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Abstract—Key-value caches, represented by Memcached, play
a critical role in data centers. Its efficacy can significantly impact
users’ perceived service time and back-end systems’ workloads.
A central issue in the in-memory cache’s management is memory
allocation, or how the limited space is distributed for storing key-
value items of various sizes. When a cache is full, the allocation
issue is how to conduct replacement operations on items of
different sizes. To effectively address the issue, a practitioner must
simultaneously consider three factors, which are access locality,
item size, and miss penalty. Existing designs consider only one
or two of the first two factors, and pay little attention on miss
penalty. This inadequacy can substantially compromise utilization
of cache space and request service time.

In this paper we propose a Penalty Aware Memory Allocation
scheme (PAMA) that takes all three factors into account. While
the three different factors cannot be directly compared to each
other in a quantitative manner, PAMA uses their impacts on
service time to determine where a unit of memory space should
be (de)allocated. The impacts are quantified as the decrease
(or increase) of service time if a unit of space is allocated (or
deallocated). PAMA efficiently tracks access pattern and use
of memory, and speculatively evaluates the impacts to enable
penalty-aware memory allocation for KV caches. Our evaluation
with real-world Memcached workload traces demonstrates that
PAMA can significantly reduce request service time compared to
other representative KV cache management schemes.
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I. INTRODUCTION

As a critical component of today’s data center infras-
tructure, key-value (KV) cache amasses a large collection of
memory distributed on a cluster of servers and uses it as a
cache to accelerate front-end applications. Unlike conventional
caches, which are usually used to bridge access speed gaps
between fast and expensive memory and slow but more af-
fordable storage devices, the KV cache is used to store data
objects, which often represent expensive-to-compute values,
such as results of popular database queries. Because it could
take a much longer time, such as many milliseconds, to obtain
the values, by caching them one can significantly reduce the
load on the back-end database systems, accelerate frond-end
applications, and improve customers’ user experience.

Today KV cache systems have been deployed in almost all
major Internet companies. Among the systems, Memcached
is one of the most known ones [4] and has been deployed
in companies including Facebook, Zynga, and Twitter. These
systems are object stores, where objects are in the form of (key,
value) pairs. Their interfaces usually provide simple primitives,

such as insertion (SET), retrieval (GET), and deletion (DEL).
Just like any cache systems, a KV cache aims to achieve as
many hits as possible by maximizing the utilization of limited
cache space. In the meantime, a KV cache has its unique char-
acteristics that are different from caches traditionally deployed
for caching data on the block storage devices, and demands
different considerations in its design.

First, size of KV items in the cache can be distributed
over a very large range. Our study of Facebook’s production
workload on its Memcached system has shown that item size
can be as small as a couple of bytes and as large as 1MB [6].
Hit ratio, as a generic metric often used for evaluating caching
efficacy, measures number of hits over a given number of GET
requests. However, it does not consider the cost of producing
the hits, where the cost is the space held by the hit items.
Therefore, in the design of a replacement algorithm for the
cache, items that have been requested many times do not
necessarily warrant their long-term stay in the cache without
being evicted, especially when they are very large.

Second, temporal access pattern can regularly change. The
Memcached workload study shows clear diurnal patterns [6].
The load variation during a diurnal cycle can be on the order
of two times. The pattern can also be drastically affected
by the occurrence of major news or media events leading
to swift surge of access frequency to certain KV items.
We believe similar observations are likely to exist in other
KV systems supporting Internet-wide services. Such workload
behaviors suggest that the cache’s replacement algorithm must
be responsive to the pattern changes. In particular, when cache
space is allocated to regions holding items of different sizes,
the space has to be responsively allocated/re-allocated between
the regions.

Third, miss penalty can vary in a large range. A cache
is employed to avoid misses, or more generally, to minimize
miss penalty. Replacement algorithms used in most storage
caches aim to only minimize misses (or miss ratio), rather than
miss penalty. While this can cause a substantial performance
issue for some block devices, such as hard disks [10], the
inadequacy can have a much more serious impact on KV
cache’s performance. Figure 1 shows miss penalties with KV
items of different sizes for one of the Facebook workloads we
had studied (“APP”) [6]. While the workload traces do not
explicitly contain miss time of a GET request, we assume
that a GET request miss immediately follows a retrieval
of the missing value from a back-end system and a SET
request for caching the corresponding KV item into the cache.
Accordingly, we consider the time period between the GET
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Fig. 1: Miss penalties of GET requests for KV items of
different sizes.

miss and the PUT request as the corresponding miss penalty
of the GET request. As shown, the penalty for a miss can be
as small as a few milliseconds and as large as several seconds.
While the metric truly relevant to a KV-cache’s users is request
service time, excluding the penalty in the design of a cache
management system can possibly lead to many (very-)high-
penalty misses and much deteriorated cache performance.

