
SAT-Match: A Self-Adaptive Topology Matching Method to Achieve Low
Lookup Latency in Structured P2P Overlay Networks �

Shansi Ren, Lei Guo, Song Jiang, and Xiaodong Zhang
Department of Computer Science

College of William and Mary
Williamsburg, VA 23187-8795

�sren, lguo, sjiang, zhang�@cs.wm.edu

Abstract

A peer-to-peer (P2P) system is built upon an overlay
network whose topology is independent of the underlying
physical network. A well-routed message path in an over-
lay network with a small number of logical hops can re-
sult in a long delay and excessive traffic due to undesir-
ably long distances in some physical links. In this paper, we
propose an effective method, called SAT-Match, to adap-
tively construct structured P2P overlay networks, aiming at
significantly reducing the lookup routing latency. In this
method, each joining peer is initially guided to find a physi-
cally close neighbor to connect with. After then, its overlay
location is adaptively adjusted whenever a location mis-
match is detected. The topology matching optimization in
our method solely relies on local neighborhood informa-
tion. Compared with existing topology matching methods,
our method addresses their three limitations: (1) heavily
relying on global information about the Internet by using
landmark-based measurements, (2) lacking adaptation to
frequent peer movement in a dynamic environment, such as
mobile networks, and (3) insufficiently accurate in topology
matching due to the lack of adaptive topology adjustment.
We have evaluated our method in the Content-Addressable
Network (CAN), a representative structured P2P system
with a strong tolerance to frequent peer arrivals/departures.
Through intensive simulation experiments on large scale
CAN overlays, we have shown the effectiveness of SAT-
Match. Our method can achieve average logical/physical
link latency reduction rate by up to 40% . It also outper-
forms “landmark binning”, a method utilizing global infor-
mation by up to 20%. Finally, combining with the landmark
binning method, SAT-Match can achieve up to 60% latency
reduction.

�This work is supported in part by the U.S. National Science Founda-
tion under grants CCR-0098055 and ACI-0129883.

1 Introduction

In a Peer-to-Peer (P2P) system, each end node provides
services to other participating nodes as well as receives ser-
vices from them. The central directory based P2P systems
such as Napster [7] prevailed in the early stage. Shortly the
decentralized unstructured P2P systems such as Gnutella
[2] emerged and became popular. However, the tremendous
traffic caused by the flooding search mechanism [4] would
narrow the scope of its applications. Addressing some lim-
itations of directory-based and Gnutella-like P2P systems,
decentralized structured P2P systems based on Distributed
Hash Tables (DHTs) make the information search highly
objective. CAN [8], Chord [10], Pastry [1] and Tapestry
[14] are several representative structured P2P systems. In
such systems, pairs of keys and values are placed in an or-
ganized way. Keys are hashed first. Based on the hashed
values, these key-value pairs are mapped to the correspond-
ing nodes whose IDs match the hashed keys. DHTs contain
these distributed, but controlled and organized key-value
pairs. Structured P2P systems have the advantages of mod-
erate overhead traffic and easy manageability. Among these
representatives, Pastry, Tapestry, and Chord have �������

routing hops, while CAN has ����
�

� � routing hops, where
� is the number of peer nodes, and � is the dimension de-
gree of the overlay space. The number of hops for CAN can
be nontrivial when � is small.

P2P systems are constructed in overlay networks at
the application layer without taking the physical network
topologies into consideration. The mismatch between phys-
ical topologies and logical overlays is a major factor that
delays the lookup response time, which is determined by
the product of the routing hops and the logical link latency.
Although structured P2P systems can have a relatively mod-
erate number of routing hops, the lookup performance can
be heavily degraded when several logical hops consist of
slow physical links due to long distances or traffic jams.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

