experiments with RapidCDC using multiple threads. The
default length of a fingerprint’s size list is 2.

Each experiment uses a regular CDC-based deduplication system
(denoted as regular in figures) as a counterpart of the RapidCDC
system for comparison. All systems in a comparison are configured
the same except stated otherwise, including choices of window size,
the hash function, and chunk size. We run the systems on a Dell-
EMC PowerEdge T440 server with 2 Intel Xeon 3.6GHz CPUs, each
with 4 cores and 16MB LLC. The server is equipped with 256GB
DDR4 memory and installed with Ubuntu 18.04 OS. We use a hard
disk as the default device for data storage. The hard disk has model
number WDC WD1003FZEX-00K3CA0 with sequential write and
read bandwidths of 138MB/s and 150MB/s, respectively.

The Datasets. The datasets for the evaluation include a series
of synthetic datasets and eight real-world datasets as described in
Table 1. Each synthetic dataset includes 10 files emulating a se-
quence of file versions with each produced after limited amount
of modification over its previous version. The first version in the
sequence is created with the dd command by copying 500MB ran-
domly generated data from “/dev/urandom”. A modification can
be an insert, delete, or overwrite. Modifications are randomly dis-
tributed within either an entire file or a selected region of the file.
The real-world datasets represent various workloads expected by a
deduplication system, including the source code files, virtual ma-
chine images, database images, and Internet news archives. Details
of the datasets are listed in Table 1. The deduplication ratios shown
in the table are obtained by applying the aforementioned regular
CDC deduplication with its default configuration. As each dataset
consists of a sequence of files, in an experiment we write the files in
a sequence, one at a time, to a deduplication system andmeasure the
deduplication speed and amount of data that can be deduplicated
within the dataset itself.

4.2 Results with Synthetic Datasets
In a synthetic dataset, starting from the second one in the sequence
of 10 files a chunk in a file receives at most one 100-byte modifica-
tion unless stated otherwise.

Impact of Modification Count and Distribution. Modifica-
tions can be categorized into two types. One may cause chunk
boundary shift, including insert and delete. The other (overwrite)
does not shift the boundary, and only changes a chunk’s content.
To generate a new version of file, we choose a modification type
and a number of modifications and randomly apply them into a file.
For the type of boundary-shift operations, we randomly choose
either insert or delete. Figure 8 shows the chunking speed (recip-
rocal of total chunking time) and deduplication ratio on a dataset

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Fan Ni and Song Jiang

Table 1: Real-world datasets used in the experiments. All the Docker images are downloaded from Docker Hub [8].

Name Size (GB) # of files Dedup Ratio Description
Google-news 7.2 14 2.1 Two weeks’ data (10/17/2018∼10/31/2018) from news.google.com,

one file for each day, collected by wget with a maximum retrieval
depth of 3.

Linux-tar 37.2 209 4.1 Tar files of Linux source code (Ver. 4.0∼4.9.99) from kernel.org.
Cassandra 14.2 40 5.0 Docker images of Apache Cassandra, an open-source storage sys-

tem [5].
Redis 100.4 34 7.2 Docker images of the Redis key-value store database [24].
Debian 9.5 92 15.8 Docker images of Debian Linux distribution (since Ver. 7.11) [11].
Neo4j 46.0 140 19.0 Docker images of neo4j graph database [19].

Wordpress 181.7 501 22.0 Docker images ofWordPress rich content management system [13]
Nodejs 800.0 1567 41.4 Docker images of JavaScript-based runtime environment pack-

ages [12]

generated with different types and different numbers of modifica-
tions for RapidCDC using different boundary acceptance criteria.
The chunking speed is normalized to the speed of the regular CDC
deduplication on the same dataset, and is presented as speedup. As
shown, RapidCDC with the FF criterion, which accepts a suggested
boundary without any testing, has a consistently higher speedup.
However, for Insert/Delete its advantage on the speedup comes at
the cost of reduced deduplication ratio. Because RapidCDC quickly
switches to the slow window movement mode to look for the next
valid boundary after a fingerprint mismatch, the reductions are
limited. There is not such a reduction with datasets generated with
overwrites, as they do not change the boundaries. Except with FF,
RapidCDC has (almost) the same deduplication ratio as the regular
CDC. Across the various datasets it seems that FF+MT is a consis-
tently well-performed choice in terms of both chunking speed and
deduplication ratio.

Understandably the deduplication ratio decreases with the in-
crease of modification count. As RapidCDC takes advantage of
duplicate sequences, which tend to become fewer and shorter when
modifications increase, its chunking speedup is accordingly reduced.
However, the speedup is always positively correlated with its cor-
responding deduplication ratio, and is very close to the ratio. For
example, for Insert/Delete and the FF RapidCDC, the deduplica-
tion ratios are 7.9, 6.6, 4.3, 2.8, and 1.8 with modification counts of
1000, 2000, 5000, 10000, and 20000 in a file, respectively. And the
respective speedups are 6.1, 4.8, 3.1, 2.1, and 1.6, which are close to
the respective deduplication ratios. RapidCDC can enable its fast
forwarding mode to reach boundaries of any duplicate chunks in
the LQ sequences. We speculate that the speedup can stay high
regardless of distribution of LQ sequence lengths, as long as there
are a sufficient number of duplicate chunks. This speculation is
confirmed by the experiment results shown in Figure 9. Datasets
used in the experiments are generated after applying the same
number (1000) of modifications within the first certain percentage
of a file. The speedup shows little change when the modifications
are either made narrowly in a 10% file range or scattered over the
entire file (100%). That is, RapidCDC’s performance is not sensitive
to LQ sequence length’s distribution.