In this paper we propose a dynamic memory (re)-allocation
scheme that takes all three factors affecting request service
time into account, which are locality, size, and miss penalty.
While the three factors seem to be hard to be directly integrated
into one quantity guiding the memory allocation optimized
for minimal request service time, we propose to measure
the contribution on the reduction of miss penalty by a unit
of cache space, named as slab, in a time window. This is
equivalent to measure the contribution on the amount of total
miss penalty experienced by users should the KV items held
in the slab not be cached in the time window. We name this
measure as the value of the slab. For a slab of memory to
be of high value, the slab can contain frequently accessed
items (of strong locality), a large number of items (of small
size), and/or items of high miss penalties. Using the measure
accommodating miss penalty, we design a Penalty Aware
Memory Allocation scheme, named as PAMA. In the scheme,
a slab’s value is efficiently estimated or predicted to enable the
most effective use of cache space to minimize request service
times. We use a KV cache simulator to evaluate the PAMA
scheme and other representative schemes with traces collected
on Facebook’s production Memcached systems and observe
significant performance improvements by PAMA.

The rest of this paper is organized as follows. We describe
background and related work of KV caching in Section II.
We then describe design of the PAMA scheme in Section III.
Section IV provides a comprehensive evaluation, and Section
V concludes.

II. BACKGROUND AND RELATED WORK

In a KV store each data item includes a key, a value, and
metadata, is stored individually, and is often indexed with a
hash table. As the item size can vary in a large range, cache
space is not allocated in a fixed unit. This avoids significant

memory fragmentation. To this end, Memcached places items
in different queues, called classes in the Memcached commu-
nity, each dedicated to items in a certain size range. Memory
space is allocated to different classes in a fixed unit called
a slab. A slab is divided into one or multiple equally-sized
slots, depending on which class it is allocated to, and each
slot holds one item in the corresponding class. When a new
item is admitted into a class matching its size, Memcached first
searches the class for a free slot to accommodate the item. If
this search fails, a free slab is requested and adds into the
class. If such a slab is not granted, a replacement slot within
the class needs to identified and evicted often by using the
LRU (Least Recently Used) replacement algorithm. There are
two scenarios where such a slab can be found. One is the
system has not yet used up all of its available memory space
and allocates a free slab to the class. The other is that all
memory space has been allocated and a slab is taken from
another class by evicting all its holding items. The allocation
and reallocation of slabs in a KV store are essential to the
cache’s efficacy.

In the earlier versions of Memcached, the aforementioned
second scenario is not allowed. After the initial memory space
is exhausted, the allocations to the classes will not change.
Apparently the allocations are determined by initial workload
when the system is being warmed up. They remain fixed
after this initial phase even when workload characteristics
change significantly, leading to serious under-utilization of
cache space. To address this issue, there have been a number
of designs recently proposed.

In a recent version of Memcached, relocations among
classes are allowed [5]. However, the relocation policy is
conservative and such relocations do not occur often. In every
time window of ten minutes, the number of misses in each
class are recorded. If a class continuously receives the largest
number of misses for three times, and there exists a class that
does not see any misses in the three time windows, a slab is
migrated from the class without misses to the class with the
most misses. While this design allows memory space to be
reallocated, it does not fully consider locality, size, and miss
penalty. Regarding locality, if misses on a class are produced
by a flush of cold items (that are unlikely to be re-accessed
soon), the additional slabs received by the class would not be
efficiently used. In contrast, PAMA estimates the number of
misses that would be avoided in a class if it gains a new slab,
or that could be produced in a class if it loses a slab. Regarding
size, if a class for large items generates many misses, possibly
due to attempting to access nonexistent items, it would grab
a large number of slabs in a short period of time and make
classes for smaller items lose their still useful items. Regarding
miss penalty, this information is not considered at all, though
it can be approximated by the duration between the missing
GET and its subsequent SET that reinstates the value.