There are two representative studies to address the
mismatch problem in structured P2P systems. One is
called landmark binning [8], [9], where all nodes measure
their distances by communication latencies to several well-
known and relatively stable sites called landmarks in Inter-
net. Each node is labeled by the measurement with a se-
quence value reflecting its average physical distance to the
landmarks. Nodes that have the same landmark sequence
values are clustered into one single bin. There are �� bins
when� nodes are chosen as landmarks in the system. One
disadvantage of this landmark scheme is related to the addi-
tional burdens to the landmark sites. Because measurement
loads on landmarks would increase drastically as the P2P
system size increases. Thus, landmark sites can easily be-
come overloaded and are exposed to attacks. Moreover, this
scheme is coarse-grained and have difficulty to distinguish
relatively close nodes. In the worst case, all nodes could be
clustered into one single bin. Another method is to build a
global map to help choose shorter routing paths [12], which
combines the landmark binning method and small scale
RTT measurements to generate the proximity information
of nodes. This global proximity state is made available in
public and other nodes can look up close neighbors to route
to. However, this greedy routing method may not always
reduce the lookup response time, especially when there is a
significant mismatch between the overlay and physical net-
works. On the other hand, it does not well adapt to dynamic
environments because each node maintains many neighbor
states at different layers, which makes the content migration
costly. Neither method makes a continuing effort to remap
the overlay structure adaptively after a peer is initially ac-
cepted and connected in the P2P system.

Reducing the average logical link latency can signifi-
cantly reduce the lookup response time, which requires an
overlay link to closely match its shortest IP route. Desired
overlay construction algorithms correct the mismatch by se-
lecting topologically close peers as neighbors. These algo-
rithms need to address several fundamental issues: (1) It
should be decentralized and scalable. (2) It should be ac-
curate and adaptive to dynamically changing environments.
(3) It should be of low cost.

In order to address the limitations of the above cited
work, we propose a method, called SAT-Match that adap-
tively changes the overlay structure of the P2P system to
match the underlying physical topology. Nodes conduct
lightweight probing and make selective jumps (location ad-
justments) accordingly. By iteratively reducing the average
logical link latency, the average response time of lookup
routing is reduced. Moreover, it can be easily implemented
on existing infrastructures like CAN without introducing
new operations. Each node maintains only a small num-
ber of neighbor states. Through intensive simulation exper-
iments on large scale CAN overlays, we have shown the ef-

fectiveness of SAT-Match. Our method can achieve average
logical/physical link latency reduction rate by up to 40% .
It also outperforms “landmark binning”, a method utilizing
global information by up to 30%. Finally, combining with
the landmark binning method, SAT-Match can achieve up
to 60% latency reduction rate.

Compared with the landmark based methods, the pro-
posed SAT-Match has several merits. First, it only utilizes
local information, which avoids overloading the landmark
sites and the single point of failure problem. Second, the
self-adaptation nature of our method not only improves the
matching accuracy between the overlay layer and physical
networks, it can also well adapt to the dynamically chang-
ing physical topologies such as mobile networks. Finally,
in SAT-Match, each node can adaptively adjust its probing
frequency to reduce the traffic overhead.

This paper is organized as follows. In section 2 we de-
scribe SAT-Match in detail. Simulation methodology and
performance evaluation are discussed in section 3. We
overview and compare some other related work in section
4. Finally we conclude the work in section 5.

2 Self-Adaptive Topology Matching

2.1 The Mismatch Problem and Our Approach

We take a torus overlay structure in CAN system as an
example to explain our method, whose physical topology
and logical overlay are shown in Figures 1 and 2 respec-
tively.

Starting from the overlay network in Figure 2, we show
how the mismatch can be improved through self-adaptation.
If node A wants to route a message to node B, it needs to
traverse the path A-C-B with the latency of 2+9+9 =20, or
to traverse the path A-D-B with the latency of 12+3+9 =24,
both of which are measured by latencies of physical links in
Figure 1. However, node A could have routed the message
to node B at the cost of 2 because there is a direct physi-
cal link with latency of 2 between the two nodes. Because
of the topology mismatch, a query usually traverses some
unnecessary links before reaching its final destination. In
Figure 2, after changing the overlay structure on the left to
the right one, the logical overlay can perfectly match the
underlying physical topology. Compared to the two alter-
native routing latencies of 20 and 24 for node A to node B,
the new routing latency is minimized to 2.

We have designed a method called SAT-Match to adap-
tively change the overlay network connections following
the ideal topology matching scenario in Figures 1 and 2
for the purpose of reducing the average latency of logical
hops. As soon as a node joins the system, it probes nearby
nodes for distance measurements (the probing phase), and

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

3

9

12

2

A

B C

D

Figure 1. An example of a physical topology with
4 nodes.