1000 2000 5000 10000 20000
of modifications

0

1

2

3

4

5

6

S
p

ee
d

u
p

FF+RWT+FPT

FF+RWT

FF+MT

FF

(a) Insert/Delete

1000 2000 5000 10000 20000
of modifications

0

1

2

3

4

5

6

7

S
p

ee
d

u
p

FF+RWT+FPT

FF+RWT

FF+MT

FF

(b) Overwrite

1000 2000 5000 10000 20000
of modifications

0

1

2

3

4

5

6

7

D
ed

u
p

lic
at

io
n

ra
ti

o

Regular

FF+RWT+FPT

FF+RWT

FF+MT

FF

(c) Insert/Delete

1000 2000 5000 10000 20000
of modifications

0

1

2

3

4

5

6

7

8

D
ed

u
p

lic
at

io
n

ra
ti

o

Regular

FF+RWT+FPT

FF+RWT

FF+MT

FF

(d) Overwrite

Figure 8: Chunking speed and deduplication ratio for
datasets with different numbers of modifications spread
over an entire file.

Impact of Minimum Chunk Size and Hash Function. Dur-
ing chunking operations of a regular CDC, a rolling window may
also enter its fast-forwardingmode by skipping theminimum chunk
size of bytes immediately after a detected chunk boundary. This
optimization on the window rolling may have an impact on Rapid-
CDC’s relative benefit. To this end, we vary theminimum chunk size
during the deduplication of a dataset with 1000 insert/delete modifi-
cations randomly distributed in a file. To allow the minimum size to
change in a larger range, we adopt a 2KB/16KB/64KB configuration,
instead of the 4KB/8KB/12KB default one, as minimum/expected
average/maximum chunk sizes. Figure 10 shows that the impact is
small. With a decent deduplication ratio, RapidCDC has removed
most of the chunking time, leaving only a small number of window

RapidCDC: Leveraging Duplicate Locality to Accelerate Chunking in CDC-based Deduplication Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

10 20 50 80 100
Range of modified chunks (%)

0

1

2

3

4

5

6

S
p

ee
d

u
p

FF+RWT+FPT

FF+RWT

FF+MT

FF

(a) Insert/Delete

10 20 50 80 100
Range of modified chunks (%)

0

1

2

3

4

5

6

7

S
p

ee
d

u
p

FF+RWT+FPT

FF+RWT

FF+MT

FF

(b) Overwrite

Figure 9: Chunking speedups for datasets where 1000 modi-
fications are applied to different range of a file.

2 4 8
Minimum chunk size (KB)

0

1

2

3

4

5

6

S
p

ee
d

u
p

FF+RWT+FPT

FF+RWT

FF+MT

FF

(a) Insert/Delete

2 4 8
Minimum chunk size (KB)

0

1

2

3

4

5

6

7

8

S
p

ee
d

u
p

FF+RWT+FPT

FF+RWT

FF+MT

FF

(b) Overwrite

2 4 8
Minimum chunk size (KB)

0

1

2

3

4

5

6

7

8

D
ed

u
p

lic
at

io
n

ra
ti

o

Regular

FF+RWT+FPT

FF+RWT

FF+MT

FF

(c) Insert/Delete

2 4 8
Minimum chunk size (KB)

0

1

2

3

4

5

6

7

8

D
ed

u
p

lic
at

io
n

ra
ti

o

Regular

FF+RWT+FPT

FF+RWT

FF+MT

FF

(d) Overwrite

Figure 10: Chunking speedup and deduplication ratio with
different minimum chunk sizes.

rollings in the slow movement mode. Therefore, the acceleration
due to the use of a larger minimal chunk size does not take away
much of RapidCDC’s relative advantage. Furthermore, the small
reduction of speedups are correlated to that of deduplication ratio.
A larger minimum size leads to large chunk sizes, which tends to
reduce deduplication ratio. RapidCDC’s speedup becomes smaller
with fewer duplicate chunks.

Another factor likely impacting RapidCDC’s speedup is the
rolling function for detecting chunk boundaries. Because the func-
tion is used at almost every rolling window position in a regular
CDC, a faster function can accelerate the chunking process. The
Gear [34] function used in FastCDC [34] can be 3× faster than
Rabin. Figure 11 shows the speedups with the faster function used
in both RapidCDC and regular CDC. The speedups are modestly
smaller than those with the Rabin function (compared to Figure 8).
For example, for RapidCDC’s FF criterion they are 5.9, 4.5, 2.7, 1.8,
and 1.5 with Gear for modification counts of 1000, 2000, 5000, 10000,
and 20000, respectively. The corresponding speedups are 6.1, 4.8,

1000 2000 5000 10000 20000
of modifications

0

1

2

3

4

5

S
p

ee
d

u
p

FF+RWT+FPT

FF+RWT

FF+MT

FF

(a) Insert/Delete

1000 2000 5000 10000 20000
of modifications

0

1

2

3

4

5

6

S
p

ee
d

u
p

FF+RWT+FPT

FF+RWT

FF+MT

FF

(b) Overwrite

Figure 11: Chunking speedups of RapidCDC on datasets
with different modification counts and a faster hash func-
tion, Gear.