A team at Facebook improves the original Memcached by
re-balancing slab allocations across classes [11]. The optimized
Memcached attempts to balance the age of LRU items in dif-
ferent classes to approximate a single global LRU replacement
policy for the entire cache. Here an item’s age refers to its latest
access time. Specifically, if the scheme finds that the age of a
class’s LRU item is 20% younger than the average age of the
other classes’ LRU items, a slab is moved from the class with



the oldest LRU item to the class with the youngest LRU item.
In this way, locality can be better exploited. However, it still
does not consider item size and miss penalty.

Memcached was also optimized at Twitter into a new
version called Twemcache [3]. Twemcache has a slab reallo-
cation policy that aggressively moves slabs between classes.
The strategy is very simple: when a class has a miss but
does not have free space, Twemcache chooses a random class
and reassigns one of its slabs to the class with the miss. By
doing this, Twemcache tries to evenly spread misses across
the classes. However, in the case that all slabs in a class are
efficiently used but few misses are produced, the class’s slabs
should not be taken away.

The periodic slab allocation (PSA) policy tries to equalize
request density, or number of requests per slab, across different
classes [2]. For every M misses, where M is a predefined
constant, PSA relocates a slab from the class with the lowest
density to the one with the largest number of misses recorded
in a time window. By normalizing number of requests (or
misses) over space size, PSA takes item size into its consid-
eration, though it still ignores the impact of miss penalty on
the cache performance. In addition, in a class, different slabs
can have different density, and the LRU slab, which is the
candidate for relocation, may not be the one with the lowest
density. Therefore, using the density to exploit locality is likely
to compromise cache performance.

More recently, Hu et al. propose to use miss ratio curve
for quantifying access locality and use the curve to determine
the optimal space allocation for each class [9]. The optimality
can be defined in terms of either hit ratio or average request
service time. As miss penalty is included in the calculation
of the average service time, the proposed scheme considers
the aforementioned three factors. However, to enable effective
application of dynamic programming technique, the scheme
uses only average request hit time and average request miss
time to quantify access time. We have shown in Figure 1
that miss penalty can vary in a large range. Average service
time, or average miss penalty, measured in the previous time
period may not be sufficiently representative and accurate to
make the currently optimal allocation decision. In contrast,
PAMA uses actual miss penalties associated with each slab
to make the decision. Without tracking miss ratio curves and
applying dynamic programming algorithm, PAMA makes use
of individual miss penalties in the decision affordable.

III. DESIGN OF THE PAMA SCHEME

As we have indicated, PAMA is designed to have all
three performance-critical factors, namely locality, size, and
miss penalty, in a common cache management framework.
To address the memory fragmentation issue, we follow Mem-
cached’s basic data structure, or use the slab as the allocation
unit and place slabs into different classes, each for KV items in
a certain range. In each class, items are managed with the LRU
replacement policy. If there was only one class and all items
were of the same miss penalty, the in-class LRU policy would
exploit locality well, as long as relatively strong locality exists
in the requests. With the existence of multiple classes, the
critical issue becomes re-allocation of slabs between classes
with the consideration of size and miss penalty. To this end,

the three factors have to be quantitatively integrated into one
measure, which is to be used as the basis for slab reallocation.

While locality cannot be directly quantified as size and miss
penalty, we need to estimate its relative strength among items
of similar size and miss penalty. To this end, we divide a class
into a number of subclasses according to items’ miss penalty.
Items whose miss penalties are in a given range and that
have been assigned to the same class are placed in the same
subclass, and are organized as an LRU stack. By assigning KV
items of different sizes into different classes and further assign-
ing items of different miss penalties into different subclasses,
each LRU stack (associated with a subclass) contains items of
similar size and miss penalty and can be solely used for locality
estimation, as shown in Figure 2. The bottom items in the stack
(the LRU end of the queue) are of relatively weak locality
among all items in the stack. If a slab has to be replaced
from the subclass, due to misses either in this subclass or in
another subclass, the bottom slab in the stack would be the
one according to the locality distribution in the stack.