D

C

A A D

B C

B

A jumps to B

Figure 2. Adjusting overlay connections adap-
tively to match the logical overlay and its phys-
ical network.

picks the closest zone accordingly to jump to (the jump-
ing phase). This iterative process completes until it is close
enough to the zone where all its physically close neigh-
bors are located and no additional optimization is necessary.
This continuously adaptive topology matching process will
achieve a global topology matching optimization in a suffi-
ciently large scope.

One unique advantage of SAT-Match is that no opera-
tions other than those in the original CAN protocol are in-
troduced. Since each node in CAN only maintains states
of a limited number of neighbors, it makes the join and
the leave operations less expensive than in Chord, Pastry or
Tapestry due to a small amount of migration of the states.
Furthermore, we can implement the jump operation as the
combination of a leave and a join in CAN.

Because the physical topology does not change over
times, we define stretch as the ratio of the average logical
link latency over the average physical link latency to quan-
tify the topology match degree, where we refer the logical
link to the virtual link between a node and one of its direct
neighbors in the overlay.

2.2 TTL-� Flooding and RTT Measurements

A recent study shows that flooding with a low number of
TTL hops is highly effective, which produces few redundant
messages [4]. The probing process of SAT-Match utilizes
this effective flooding. Having joined the system based on a
DHT assignment, a new node begins probing its neighbor-
hood periodically. The source node floods out a message
containing the source IP address, the source timestamp and
a small TTL value � to all its neighbors on the overlay. Any
node that receives this message responds to the source with
its IP address and decrements the TTL field in the messages
by 1. If the updated TTL value does not reach 0, this re-
sponding node forwards the message to its neighbors.Since
� is small, in the end of this flooding, the message covers
only a limited number of nodes in a small region. We define
these nodes being covered as the TTL-� neighborhood of
the source node. Specifically, the TTL-� neighborhood of a

node refers to this node and all its direct neighbor nodes in
the overlay.

Figure 3 is an illustration of a CAN overlay with 14
nodes, where node 2 is a source that sends TTL-� prob-
ing queries. These messages are flooded and relayed along
solid arrows to all nodes that are within 2 hops from the
source. The nodes inside the lightly shaded area in Figure 3
are node 2’s TTL-� neighborhood.

node 2’s TTL−2 flooding queri
node 13’s TTL−2 flooding queri

11

1 2

3

4

5 6

7

8

9

10

12 13

14

node 2’s TTL−2 neighborhood

node 13’s TTL−2 neighborhood

Figure 3. Neighborhoods around node 2 and
node 13 on a 14 nodes CAN system.

After probing in a TTL-� neighborhood and collecting
a list of IP addresses, the source node uses a ping facil-
ity to measure the Round-Trip-Times (RTTs) to each of the
nodes that have responded. Then it sorts these RTTs and
selects two nodes with the smallest RTTs, based on which,
the source node will select one zone associated with one of
the nodes to jump in.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

2.3 Node Jump and Neighborship Adjustment

The ultimate goal of SAT-Match is to group those phys-
ically close peer nodes together. For this reason, the source
node should choose those peers with the smallest RTTs to it
as neighbors. However, simply jumping to a zone where the
closest node is found by probing does not always guarantee
a stretch reduction for the following reason. Although one
node moves towards a physically closer node, it may con-
nect to some new physically distant nodes because of the
structural constraints in structured P2P. Thus the stretch re-
duction obtained from this single direction jump could be
offset by latency increases from other new connections. To
avoid this problem, we make a precomputation to determine
if we make such a jump. A node will not change its current
overlay location until some criteria are satisfied to ensure a
local optimization of the jump.

Starting from an example, we will then discuss the jump-
ing criteria. In this example, node� has detected its closest
node � and its second closest node � in its TTL-� neigh-
borhood. The first attempt of node � is to group itself with
node �. Since SAT-Match aims at reducing the stretch of
the whole system by each local optimization, node� needs
to collect the states of node � and all of its neighbors for a
local stretch calculation. By comparing its own stretch with
the stretch of node �, node � makes a decision of jumping
or not.

For detailed calculation, we use the following definitions
and notations.

1) �� is the time when node � sits in its current location,
and �� is the time when node � jumps to the zone as-
sociated with node �.

2) ������ and ������ are defined as node �’s TTL-�
neighborhoods before the jump and after the jump, re-
spectively.

3) ������ and ������ are the total numbers of logical
neighbor pairs inside������ and������ respectively.