1000 2000 5000 10000 20000
of modifications

0

5

10

15

S
lo

w
d

ow
n

(%
) FF+RWT+FPT

FF+RWT

FF+MT

Figure 12: Chunking speed slowdowns when all suggested
next-chunk sizes are misses in RapidCDC.

3.1, 2.1, and 1.6 with Rabin. While the window’s slow rolling mode
becomes faster, RapidCDC’s relative advantage becomes smaller.
These results also indicate that RapidCDC’s performance strength
is largely orthogonal to other optimization efforts on accelerat-
ing CDC process, including chunking method optimization like
FastCDC [35] that uses the Gear function.

RapidCDC’s Worst-case Scenario. RapidCDC’s effectiveness
relies on its successful acceptance of suggested next-chunk sizes.
For any unaccepted size value, or a miss on the value, a miss penalty
occurs for any acceptance criteria except FF. To gauge the impact of
the miss on RapidCDC’s chunking performance in the worst-case
scenario, we change RapidCDC’s prototype code to make none of
the suggested boundaries accepted after a check using one of the
criteria (FF+RWT, FF+MT, or FF+RWT+FPT) and redo the experi-
ment presented in Figure 8(a). The chunking speed slowdowns over
the regular CDC are shown in Figure 12. Compared to tens of times
speedups observed in realistic datasets as shown in Section 4.3, the
less-than 10% slowdowns are insignificant. With more modifica-
tions and accordingly lower deduplication ratios, there are fewer
size values to be checked and the slowdowns are smaller. Under-
standably such datasets are unlikely to occur. And even the small
slowdowns due to the hypothetical dataset can hardly materialize.

4.3 Results with Real-world Datasets
We categorize the eight real-world datasets in Table 1 into two
groups according to their redundancy quantified by deduplication
ratios: a high data redundancy group (Debian, Neo4j, Wordpress,

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Fan Ni and Song Jiang

Debian Neo4j Wordpress Nodejs
0

5

10

15

20

25

30

S
p

ee
d

u
p

FF+RWT+FPT

FF+RWT

FF+MT

FF

(a) High Data Redundancy

Google-news Linux-tar Cassandra Redis
0

1

2

3

4

5

6

S
p

ee
d

u
p

FF+RWT+FPT

FF+RWT

FF+MT

FF

(b) Low Data Redundancy

Debian Neo4j Wordpress Nodejs
0

10

20

30

40

D
ed

u
p

lic
at

io
n

ra
ti

o

Regular

FF+RWT+FPT

FF+RWT

FF+MT

FF

(c) High Data Redundancy

Google-news Linux-tar Cassandra Redis
0

2

4

6

D
ed

u
p

lic
at

io
n

ra
ti

o

Regular

FF+RWT+FPT

FF+RWT

FF+MT

FF

(d) Low Data Redundancy

Figure 13: Chunking speedup and deduplication ratio for
real-world datasets.

and Nodejs) and a low data redundancy group (Google-news, Linux-
tar, Cassandra, and Redis), and use them to evaluate RapidCDC’s
deduplication ratio and performance.

RapidCDC Performance Impact on Chunking and the En-
tire deduplication System. Figure 13 shows RapidCDC’s chunk-
ing speedups and deduplication ratios with the datasets. For datasets
of high redundancy, the deduplication ratio can be about 40. But
only RapidCDC with FF has speedups close to the high dedupli-
cation ratios. Speedups of the other alternatives are much lower,
especially for datasets of very high deduplication ratios, such as
Nodejs. A speedup of around 10 is equivalent to a removal of 90%
of chunking time from the regular CDC. Further improving the
ratio, or removing the remaining time, requires elimination of even
small operational costs, such as hashing for boundary acceptance
and rolling the window back for the slow movement mode upon
a non-acceptance. Only FF mostly removes the costs and reaches
the high ratio. Another interesting observation is that FF does not
compromise the deduplication ratio for the real-world datasets.
To reveal the reason, we increase length of each fingerprint’s size
list to 4, and measure the hit ratio of each of the list’s positions
under the FF+RWT criterion. A hit means the size at the position
is accepted. The results are shown in Figure 14. The first position
has a very high hit ratio. For example, for the Debian dataset, the
ratio is 99.18%, which means that in almost all cases the first sizes
are accepted. FF accepts the first sizes without any checking, and
fortunately it indeed makes the right decision and does not sacrifice
deduplication ratio.

As the first position in the list has such a high ratio, we do not
expect a long list could make a substantial difference on chunk-
ing performance. Figure 15 shows speedups of RapidCDC using
FF+RWT with different size list lengths. While a miss on the entire

Debian Neo4j Wordpress Nodejs
0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
er

ce
nt

ag
e

of
si

ze
lis

t
h

it
s

(%
)

99.18 99.72 99.55 99.24

1st

2nd

3rd

4th

(a) High Data Redundancy

Google-news Linux-tar Cassandra Redis
0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
er

ce
nt

ag
e

of
si

ze
lis

t
h

it
s

(%
)

97.97 98.68 99.38 99.34

1st

2nd

3rd

4th

(b) Low Data Redundancy

Figure 14: Hit ratios of positions in the size lists under the
FF+RWT criterion. The first position’s ratio ismarked above
its bar, which does not scale.