}

}

m reference segments

m reference segments

Relocation candidate segment

Receiving segment

}Class i }Class j

LRU stacks of subclasses

Fig. 2: Illustration of data structures facilitating PAMA’s slab
reallocation. A class is divided into a number of subclasses,
each corresponding to a certain range of miss penalty values.
KV items in each subclass are organized in an LRU stack.
Relocation candidate segment indicates slab possibly for being
taken away, and receiving segment indicates position where a
new slab is placed in an LRU stack.

When a new slab is demanded in a subclass and no free
slab is available in the cache, every subclass’ bottom slab
is a candidate for replacement to supply the requested slab
space. Accordingly, the cache allocation problem becomes a
selection among the candidates for minimizing request service
time. The selection is guided by a candidate slab’s value in
a subclass, which is quantified as the amount of miss penalty
that can incur when the slab is taken away from the subclass
(outgoing value) during a given time window. A subclass also
has its incoming value, which is the amount of miss penalty
that can be saved when a new slab is added to the subclass to
cache items recently replaced out of the subclass. In principle,
when there is a miss in a subclass that does not have any
free space, PAMA will potentially select the candidate slab of



the smallest outgoing value (among all subclasses’ candidate
slabs) for replacement. However, there are two scenarios where
actual slab migration between (sub-)classes does not happen.
First, if the incoming value of the subclass having the miss is
smaller than the smallest outgoing value of the candidate slab,
a migration does not help improve cache space utilization.
Second, if the selected slab is from the subclass having the
miss, there will be no cross-(sub)class slab migration, and one
KV item in the slab will be be replaced.

To measure a candidate slab’s value, we do not track
accesses on a physical slab. Instead, it can be considered
as a virtual slab holding items at the bottom of a subclass’
stack. These items can physically reside in different physical
slabs. When the virtual slab is to be replaced, the items are
discarded in their respective physical slabs, and their left space
will be reclaimed by moving valid items in the slabs together
to produce an empty slab for migration. The time window in
which the value is calculated is not wall-clock time. Instead, it
refers to the number of accesses on the entire cache, as such a
defined time period is more relevant to the cache replacement
behaviors.

To effectively measure slab values, we need to address
several challenges. First, values of individual slabs can be
very dynamic in a relatively short time window. Using quickly
changing values to determine slab reallocation can potentially
lead to slab thrashing, or frequent moving slabs among a few
subclasses. While increasing the time window helps stabilize
the value, an excessively large time window makes the statistic
less responsive to change of access patterns. Our approach is
to take values of a number of slabs sitting above the candidate
slab in a subclass’s LRU stack into account. As shown in
Figure 2, each of these slabs, including the candidate slab,
in a subclass, corresponds to a segment of KV items in or
near the bottom of the subclass’s LRU stack. Each segment
covers items that can be held in one slab. Assume that in the
current time window, there are n requests (R1, R2, ..., Rn) for
items in a segment (Sk), where k = 0, 1, .... The value of the
segment, or the value of of its corresponding slab space, is

Vk =
∑n

i=1
Ti (1)

where Ti is the miss penalty of the item requested by Ri.
Assume a subclass’s candidate slab is S0 and slabs above S0

are S1, S2, ... in this order. To calculate the candidate slab’s
value (V ) for the purpose of slab migration, PAMA does not
consider only V0. Instead, it considers values of m additional
reference segments close to it but gives higher weight to values
of segments closer to the candidate slab.

V =

m∑
i=0

1

2(i+1)
Vi (2)

This value is actually the outgoing value of the candidate
slab, as it represents amount of performance loss for this
subclass if the candidate slab is taken away from it.

The second challenge is how to estimate the incoming
value for a subclass, or the amount of performance gain if
an additional slab is added into the subclass. An added slab

could turn some recent misses into hits. To know how many
such misses could have been hits with the new slab, we extend
the LRU stack beyond its current bottom to remember recently
replaced items. As shown in Figure 2, this extended section
only records keys and miss penalties of KV items, rather than
the items’ value components. If a new slab is received, it
will be used to cache items in the segment right beneath the
candidate slab in the LRU stack. This segment is called the
receiving segment. To predict the incoming value of a slab in
the subclass, it seems that we only need to calculate the miss
penalties of items that had missed on the receiving segment in
the current time window. However, for the same reason as that
for considering multiple segments above the candidate slab, we
consider m additional segments (m ≥ 1) beneath the receiving
segment in the LRU stack to calculate the incoming value. The
method is similar. We use weighted values of the m reference
segments, where higher weights are given to segments closer
the candidate slab, to calculate the subclass’ incoming value.