4) ������� and ������� are the accumulated latency
value of all logical links inside node�’s TTL-� neigh-
borhood before the jump and after the jump, respec-
tively.

5) ����
��

��� and ����
��

��� are the average logical link la-
tencies in ������ and ������, respectively.

For � � ���� ���, we further define the average logical link
latency at time � (either �� or ��) for the TTL-1 neighbor-
hoods of both node � and node �.

�
���
� �� ��� �

����� ���

���� � ��

If condition of ����
��

�� � �� 	 �
���
��

�� � �� exists, the
stretch of �’s and �’s TTL-1 neighborhoods are reduced.

If ����
��

�� � �� � �
���
��

�� � ��, node � then consid-
ers the second closest node �. Similarly, node � calcu-
lates ����

��
�� � �� and ����

��
�� � ��. If ����

��
�� � �� 	

�
���
��

�� � ��, node � jumps to the zone associated with
node �. No action is taken in other cases. Our experiments
show that targeting the two zones associated with the two
closest nodes is most effective. This is because adaptive
and iterative local optimizations will quickly or eventually
group the physically close nodes in the same overlay zone.
If a node outside a zone finds a close node in the zone, the
rest of the nodes will be likely to be or eventually to be close
to it.

In summary, only when the local average stretch of the
source’s (node �’s) and the sink’s (node �’s or node �’s)
TTL-� neighborhoods is reduced, can a jump take place.

If node
 decides to jump to the zone associated with
node � by satisfying the above criteria, The following op-
erations are performed. First, node
 leaves its original lo-
cation and returns its Cartesian zone denoted as ��
�, and
(key, value) indices to one of its neighbors. After then, node

 contacts node � to retrieve its Cartesian zone ��� �.
Node
 also randomly picks a point � inside ��� � as its
initial point. Node
 sends � ’s coordinates and a join re-
quest to a bootstrap node. The bootstrap node routes the
request to zone ��� � eventually. Node � divides its zone
��� � into halves and gives one half to node
 . Indices
owned by � are migrated at the same time.

2.4 Effectiveness of Node Jump

Here we analyze the system stretch reduction rate for
a jump of node
 to the zone associated with node � in
the CAN system. Recall that �� is the time before node

jumps, �� is the time after node
 jumps. We define
 as
the set of all nodes in this system. If

�
���
��

�
 � � � 	 �
���
��

�
 � � �

then with a high probability,

�
���
��

�
 � 	 �
���
��

�
 ��

In other words, the reduction of stretch of
’s and � ’s TTL-
� neighborhoods results in the reduction of stretch of the
whole system.

For � � ���� ���, we denote ���
� �
 � ���
�
thus ���
 � � � �
 � ���
 � � �. Because �
 � is
huge, we can assume that ����
 � � �������
 � � ��
and ���
 � � ������
 � � ��.

Recall that the jump criterion for the node
 is

�����
 � � �

����
 � � �
	
�����
 � � �

����
 � � �
�

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

For the experiments we have conducted, with the aid of
CAN background zone reassignment algorithm [8], for two
typical nodes � and � , we observed that with 60% proba-
bility ������� � � ������� �, and with 20% probability
������ �� ������� �� �� � �. Therefore ����� �� � �
����� � � �, which implies �������� � � �������� �.
Thus, we have

�
���
��

�� �

�
���������� � � �� ������� � � �

��������� � � �� � ����� � � �

�
���������� � � �� ������� � � �

��������� � � ��

�
���������� � � �� ������� � � �

��������� � � �� � ����� � � �

� �
���
��

�� �	

This agrees with our previous claim. Our experimental re-
sults to be presented will further confirm this conclusion.

2.5 Nodes Coordination during Self-Adaptation

The self-adaptation for topology match is conducted si-
multaneously from multiple nodes. When a source node
probes and collects statuses of nodes in a targeted zone, all
the nodes should not change its status until the probing and
jumping process complete. This will ensure the accuracy
of topology matching. We provide a coordination mecha-
nism in SAT-Match to synchronize self-adaptations in re-
lated zones.

The coordination is based on a query-response model
that operates as follows. For node � that targets on a zone
associated with node
, after it calculates the local stretch
reduction and is ready to jump, it broadcasts a synchroniza-
tion (SYN) message to all nodes in that TTL-� neighbor-
hood. If those nodes do not receive other SYN messages
except this one, they acknowledge node�. Once node� re-
ceives acknowledgments from all nodes in its TTL-� neigh-
borhood, it starts to jump to the zone. If � has not received
all responses after a period of time, �����, the jumping at-
tempt is aborted.