Debian Neo4j Wordpress Nodejs
0.0

2.5

5.0

7.5

10.0

12.5

15.0

S
p

ee
d

u
p

1

2

3

4

(a) High Data Redundancy

Google-news Linux-tar Cassandra Redis
0

1

2

3

4

5

S
p

ee
d

u
p

1

2

3

4

(b) Low Data Redundancy

Figure 15: Chunking speedups for real-world datasets with
RapidCDC/FF+RWT of different lengths of the size list.

Debian Neo4j Wordpress Nodejs
0.0

0.5

1.0

1.5

2.0

2.5

S
p

ee
d

u
p

FF+RWT+FPT

FF+RWT

FF+MT

FF

(a) High Data Redundancy

Google-news Linux-tar Cassandra Redis
0.0

0.5

1.0

1.5

2.0

S
p

ee
d

u
p

FF+RWT+FPT

FF+RWT

FF+MT

FF

(b) Low Data Redundancy

Figure 16: Speedups of CPU computation (Chunk-
ing+fingerprinting) for real-world datasets.

list would cause RapidCDC to enter the slow window movement
mode and have a sizable penalty, even a small hit ratio on positions
other than the first one can contribute to the loss of chunking per-
formance. As shown, using a longer list often produces a visibly
higher speedup. Meanwhile, the small contributions do not justify
the space cost for keeping a long list. Therefore, its default length
is set at 2.

To understand the impact of RapidCDC’s increased chunking
speed on the CPU computation, we present speedups of the compu-
tation, whose two major components are chunking and calculation
of fingerprints, in Figure 16.While these two components often take
roughly similar amount of time in the regular CDC, and RapidCDC

RapidCDC: Leveraging Duplicate Locality to Accelerate Chunking in CDC-based Deduplication Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

can remove significant portion of the chunking time, the speedup
of the CPU computation is around 2. The speedup is less than 2 for
low data-redundancy datasets as RapidCDC’s chunking speedups
are lower.

To see the impact of RapidCDC’s chunking speedups on the
overall performance of a deduplication storage system, we present
throughput of the deduplication system when various real-world
datasets are written to the system in Figure 17. In the experiments,
in addition to the default hard disk, a SATA SSD and NVMe SSD
are used. The SATA SSD is Samsung SSD 860 EVO with 500GB
capacity, whose write and read bandwidth is 520MB/s and 550MB/s,
respectively. The NMVe SSD is Intel SSDPEDMW012T4 of 1.2TB
and has write and read bandwidths of 1.2GB/s and 2.4GB/s, respec-
tively. The RapidCDC uses FF as its chunk boundary acceptance
criterion. In addition to RapidCDC, it also shows the results of
a fixed size chunking (FSC) deduplication system with the 8KB
chunk size, results of the regular CDC, and results of a hypothetical
deduplication system. The hypothetical system represents an ideal
CDC-based deduplication implementation, in which chunking time
is completely removed. In this case, we obtain chunking boundaries
offline.

There are several interesting observations from Figure 17. First,
the disk can be a performance bottleneck when it has a low band-
width and the dataset has a low deduplication ratio that increases
I/O bandwidth demand. Figure 17(d) shows the datasets’ deduplica-
tion ratios. For FSC and RapidCDC, when their deduplication ratios
are low (e.g., for Google-news), using faster disks (SATA SSD and
then NVMe SSD) increases the throughput. However, with a higher
deduplication ratio, the bottleneck shifts to the CPU, and faster
disks do not lead to higher throughput. For example, RapidCDC
has a deduplication ratio of 7.2 on Redis and its throughput in-
creases minimally. However, FSC’s deduplication ratio is 1.9, and its
throughput keeps increasing (from 360MB/s, 745MB/s, to 760MB/s).
Second, with a higher deduplication ratio, RapidCDC’s advantage
over the regular CDC becomes increasingly higher, because the
regular CDC’s chunking speed is not correlated with the ratio. Its
throughput is about 2.3× as high as that of the regular CDC with
Nodejs. Third, with low deduplication ratio and fast disks, such as
Google-news or Linux-tar on NVMe SSD, FSC can have a higher
throughput than RapidCDC as the bottleneck is on the CPU and
RapidCDC cannot make the chunking fast enough to catch up
with the speed of FSC. However, once RapidCDC can have a high
deduplication ratio, its chunking speed can be close to that of FSC.
While its deduplication ratio is usually much higher than that of
FSC, its throughput is higher than FSC’s in most cases. Fourth, once
the deduplication ratio is high or a fast disk is used, RapidCDC’s
throughput is close to that of the ideal system as the bottleneck is
on the CPU and RapidCDC removes most of the chunking cost.