The third challenge is how to minimize the cost for
calculating the number of hits or misses in each of the m
segments. To know whether an access is a hit or a miss is
equivalent to testing membership of an item in an item set.
Scanning the segments upon each access is too expensive.
Maintaining one or multiple hash tables for this purpose can
lead to high space overhead, and updating membership in the
hash tables needs lock(s) to serialize their access. To address
this issue, we propose to use Bloom filters [1] to complete
the testing in O(1) time with small space overhead. We use
one Bloom filter for each reference segment. However, one can
only add a member into a Bloom filter but cannot conveniently
remove a member out of it. In the meantime, in the LRU
stack a KV item has to be removed out of a segment once it is
accessed. To address this issue, we set up a Bloom filter, called
a removal filter, to track the items that have been recently
removed out of the segments. When a segment’s Bloom filter
indicates that an item is in the segment, PAMA would consult
with the removal filter. Only when the removal filter does not
contain the item does PAMA consider the item to be in the
segment. When PAMA detects that a new item being added
into a segment is also in the removal filter, it clears the filter
to ensure that the filter serves the purpose of indicating items
not existent in the segments. Note that in the LRU policy, a
removed item is placed at the top of the LRU stack and in
a large cache storing many KV items it takes a substantially
long time period for the item to re-enter the segments.

IV. EVALUATION OF THE PAMA SCHEME

To evaluate the performance of PAMA, we build a KV
cache simulator that can faithfully simulate the behaviors
of PAMA, as well as a hypothetical version PAMA, called
pre-PAMA, that does not consider the miss penalty in the
calculation of a segment’s value. That is, in pre-PAMA a
candidate slab’s value is simply the number of requests in
the segment. We use pre-PAMA as a reference scheme to
demonstrate how miss penalty plays its role in improving
the scheme’s performance. Furthermore, we also simulate the
original version of Memcached, where slab relocation among
classes is not allowed, to evaluate the effect of the reallocation.
As a representative of existing schemes that enable slab
reallocation, PSA is also selected in the evaluation because it
considers KV item sizes by using request density in the classes



and uses the density as the criterion to determine the source
class of a relocation. In contrast, Facebook’s Memcached
policy [11] considers only item’s age or access locality, and
Twitter’s Memcached policy [3] simply picks a random class
as the relocation source. Therefore, we do not include them in
the evaluation.

The workloads we use in the experiments are traces col-
lected on Facebook’s production Memcached cluster [6]. While
the traces do not explicitly contain miss penalty information,
we estimate it with the time gap between the miss of a GET
request and the SET of the same key immediately following
the SET. Most users add their missed KV items into a KV
cache when they re-obtain them. We discard excessively large
(larger than 5 seconds) time gaps as users may not immediately
retrieve the KV items from the backup store or re-compute
them at a database system, or they may not immediately add
the items into the cache. For a small fraction of KV items
whose miss penalties are unknown, we use a default penalty
value (100ms), which is roughly the observed mean penalty,
as their penalty.

The PAMA system in the evaluation follows the way in
which Memcached defines its classes: the first class stores
items of 64 bytes or smaller, the second class stores items
of 128 bytes or smaller. In general, every class stores items
whose maximum size doubles the one of its previous class. We
divide a class into five subclasses, whose covered miss penalty
ranges are (0, 1ms], (1ms, 10ms], (10ms, 100ms], (100ms,
1000ms], and (1s, 5s], respectively. To compute the value of a
candidate segment, we use m = 2 reference segments, which
we find sufficient to accurately quantify the value. We include
a sensitivity study on the parameter at the end of the section.

The Facebook traces were collected from different Mem-
cached clusters, each dedicated to serve requests from different
services [6]. In total there are five clusters and five traces
were collected. We choose two (ETC and APP) out of them
in the evaluation. Among the other three traces (USR, SYS,
and VAR), USR has two key size values (16B and 21B)
and almost only one value size (2B). SYS has very small
data set, and a 1G memory can produce almost a 100%
hit ratio. VAR is dominated by update requests, such as
SET and REPLACE, while we are mostly interested in GET
requests whose performance is more related to the cache space
management.