2.6 Adaptively Varying the Checking Period

After a certain number of iterative probing and jump-
ing steps in each node, the stretch reduction may not be
improved anymore. Under such a circumstance a frequent
probing causes unnecessary overhead and wastes a lot of
bandwidth. Based on a Markov chain model, we deploy an
adaptive mechanism to set probing periods for each node at
a given time. Once a node has probed its neighborhood and
does not jump, its probing period is doubled. Otherwise the

period is set to ��, which is the base probing period. The
process is illustrated in Figure 4.

2X 2X 2X

0.5X

0.5X

2X

The Markov chain of the probing period of one node

T1T0 T2 Tn

Figure 4. A node adaptively changes its prob-
ing period as time passes.

In a stable P2P system, most nodes stay at one place and
only a limited number of nodes move occasionally. With the
support of varying checking periods, nodes probe at the up-
per bound period thus a large portion of bandwidth is saved.
While in a dynamic environment where many nodes join
and leave the system from time to time, nodes probe their
neighborhoods with a frequency proportional to the system
dynamic degree.

3 Performance Evaluation

3.1 Simulation Methodology and Performance
Metrics

We have evaluated SAT-Match comprehensively through
simulation. The computing facilities are machines with four
Intel Xeon 3.06GHz processors and 2GB memory running
Linux 3.2.2-5.

The underlying physical topology is generated by the
GT-ITM tool [13], which is used to generate Transit-Stub
(TS) topologies in [8] and in [12]. GT-ITM generates two
tiers topologies resembling the backbone and the edges of
the Internet respectively. As far as the logical overlay is
concerned, we build our own Java based CAN simulator by
following the protocol described in [8]. Each peer on the
overlay is uniquely mapped to one node in the IP layer. We
choose CAN as the platform because it adapts well to dy-
namic environments. However, SAT-Match can also be eas-
ily deployed in other structured P2P systems such as Chord
and Pastry.

We consider three metrics to verify the effectiveness of
SAT-Match.

1)
����: stretch reduction rate. Denoting �� and �����
as the system that has a randomly mapped topology
and the system with deployment of SAT-Match, re-
spectively, we define stretch reduction rate at time �

as follows:

���� �
������������ ��������������

�����������
	

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

2) ������: response time (RT) reduction rate, which has
a similar definition as ��:

������ �
�� ������� �������

�� ����
�

3) �����: cumulative overhead, which is defined as the
accumulated overhead messages in bytes imposed to
this system by SAT-Match at time � compared to the
system without optimization.

There are several parameters that can be tuned in the sim-
ulation.

1) �: the dimensionality of the Cartesian space

2) �: the scale of the TTL-� neighborhood of one node

3) �: the size of the CAN system

4) topology type, which characterizes the node distribu-
tion on the transit domain and on leaf stub domains.

We have conducted experiments on the combination of �
= �2, 3, 4�, � =�2, 3, 4�, � =�196, 1264, 4525, 5400�, and
two different topologies respectively. In particular we focus
on the large sized systems with 4525 nodes and 5400 nodes,
which we denote as ts5k-large and ts5k-small respectively.
The GT-ITM parameters specification of these two topolo-
gies are as follows.

� The ts5k-large is a large transit-stub topology where
most nodes are on the leaf stub domains. Each tran-
sit node has 3 stub domains and there are 5 transit do-
mains with a scale of 50. Transit domains have 5 nodes
on average; with a probability of 0.6 there is an edge
between each pair of nodes. For each stub domain on
average there are 60 nodes in it, and the edge probabil-
ity between any pair of nodes in this domain is 0.4.

� The ts5k-small is a small transit-stub topology where
most nodes are in the transit domains. Each transit
node has 4 stub domains and there are 120 transit do-
mains with a scale of 50. Transit domains have 5 nodes
on average; with a probability of 0.6 there is an edge
between each pair of nodes. For each stub domain
there are on average only 2 nodes in it.

We study the impact of each parameter on the above met-
rics.