Throughput of Multi-threaded RapidCDC. We implement
a multi-threaded RapidCDC, each thread working on a different file
in a dataset. Being challenged by CDC’s high cost, researchers have
proposed methods to use multi-core or even GPU to accelerate the
operation [2, 3, 10, 31, 33]. RapidCDC can also leverage the paral-
lelism in a multi-core system. To protect integrity of fingerprints
and their size lists, we place the data items in a hash table and apply
a lock on each hash bucket. For each dataset, an available thread

(a)SATA HDD
0

250
500
750

1000
FSC Regular CDC RapidCDC Ideal

(b)SATA SSD
0

250
500
750

1000

T
h

ro
u

gh
p

u
t

(M
B

/s
)

Google-news
Linux-tar

Cassandra
Redis

Debian
Neo4j

Wordpress
Nodejs

(c)NVMe SSD

0
250
500
750

1000

Google-news
Linux-tar

Cassandra
Redis

Debian
Neo4j

Wordpress
Nodejs

(d) Deduplication ratio

0

8

16

24

32

40

D
ed

u
p

li
ca

ti
on

R
at

io FSC RapidCDC

Figure 17: Throughput and deduplication ratio of the dedu-
plication systems.

Debian Neo4j
Wordpress

Nodejs
0

20

40

60

80

T
h

ro
u

gh
p

u
t

(G
B

/s
)

1 thread

2 threads

4 threads

8 threads

(a) High Data Redundancy

Google-news
Linux-tar

Cassandra Redis
0.0

2.5

5.0

7.5

10.0

12.5

15.0

T
h

ro
u

gh
p

u
t

(G
B

/s
)

1 thread

2 threads

4 threads

8 threads

(b) Low Data Redundancy

Figure 18: Chunking throughput with different number of
threads, each on a different core.

picks up the next unprocessed file in the set. Figure 18 shows the
chunking throughput (excluding disk I/O and fingerprinting opera-
tions) of RapidCDC with FF and different thread counts. As shown,
the performance scales well and the throughput increases almost
linearly. For datasets with high redundancy, the throughput can
reach tens of GB/s, making the chunking hardly be a performance
bottleneck and making it be a completely addressed issue.

5 RELATEDWORK
Efforts have been made mainly on optimization of the rolling hash
function and leveraging of parallel hardware to parallelize chunk-
ing operations to improve chunking performance in a CDC-based
deduplication system.

Reducing Computation Cost in Chunking. In CDC, a hash
value is computed over the content of a rolling window at most of
byte positions in a file, representing the major cost of the chunking

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Fan Ni and Song Jiang

operation. The Rabin fingerprint, or similarly CRC32, are commonly
used as the hash function for determining chunk boundaries as
reported in literature [14, 17, 18, 21, 33, 38] and for production
systems [7]. While chunking becomes a performance bottleneck
of a CDC-based deduplication system, many techniques have been
proposed to reduce its cost. SimpleByte was designed to provide
fast chunking to eliminate fine-grained redundant data transmitted
across networks [1]. It uses a rolling window of only one byte
to detect boundaries of chunks whose sizes are only 32-64 bytes.
However, this approach is not likely to be used in regular storage
systems as its condition to form a chunk boundary is too weak and
will produce very small chunks, which can significantly increase
metadata management overhead. Gear [34] is a lightweight hash
function requiring only one bit-shift, one add, and one table lookup
in a hash computation. As reported, the Gear-based chunking can
be 3× as fast as the Rabin-based chunking [35]. Some issues with the
Gear function, such as generating too small chunks, are addressed in
the FastCDC deduplication design [35]. Instead of applying a hash
function on a window of bytes to obtain a hash value, MAXP [4]
and AE [37] treat bytes in a window as numerical values and find a
local extremum to determine a chunk boundary more efficiently.
Yu et al. use two functions, a lightweight one and a heavyweight
one, to detect a chunk boundary [36]. A lightweight function is
applied first to check whether a condition is met. Only when it is
satisfied is the second function executed. All the efforts were made
to reduce the computational cost at individual window positions,
instead of reducing number of file positions where the function
has to be applied. RapidCDC takes a radically different approach. It
minimizes number of file positions for detecting chunk boundaries.
It makes chunking speed less sensitive to the cost of the hash
function. And the efforts on reducing the function’s computation
cost further help with RapidCDC’s efficiency.

Accelerating Chunking with Parallelism. StoreGPU [2, 10]
and Shredder [3] leverage GPUs to accelerate the chunking and fin-
gerprinting process in deduplication. They focus on minimizing the
data transfer cost between the host and GPU. P-Dedupe pipelines
deduplication tasks and parallelizes chunking and fingerprinting
process in each task with multiple threads to achieve high through-
put [33]. MUCH is a multi-threaded chunking method, where a
file is partitioned into segments for parallel chunking on different
cores. It ensures the same set of chunks to be generated as that from
the sequential CDC [31]. SS-CDC was proposed to use Intel-AVX
instructions to accelerate CDC, which guarantees the produced
chunk boundaries will be identical to those with regular sequential
CDC [22]. All these parallel chunking efforts requires additional or
specialized hardware supports, which adds extra cost to existing
storage systems or may not be available. Furthermore, introduction
of parallel hardware for CDC acceleration may introduce substan-
tial software development cost. And existing deduplication systems
may need to be redesigned to optimize the communication and to
synchronize multiple chunking instances. RapidCDC can remove
most of CDC cost, making chunking a lightweight operation and
making its parallelization essentially unnecessary.