The performance metrics we use for reporting experiment
results are hit ratio and average service time for GET requests.
To obtain insights on the trend of these metric values’ change
during running of the workloads, we show their values in each
time window (1 million GET requests). In the calculation of
the metric values we only consider GET results, as they tend
to impose high miss penalty and directly affect user-visible
service quality.

A. Experiment with the ETC workload

We first experiment with the ETC trace, “the most repre-
sentative of large-scale, general-purpose KV stores” [6]. As
the trace has a relatively small data set, we start with a cache
space of 4GB memory.

Let us see cache space distribution over the classes under
the various schemes. Figure 3 shows how the space allocation

among different classes changes over time. Without a space
reallocation mechanism, the space allocation in Memcached
does not change after all free memory has been allocated. Class
0 holds the smallest items but has the most frequent accesses.
Accordingly, its allocation is ranked in about the middle of
the list of the classes. Class 11, which holds the largest items,
has the smallest memory allocation as its request rate is much
lower than others’. Class 8 receives the largest allocation with
its relatively modest item sizes and request rate. Under PSA,
after the initial cache allocation Class 0 aggressively takes
slabs from other classes. Class 0 receives over 70% of all
requests to the system, and its request density is the highest
among all classes until its allocation reaches 3.3GB. After this,
all classes have about the same density and the allocation is
stabilized.

Comparing PSA’s allocation with the one produced by pre-
PAMA, we can see that Class 0 also receives the largest share
of cache space. However, pre-PAMA receives its allocation at
a slower rate as the decision of reallocation is made according
to the accesses on the segments around the bottom of an LRU
stack. As PSA counts any accesses to make allocation decision,
Class 0 may receive space from other classes because of many
accesses on its non-near-bottom segments. As these accesses
do not indicate immediate need of more space, in PSA Class 0
may receive more memory than what it needs. In contrast, in
pre-PAMA, in addition to Class 0, some other classes, such as
Classes 1, 2, and 3, can retain more of their spaces to reduce
misses.

As seen in the Figure 3(d), the space allocation by PAMA is
very different. The cache space is more evenly allocated across
the classes. To find out the reason, we show the space alloca-
tion across subclasses within two example classes (Classes 0
and 8) in Figure 4. As shown, classes for small items, such
as Class 0, have subclasses for items of small miss penalty,
and can lose cache space. Meanwhile, classes for relatively
large items, such as Class 8, have subclasses for items of
relatively large miss penalty, may gain cache space. Therefore,
consideration of miss penalty makes space difference between
different classes’ allocation become smaller.

The space allocation by PAMA is not necessarily optimal
in terms of hit ratio. Figure 5 shows the hit ratio of the ETC
workload with different cache sizes. As shown, PAMA’s hit
ratios are lower than those of PSA’s, though their differences
become smaller with a larger cache. By not caching some
more frequently accessed but less expensive (in terms of
miss penalty) items, PAMA may compromise hit ratio for
the sake of minimal request service time. Pre-PAMA, which
does not consider miss penalty and is optimized only for hit
ratio, has the highest hit ratios. It achieves this by moving
slabs to classes where the largest number of misses can be
avoided. The original Memcached produces the lowest hit
ratio, demonstrating a strong need of enabling slab relocation
for higher performance. Another observation is that with a
smaller cache, a scheme’s hit ratio is more dynamic, as the
caching behaviors are more sensitive to changes of access
pattern. It is noted that using a larger cache increases hit
ratio only by a few percentage points. This improvement is
meaningful as it is reported that a mere 4.1% hit ratio increase
“represents over 120 million GET requests per day per server,
with noticeable impact on service latency.” [6].
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Fig. 3: Space allocations in different classes under various schemes in a 4GB cache (a) Memcached without space reallocation,
(b) PSA, (c) pre-PAMA, and (d) PAMA.
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Fig. 4: Space allocations in different subclasses under the PSA schemes (a) in Class 0 and (b) in Class 8.

As we have stated, the ultimate metric for evaluating a
KV cache’s performance is request service time. Figure 6
shows average service times in KV caches of different sizes.
Clearly in all cache sizes PAMA achieves the shortest service
time. Though its hit ratios are higher than those of pre-
PAMA and PSA, its service time can be substantially smaller,
especially when the cache size is small. PAMA allocates cache
space among classes and subclasses based on a slab’s value,
quantifying its contribution on reducing service time. When
cache is relatively small, there are more misses and PAMA’s
service-time oriented optimization allows more misses to occur
on items of relatively small miss penalty.