3.2 Routing Hops Change

In the experiments we have used two different traces to
study the change of routing hops caused by the deployment
of SAT-Match, called REAL and PART. Both traces are
used in [3]. REAL is a media streaming workload of 1663

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

C
D

F

Number of Routing Hops

before adjustment
after adjustment

Figure 5. Routing hops distribution in a CAN
of 1663 nodes with dimensionality of 4.

clients; PART is a synthetic trace where object popularities
satisfy the Zipf-like distribution. We have intensively mea-
sured routing hops distributions under different conditions
before and after the topology adjustment. One representa-
tive result using the REAL trace is shown in Figure 5, where
the mean routing hops on both curves are almost the same.
We have observed that SAT-Match has almost no effect on
the average routing hops.

3.3 The Stretch Reduction

The stretch can be used to characterize the match de-
gree of the overlay to the physical topology. With a fixed
topology the stretch is equal to the average logical link la-
tency normalized by the constant average physical link la-
tency. Therefore we use the stretch reduction rate �� as the
primary metric in our evaluation. We show the impacts of
those parameters on the stretch reduction rate in the follow-
ing subsections.

3.3.1 A Comparison of Landmark Binning And SAT-
Match

Figure 6 shows that even with the deployment of landmark
binning technique, our adaptive adjusting scheme further
reduces the system stretch about 27% when compared with
the system without optimization. We have varied param-
eters such as TTL scale, dimensionality, system size and
topology type and get similar results. In most cases the
combination of these two techniques can achieve about 60%
stretch reduction rate, among which 30% is due to the land-
mark binning technique, and the other 30% is due to the
adatpvie adjusting and remapping scheme in SAT-Match.

This means that SAT-Match outperforms the landmark
binning technique in terms of system topology match de-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

0

0.2

0.4

0.6

0.8

1
Stretch Reduction Rates versus TTL Scale

n=4525, d=4

no
rm

al
iz

ed
 s

tr
et

ch
 r

ed
uc

tio
n landmark

SAT−Match

k=2
k=3 k=4

(a) Varying the TTL scale.

0

0.2

0.4

0.6

0.8

1
Stretch Reduction Rates versus Dimensionality

n=4525, k=3
no

rm
al

iz
ed

 s
tr

et
ch

 r
ed

uc
tio

n landmark
SAT−Match

d=2
d=3

d=4

(b) Varying the dimensionality.

0

0.2

0.4

0.6

0.8

1
Stretch Reduction Rates versus System Size

d=4, k=3

no
rm

al
iz

ed
 s

tr
et

ch
 r

ed
uc

tio
n landmark

SAT−Match

n=196
n=1264

n=4525

(c) Varying the system size.

0

0.2

0.4

0.6

0.8

1
Stretch Reduction Rates versus Topology Type

no
rm

al
iz

ed
 s

tr
et

ch
 r

ed
uc

tio
n

Topology Type

landmark
SAT−Match

n=4525,large

n=5400,small

(d) Varying the topology type.

Figure 6. Landmark binning combined with SAT-Match.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120

no
rm

al
iz

ed
 s

ys
te

m
 s

tr
et

ch

time in minute

n=4525, d=4, k=2
n=4525, d=4, k=3
n=4525, d=4, k=4

Figure 7. Varying the TTL
scale.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120

no
rm

al
iz

ed
 s

ys
te

m
 s

tr
et

ch

time in minute

n=4525, d=2, k=3
n=4525, d=3, k=3
n=4525, d=4, k=3

Figure 8. Varying the dimen-
sionality.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120

no
rm

al
iz

ed
 s

ys
te

m
 s

tr
et

ch

time in minute

n=196, d=4, k=3
n=1264, d=4, k=3
n=4525, d=4, k=3

Figure 9. Varying the system
size.

gree in most cases. In addition, they can be combined to-
gether to achieve significant stretch improvement compared
to the system that no optimization is conducted.

3.3.2 The Impact of the TTL Neighborhood Scale �

Figure 7 illustrates the effect of the TTL scale � on the sys-
tem stretch. We fix � to 4525 and � to 4, and vary � among
�2, 3, 4�. In the beginning the stretch is reduced signif-
icantly and quickly because the mismatch degree is large
and there is much room to improve. Then the reduction rate
becomes smaller and smaller as time passes. After certain
point of time the stretch can hardly be reduced due to struc-
tural constraints of the CAN. For the given scales of �2, 3,
4�, the corresponding stretch reduction rates after 100 min-
utes are 25%, 32%, and 35%, respectively.