Exploitation of Locality in Deduplication. Locality in work-
loads has been recognized and exploited to improve various aspects

of a deduplication system. A sparse indexing structure has been pro-
posed to reduce the in-memory chunk index by taking advantage
of the locality of duplicate chunks [15]. The technique has been
used in Hewlett-Packard backup products. And effectiveness of the
method highly relies on existence of locality of duplicate chunks
in segments. ChunkStash also leverages the locality to establish a
compact in-memory chunk index and stores the full index on the
flash to speed up the index lookup in a deduplication system [6].
SiLo organizes a number of small files into a large data stream, so
that long duplicate segments, or strong duplicate locality, can occur.
This helps to improve deduplication ratio and makes large chunks
possible, and accordingly reduces amount of index structure [32].
To address the issue of file fragmentation in an FSC deduplication
system, iDedup [26] exploits the spatial locality in a duplicate data
in a primary storage system to deduplicate only chunk sequences of
sufficient lengths, so that random disk access can be minimized to
efficiently serve read requests. After demonstrating high availabil-
ity of duplicate locality in various real-world datasets, we propose
RapidCDC to leverage the locality to accelerate chunking opera-
tions. To the best of our knowledge, this is the first work leveraging
the locality to remove the major performance bottleneck of CDC
deduplication.

6 CONCLUSION
In the paper we propose RapidCDC, a chunking technique for
CDC-based deduplication systems, that can dramatically reduce the
chunking time.While chunking has been well recognized as a major
performance bottleneck in a CDC-based deduplication system and
substantial efforts have been made to reduce its cost, RapidCDC
represents a departure from existing optimization techniques for
reducing the chunking time. It uniquely leverages duplicate local-
ity and access history. Instead of slowly scanning a file to search
for chunk boundaries, it uses highly accurate hints on next chunk
boundary to reach the boundary with only one verification op-
eration. The RapidCDC technique can be incorporated into any
existing CDC-based deduplication system with minor effort, which
is to retrieve a suggested next-chunk size for every matched finger-
print and try to use it for locating the next valid chunk boundary.
Furthermore, its benefit is orthogonal to other optimizations made
in a deduplication system, including those for improving chunking
performance.

We prototype RapidCDC and conduct extensive experiments
comparing its chunking performance and deduplication ratio with
other deduplication systems. The results show that it can provide
up to 33× chunking speedup, which essentially removes the chunk-
ing performance bottleneck for datasets of high data redundancy.
Meanwhile, it maintains (almost) the same deduplication ratio as
regular CDC systems.

The source code of our RapidCDC implementation is available
at https://github.com/moking/RapidCDC.

7 ACKNOWLEDGMENTS
We are grateful to the paper’s shepherd Dr. Xiangyao Yu and anony-
mous reviewers who helped to improve the paper’s quality. This
work was supported by US National Science Foundation under
Grants CNS-1527076 and CCF-1815303.

RapidCDC: Leveraging Duplicate Locality to Accelerate Chunking in CDC-based Deduplication Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

REFERENCES
[1] Bhavish Aggarwal, Aditya Akella, Ashok Anand, Athula Balachandran, Pushkar

Chitnis, Chitra Muthukrishnan, Ramachandran Ramjee, and George Varghese.
2010. EndRE: An End-system Redundancy Elimination Service for Enterprises.
In Proceedings of the 7th USENIX Conference on Networked Systems Design and
Implementation (NSDI’10). USENIX Association, Berkeley, CA, USA, 28–28. http:
//dl.acm.org/citation.cfm?id=1855711.1855739

[2] Samer Al-Kiswany, Abdullah Gharaibeh, Elizeu Santos-Neto, George Yuan, and
Matei Ripeanu. 2008. StoreGPU: Exploiting Graphics Processing Units to Ac-
celerate Distributed Storage Systems. In Proceedings of the 17th International
Symposium on High Performance Distributed Computing (HPDC ’08). ACM, New
York, NY, USA, 165–174. https://doi.org/10.1145/1383422.1383443

[3] Pramod Bhatotia, Rodrigo Rodrigues, and Akshat Verma. 2012. Shredder: GPU-
accelerated Incremental Storage and Computation. In Proceedings of the 10th
USENIX Conference on File and Storage Technologies (FAST’12). USENIX Asso-
ciation, Berkeley, CA, USA, 14–14. http://dl.acm.org/citation.cfm?id=2208461.
2208475

[4] Nikolaj Bjrner, Andreas Blass, and Yuri Gurevich. 2010. Content-dependent
Chunking for Differential Compression, the LocalMaximumApproach. J. Comput.
Syst. Sci. 76, 3-4 (May 2010), 154–203. https://doi.org/10.1016/j.jcss.2009.06.004

[5] Apache Cassandra. 2014. Apache cassandra. Available online at
http://planetcassandra.org/what-is-apache-cassandra (2014), 13.

[6] Biplob K Debnath, Sudipta Sengupta, and Jin Li. 2010. ChunkStash: Speeding Up
Inline Storage Deduplication Using Flash Memory.. In USENIX annual technical
conference. 1–16.

[7] Dell EMC. [n.d.]. Data Domain - Data Backup Appliance, Data Protection. https:
//www.dellemc.com/en-us/data-protection/data-domain-backup-storage.htm.