B. Experiment with the APP workload

We then experiment with the APP workload, one with a
large data set in terms of aggregate accessed KV item sizes.

Accordingly we use 16GB, 32GB, and 64GB as testing cache
sizes. Because significant misses (around 40% of all misses)
are cold misses, whose contribution on the hit ratio and service
time is independent of cache management schemes, we repeat
the same trace in the second half of the experiment to highlight
the performance difference among the schemes.

Figure 7 shows the hit ratios under different schemes.
Consistent with the observation on the ETC workload, Pre-
PAMA achieves the highest hit ratios, and PAMA’s hit ratios
are even lower than those of PSA. Also with larger caches,
dynamics of hit ratio curves become less dramatic because
dynamics of changing access behaviors within short time
periods can be better absorbed by additional cache space.
Specifically, with more cache space, some misses on items
that cannot be held in the cache can be turned into hits when
additional cache space is made available. Another observation
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Fig. 5: Hit ratios of the ETC workload under various schemes
with cache of different sizes: (a) 4GB, (b) 8GB, and (c) 16GB.

is that the schemes that perform better in terms of hit ratio have
smaller variations on the ratio, such as pre-PAMA and PSA,
as they can avoid some of the suddenly increased misses with
an optimized use of its cache space. Because in the second
half of the experiment all cold misses do not exist, better
performing schemes, such as pre-PAMA and PSA, have even
higher improvements, clearly showing their advantages.

Figure 8 shows the workload’s average request service
time under different schemes. Consistent as what we saw in
the ETC experiment, the relative advantage between PAMA
and pre-PAMA/PSA is reversed when we change performance
metric from hit ratio to service time. As shown in Figure 8,
PAMA’s reduction of service time is very impressive. Before
removing cold misses, with a 16GB cache PAMA’s average
service time is only around 36% and 67% of the original
Memcached’s and PSA’s times, respectively. When the service
time curves stabilize, PAMA’s service time is only 11% and
27% of Memcached and PSA’s times, respectively, in the
repeating trace that does not contain cold misses. Even with
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Fig. 6: Average request service time of the ETC workload
under various schemes with cache of different sizes: (a) 4GB,
(b) 8GB, and (c) 16GB.

a much larger cache (64GB), the improvements are similar.
The large improvements are expected considering the large
variation of miss penalty (see Figure 1 and ignorance of miss
penalty in other schemes’ cache management.

C. Study on the impact of caching unpopular items

In a KV cache system, there can be a bursty stream of
requests accessing and adding new KV items into the cache.
The new items may be associated with hot data, which will
be intensively accessed after they are cached, and accordingly
caching them would help improve (at least maintain) cache
performance in terms of hit ratio or average request service
time. However, there are cases where the items are not (at least
not immediately) popular ones. Because the LRU replacement
policy is used in the caches, these relatively cold items will still
be received into the cache. However, infrequent access of the
cached items could compromise the performance. A caching
scheme should minimize the impact and effectively respond to
the access pattern.
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Fig. 7: Hit ratios of the APP workload under various schemes
with cache of different sizes: (a) 16GB, (b) 32GB, and (c)
64GB.

To gauge the impact, at the time of about 0.35 million
GET requests we use the SET command to quickly inject cold
KV items whose total size is about 10% of the cache size
into a KV cache running the ETC workload. Because bursty
requests are often from the same application or service and
share some common characteristics, we limit the cold requests’
sizes in a relatively small range covering only three classes,
named as impacted classes. Figure 9 shows the impact of
caching cold items on hit ratio and average service time under
PSA and PAMA schemes. As shown in Figure 9(a), with the
arrival of bursty cold items, PSA’s hit ratio is accordingly
reduced. This is well understood, as PSA always relocates
slabs to the class(es) with the largest number of misses. The
impacted classes receive the cold misses in a short time period
and produce many misses. Accordingly they steal memory
slabs from other classes and cause their hit ratios to reduce.
However, because the misses in the impacted classes are due
to unpopular items, the slabs received by these classes do not
substantially lead to more hits. To make the situation even
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Fig. 8: Average request service time of the APP workload
under various schemes with cache of different sizes: (a) 16GB,
(b) 32GB, and (c) 64GB.

worse, after the impact of cold item access, it takes a long
time period to recover the lowered hit ratio, as the impacted
classes lose their less-efficiently used slabs slowly. Though
the classes’ request density becomes lower, their number of
misses can also be high, as hot items may also have been
evicted. Looking into Figure 9(b), we have similar observations
on PSA’s request service time: a sudden surge of the service
time upon impact and a slow recovery from the impact.