On the other hand, although a larger scale can achieve a
greater stretch reduction rate, it also causes heavier band-
width consumption because of the increase in the probing
scope. Considering the trade-off, we set � to 3 to achieve
a high stretch reduction rate and to maintain the low over-
head.

3.3.3 The Impact of Cartesian Space Dimensionality �

One observation in Figure 8 is that the increase in � re-
sults in the decrease of the stretch reduction. When � is
2, the stretch reduction rate is about 36% after 100 min-
utes. When � is 4, the stretch reduction rate is about 30%
after 100 minutes. The gap is caused by the differences in
the mismatch degrees between Cartesian space dimension-
ality and average node degree on the physical network. In
the network topologies we have used, the average node de-
gree is three. When � is 2, a node is most likely to have 4
logical neighbors. It slightly differs the average number of
physical neighbors. When � is 3, on average a node has 8
logical neighbors; when � is 4, on average a node has 16
logical neighbors. The larger � is, the bigger the difference
is between the logical overlay and the underlying physical
topology, thus more difficult it is to adjust the overlay struc-
ture to reduce the stretch.

One benefit of increasing � is the significant decrease in
the average number of routing hops, asymptotically denoted
as ����

�

� �. However, the increase in � can result in main-
tenance of more neighbor states in each node and can cause
a significant increase in generated overhead traffic.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120

no
rm

al
iz

ed
 s

ys
te

m
 s

tr
et

ch

time in minute

n=4525, d=4, k=3, large
n=5400, d=4, k=3, small

Figure 10. Varying the physi-
cal topology type.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120

no
rm

al
iz

ed
 a

ve
ra

ge
 r

es
po

ns
e

tim
e

time in minute

n=4525, d=4, k=3

Figure 11. Average response
time.

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120ac
cu

m
ul

at
ed

 o
ve

rh
ea

d
tr

af
fic

 in
 K

B
 p

er
 n

od
e

time in minute

n=4525, d=3, k=2
n=4525, d=3, k=3
n=4525, d=4, k=2
n=4525, d=4, k=3

Figure 12. Cumulative traffic
in KB.

3.3.4 The Impact of System Size �

Figure 9 shows that the system size � does not affect the
stretch much. After 100 minutes, the 196 node system
achieves a stretch reduction of 27%, and the 1264 node sys-
tem achieves a stretch reduction of 30%, while the 4525
node system achieves the largest stretch reduction of 32%.
However, the difference is below 5%. Since the systems
have large sizes and close physical topology types, nodes
have similar overlay connections and join and leave the sys-
tem in a resembling way, thus the system stretch reduction
is close.

3.3.5 The Impact of Physical Topology Types

As mentioned earlier, we have generated two different types
of topologies ts5k-large and ts5k-small by the GT-ITM tool.
Both topologies contain about 5000 nodes. Ts5k-large has
more condense edge networks while ts5k-small has a larger
backbone where a lot of nodes are attached.

Figure 10 compares the stretch reduction rates under
these two topologies. It can be observed that ts5k-small out-
performs ts5k-large. For the ts5k-large topology, the stretch
reduction rate is only 12% after 100 minutes. While for
the ts5k-small topology, the stretch reduction rate is 32%.
which is 20% more There are more edges connecting tran-
sit domains in ts5k-small than in ts5k-large, thus its average
node physical degree is larger, which contributes better per-
formance gain.

3.4 The Average Response Time Reduction

Since as mention earlier, SAT-Match does not change the
average routing hops, the reduction of single hop mean rout-
ing latency can result in the reduction of average routing
response time. A smaller system stretch incurs a shorter
response time.

In Figure 11, after SAT-Match is applied, the response
time is reduced to 32% in merely 100 minutes. Again,

SAT-Match can be combined with other approaches such
as the landmark binning method or be implemented on top
of eCAN to further reduce the response time.

3.5 The Imposed Overhead

We have done experiments by setting � � ��� �� and
� � ��� �� for the purpose of comparing the overhead
traffic of SAT-Match under different circumstances. From
Figure 12 we can observe that the overhead increase rate
drops as the time passes, which is controlled by our adaptive
checking period mechanism. In the beginning a lot of jumps
occur and most nodes probe frequently, thus the overhead
increases drastically. As time elapses more and more nodes
reach their proper positions, and probe their neighborhoods
less frequently, which results in the curve dropping.