[8] Docker Inc. 2016. Official repositories on Docker Hub. https://hub.docker.com/.
[9] Kave Eshghi, Mark Lillibridge, Lawrence Wilcock, Guillaume Belrose, and

Rycharde Hawkes. 2007. Jumbo Store: Providing Efficient Incremental Upload and
Versioning for a Utility Rendering Service. In Proceedings of the 5th USENIX Con-
ference on File and Storage Technologies (FAST ’07). USENIX Association, Berkeley,
CA, USA, 22–22. http://dl.acm.org/citation.cfm?id=1267903.1267925

[10] Abdullah Gharaibeh, Samer Al-Kiswany, Sathish Gopalakrishnan, and Matei
Ripeanu. 2010. A GPU Accelerated Storage System. In Proceedings of the 19th
ACM International Symposium on High Performance Distributed Computing (HPDC
’10). ACM, New York, NY, USA, 167–178. https://doi.org/10.1145/1851476.1851497

[11] Docker Inc. 2018. debian: Docker Official Images. https://hub.docker.com/_/
debian/.

[12] Docker Inc. 2018. Node: Docker Official Images. https://hub.docker.com/_/node/.
[13] Docker Inc. 2018. wordpress: Docker Official Images. https://hub.docker.com/_/

wordpress/.
[14] Himshai Kambo and Bharati Sinha. 2017. Secure data deduplication mechanism

based on Rabin CDC and MD5 in cloud computing environment. In Recent Trends
in Electronics, Information & Communication Technology (RTEICT), 2017 2nd IEEE
International Conference on. IEEE, 400–404.

[15] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar, Greg
Trezise, and Peter Camble. 2009. Sparse Indexing: Large Scale, Inline Dedu-
plication Using Sampling and Locality. In Proccedings of the 7th Conference on
File and Storage Technologies (FAST ’09). USENIX Association, Berkeley, CA, USA,
111–123. http://dl.acm.org/citation.cfm?id=1525908.1525917

[16] YV Lokeshwari, B Prabavathy, and Chitra Babu. 2011. Optimized cloud storage
with high throughput deduplication approach. In Proceedings of the International
Conference on Emerging Technology Trends (ICETT). Citeseer.

[17] Dirk Meister and André Brinkmann. 2009. Multi-level Comparison of Data
Deduplication in a Backup Scenario. In Proceedings of SYSTOR 2009: The Israeli
Experimental Systems Conference (SYSTOR ’09). ACM, New York, NY, USA, Article
8, 12 pages. https://doi.org/10.1145/1534530.1534541

[18] Athicha Muthitacharoen, Benjie Chen, and David Mazières. 2001. A Low-
bandwidth Network File System. SIGOPS Oper. Syst. Rev. 35, 5 (Oct. 2001), 174–187.
https://doi.org/10.1145/502059.502052

[19] Neo Technology. 2018. Neo4j Graph Database Platform. https://neo4j.com/.
[20] NetApp inc. 2018. ONTAP Data Management Software: ONTAP Data Man-

agement Software. https://www.netapp.com/us/products/data-management-
software/ontap.aspx.

[21] Alexander Neumann. 2018. Fast implementation of Content Defined Chunking
(CDC) based on a rolling Rabin Checksum in C. https://github.com/fd0/rabin-cdc.

[22] Fan Ni, Xing Lin, and Song Jiang. 2019. SS-CDC: A Two-stage Parallel Content-
defined Chunking for Deduplicating Backup Storage. In Proceedings of the 12th
ACM International Conference on Systems and Storage (SYSTOR ’19). ACM, New
York, NY, USA, 86–96. https://doi.org/10.1145/3319647.3325834

[23] Michael O Rabin. 1981. Fingerprinting by random polynomials. Technical report
(1981).

[24] Salvatore Sanfilippo and Pieter Noordhuis. 2015. Redis. http:// redis.io (2015).
[25] Philip Shilane, Grant Wallace, Mark Huang, and Windsor Hsu. 2012. Delta

Compressed and Deduplicated Storage Using Stream-Informed Locality.. In Hot-
Storage.

[26] Kiran Srinivasan, Tim Bisson, Garth Goodson, and Kaladhar Voruganti. 2012.
iDedup: Latency-aware, Inline Data Deduplication for Primary Storage. In Pro-
ceedings of the 10th USENIX Conference on File and Storage Technologies (FAST’12).
USENIX Association, Berkeley, CA, USA, 24–24. http://dl.acm.org/citation.cfm?
id=2208461.2208485

[27] Niraj Tolia, Michael Kozuch, Mahadev Satyanarayanan, Brad Karp, Thomas C
Bressoud, and Adrian Perrig. 2003. Opportunistic Use of Content Addressable
Storage for Distributed File Systems.. In USENIX Annual Technical Conference,
General Track, Vol. 3. 127–140.

[28] Cristian Ungureanu, Benjamin Atkin, Akshat Aranya, Salil Gokhale, Stephen
Rago, Grzegorz Calkowski, Cezary Dubnicki, and Aniruddha Bohra. 2010. Hy-
draFS: A High-throughput File System for the HYDRAstor Content-addressable
Storage System. In Proceedings of the 8th USENIX Conference on File and Stor-
age Technologies (FAST’10). USENIX Association, Berkeley, CA, USA, 17–17.
http://dl.acm.org/citation.cfm?id=1855511.1855528

[29] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane, Stephen Smaldone,
Mark Chamness, and Windsor Hsu. 2012. Characteristics of Backup Workloads
in Production Systems. In Proceedings of the 10th USENIX Conference on File and
Storage Technologies (FAST’12). USENIX Association, Berkeley, CA, USA, 4–4.
http://dl.acm.org/citation.cfm?id=2208461.2208465

[30] Jiansheng Wei, Hong Jiang, Ke Zhou, and Dan Feng. 2010. MAD2: A Scalable
High-throughput Exact Deduplication Approach for Network Backup Services.
In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST) (MSST ’10). IEEE Computer Society, Washington, DC, USA,
1–14. https://doi.org/10.1109/MSST.2010.5496987

[31] Youjip Won, Kyeongyeol Lim, and Jaehong Min. 2015. MUCH: Multithreaded
Content-Based File Chunking. IEEE Trans. Comput. 64, 5 (2015), 1375–1388.