In contrast, PAMA exhibits much more desirable behaviors.
As shown in Figure 9(a), upon the impact, its hit ratio takes
a small drop and recovers quickly. PAMA makes its decision
on slab relocation based on the value of slabs at and near
the bottom of a subclass’s LRU stack, or their potential
contributions to hit ratio or service time. When the cold items
are added into the impacted classes and hot items in the classes
are also accessed simultaneously, the cold items are pushed
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Fig. 9: Performance impact of adding unpopular KV items into
a 4GB- cache serving the ETC workload. The performance
metric can be either (a) hit ratio or (b) average request service
time.

towards the stack bottoms, reducing the values of these classes’
candidate slabs. This makes it harder for the classes to take
others’ slabs. For the same reason, after the impact, holding
the cold items makes the classes more likely to lose slabs
containing the cold items. PAMA’s average request time, as
shown in Figure 9(b), is little affected by the impact. The
cache space relocation caused by accessing cold items happens
mostly on low-miss-penalty slabs, as they are more likely to
be selected for relocation. This makes the increased misses
due to the impact be mostly ’less expensive’ ones, leaving the
impact on request service time smaller.

D. Sensitivity Study on PAMA Parameter

The PAMA scheme has a parameter, m, about the number
of reference segments included in the calculation of a candidate
slab’s value. It is noted that in PAMA calculation of the
value is essentially a prediction of a slab’s future contribution
to the cache’s performance. A large m value helps alleviate
effect of short-term access behaviors on the value and makes
the value more indicative of future access characteristics, or
makes it represent a more accurate prediction. To evaluate
the parameter’s impact on PAMA’s performance, we vary
m and see how the average request service time changes
accodingly. As shown in Figure 10, when we increase m
from 0 to 2, ETC’s service time reduces by about 12-28%.
Further increasing it to 4 and 8 brings a small additional time
reduction. Comparatively, the impact of larger m on APP’s
service is visible but at a smaller scale. As very large m is
apparently not necessary, choosing a moderate one, such as
the default m value (2) used in the rest of the evaluation, is
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Fig. 10: Average request service time with different numbers of
reference segments (M ) in the PAMA scheme. (a) The ETC
workload on a 4GB cache, and (b) the APP workload on a
16GB cache.

needed, especially for KV caches with more dynamical or less
predictable workloads.

V. CONCLUSION

KV caches have been a critical infrastructure component
for today’s Internet-wide computing at data centers. While
data caching has been studied for decades in various system
levels, the workload characteristics of the cache for KV items
are unique and demand new solutions. These characteristics
include (1) KV item size can vary in a large range, as a vast
variety of applications or services may share the same cache.
(2) A KV item’s miss penalty can vary in a large range as
the items may be obtained by computing in back-end database
systems. (3) The three important factors (locality, size, and
miss penalty) that determine a KV cache’s performance are
not necessarily correlated. For example, a small item may have
large miss penalty, and a frequently accessed item may have a
small miss penalty. The PAMA management scheme proposed
in this paper considers these three workload characteristics and
integrates the three factors seamlessly in a common framework
for dynamic space reallocation.

PAMA uses the slab as a reallocation unit, and uses
item classes and subclasses to accommodate requirements on
distinction of size and miss penalty, respectively. It uniquely
introduces the concept of a slab’s value to quantify the effect
of KV items’ locality, size, and miss penalty on the cache’s
performance, and uses it as the metric for space reallocation.
Our experimentation with real-world Memcached workload
traces demonstrates that PAMA can significantly reduce re-
quest service time compared with representative KV cache



management schemes. With the existence of highly variable
miss penalties, existing KV cache management schemes that
use hit ratio as the performance metric can lead to suboptimal
performance experienced by users. In the evaluation, PAMA
may not provide the best hit ratio. Instead, it is designed to
optimize the most meaningful performance metric – request
service time.
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