[32] Wen Xia, Hong Jiang, Dan Feng, and Yu Hua. 2011. SiLo: A Similarity-locality
Based Near-exact Deduplication Scheme with Low RAM Overhead and High
Throughput. In Proceedings of the 2011 USENIX Conference on USENIX Annual
Technical Conference (USENIXATC’11). USENIX Association, Berkeley, CA, USA,
26–28. http://dl.acm.org/citation.cfm?id=2002181.2002207

[33] Wen Xia, Hong Jiang, Dan Feng, and Lei Tian. 2012. Accelerating data dedu-
plication by exploiting pipelining and parallelism with multicore or manycore
processors. In Proceedings of the 10th USENIX Conference on File and Storage
Technologies (FASTâĂŹ12 Poster). 1–2.

[34] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Yukun Zhou. 2014. Ddelta:
A deduplication-inspired fast delta compression approach. Performance Evalua-
tion 79 (2014), 258–272.

[35] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong Hu, Yucheng
Zhang, and Qing Liu. 2016. FastCDC: A Fast and Efficient Content-defined
Chunking Approach for Data Deduplication. In Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference (USENIX ATC ’16). USENIX
Association, Berkeley, CA, USA, 101–114. http://dl.acm.org/citation.cfm?id=
3026959.3026969

[36] Chuanshuai Yu, Chengwei Zhang, Yiping Mao, and Fulu Li. 2015. Leap-based
content defined chunkingâĂŤtheory and implementation. InMass Storage Systems
and Technologies (MSST), 2015 31st Symposium on. IEEE, 1–12.

[37] Yucheng Zhang, Dan Feng, Hong Jiang, Wen Xia, Min Fu, Fangting Huang, and
Yukun Zhou. 2017. A Fast Asymmetric Extremum Content Defined Chunking Al-
gorithm for Data Deduplication in Backup Storage Systems. IEEE Trans. Comput.
66, 2 (Feb. 2017), 199–211. https://doi.org/10.1109/TC.2016.2595565

[38] Benjamin Zhu, Kai Li, and Hugo Patterson. 2008. Avoiding the Disk Bottleneck
in the Data Domain Deduplication File System. In Proceedings of the 6th USENIX
Conference on File and Storage Technologies (FAST’08).

http://dl.acm.org/citation.cfm?id=1855711.1855739
http://dl.acm.org/citation.cfm?id=1855711.1855739
https://doi.org/10.1145/1383422.1383443
http://dl.acm.org/citation.cfm?id=2208461.2208475
http://dl.acm.org/citation.cfm?id=2208461.2208475
https://doi.org/10.1016/j.jcss.2009.06.004
https://www.dellemc.com/en-us/data-protection/data-domain-backup-storage.htm
https://www.dellemc.com/en-us/data-protection/data-domain-backup-storage.htm
https://hub.docker.com/
http://dl.acm.org/citation.cfm?id=1267903.1267925
https://doi.org/10.1145/1851476.1851497
https://hub.docker.com/_/debian/
https://hub.docker.com/_/debian/
https://hub.docker.com/_/node/
https://hub.docker.com/_/wordpress/
https://hub.docker.com/_/wordpress/
http://dl.acm.org/citation.cfm?id=1525908.1525917
https://doi.org/10.1145/1534530.1534541
https://doi.org/10.1145/502059.502052
https://neo4j.com/
https://www.netapp.com/us/products/data-management-software/ontap.aspx
https://www.netapp.com/us/products/data-management-software/ontap.aspx
https://github.com/fd0/rabin-cdc
https://doi.org/10.1145/3319647.3325834
http://redis.io
http://dl.acm.org/citation.cfm?id=2208461.2208485
http://dl.acm.org/citation.cfm?id=2208461.2208485
http://dl.acm.org/citation.cfm?id=1855511.1855528
http://dl.acm.org/citation.cfm?id=2208461.2208465
https://doi.org/10.1109/MSST.2010.5496987
http://dl.acm.org/citation.cfm?id=2002181.2002207
http://dl.acm.org/citation.cfm?id=3026959.3026969
http://dl.acm.org/citation.cfm?id=3026959.3026969
https://doi.org/10.1109/TC.2016.2595565

	Abstract
	1 Introduction
	2 Quantitative Analysis of Duplicate Locality
	3 The Design of RapidCDC
	3.1 Quickly Reaching Next chunk's Boundary
	3.2 Accepting Suggested Chunk Boundaries
	3.3 Maintaining List of Next-chunk Sizes
	3.4 Likeness of chunks produced by RapidCDC and regular CDC

	4 Evaluations
	4.1 Experimental Setup
	4.2 Results with Synthetic Datasets
	4.3 Results with Real-world Datasets

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