From Figure 12 we can also observe that when � is fixed,
the bigger � is, the more overhead traffic is generated. The
reason is that on average there are ����� nodes within the
TTL-� neighborhood. The overhead traffic ratio of �� �
�� � � �� over �� � �� � � �� is close to ������ � ����.

On the other hand, when we fix the dimensionality � and
change the TTL value �, the overhead traffic also changes
significantly for the similar reason. Again the number of
nodes inside any TTL-� neighborhood is roughly ����

�.
When � is fixed and � increases, the overhead increases ex-
ponentially. For example, when � � � and � � �, the size
of a typical TTL-1 neighborhood is 16. While when � � �
and � � �, the size of a typical TTL-1 neighborhood is ��,
which causes 4 times higher overhead traffic. Considering
the trade-off between the stretch reduction rate and the over-
head traffic, we have tuned the parameters in all ways and
have found that � � � and � � � is an optimal choice.

4 Other Related Work

There are two methods that utilize local information to
address the mismatching problem in P2P networks. The

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

most related one to our SAT-Match is a system called
Mithos [11]. The topology matching scheme is embedded
into a multi-dimensional Cartesian space where each node
is uniquely assigned a coordinate. By carefully selecting
coordinate for each node and establishing quadrant links
with neighboring nodes at the bootstrapping time, Mithos
can improve the topology matching with local coordinate
knowledge.

Originally designed for mesh alike overlay, Mithos has
some limitations when being applied to a dynamic P2P en-
vironment to construct a topology-aware overlay. First,
Mithos may not well handle frequent arrivals and depar-
tures of peers. When nodes leave, physically closest neigh-
bor nodes may change, thus an adjustment mechanism is
needed, which is not supported in Mithos. Second, Mithos
may not well adapt to highly dynamic networking envi-
ronment involving mobile nodes. Both the ID assignment,
which uses virtual spring algorithm, and the quadrant links
establishment algorithm in Mithos assumes the static phys-
ical networks. The self-adaptation in SAT-Match addresses
the above two limitations. Finally, the overlay in Mithos is a
multi-dimensional irregular mesh. This means that for each
node, the number of forwarding neighbors is almost fixed.
In a network where node degrees vary vastly, it is difficult
for the overlay and the physical network to match well. In
contrast, in our CAN based design of SAT-Match, the node
degree is a variable, which makes it possible for a perfect
match between the overlay and the physical network.

Another work being worth mentioning is an effective
topology matching approach presented in [5],[6], which uti-
lizes only local information to adaptively solve the mis-
matching problem. However, the methods are developed
in the domain of unstructured P2P systems, and we can not
directly use it in structured P2P systems.

5 Conclusion

This paper has described a novel adaptive scheme to
match the P2P overlay to the physical topology by an it-
erative local optimization process from each node. Our in-
tensive experiments have shown that with this scheme the
stretch can be reduced up to 40%, while the overhead traffic
generated is trivial. SAT-Match can be implemented with-
out changing any structure of the existing CAN infrastruc-
ture and can be combined with many other topology-aware
techniques such as landmark binning and eCAN.

Acknowledgment: We thank the anonymous referees for
their constructive comments.

References

[1] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Exploiting
network proximity in distributed hash tables. In Proceedings
of FuDiCo 2002, Bertinoro, Italy, June 2002.

[2] Gnutella. http://www.gnutella.com/.
[3] L. Guo, S. Chen, S. Ren, X. Chen, and S. Jiang. Prop: a

scalable and reliable p2p assisted proxy streaming system.
In Proceedings of ICDCS 2004, Tokyo, Japan, March 2004.

[4] S. Jiang, L. Guo, and X. Zhang. Lighflood: an efficient
flooding scheme for file search in unstructured peer-to-peer
systems. In Proceedings of ICPP 2003, pages 149–160,
Kaohsiung, Taiwan, October 2003.

[5] Y. Liu, X. Liu, L. Xiao, L. Ni, and X. Zhang. Location-
aware topology matching in unstructured p2p systems. In
Proceedings of INFOCOM 2004, Hong Kong, China, March
2004.

[6] Y. Liu, Z. Zhuang, L. Xiao, and L. M. Ni. A distributed
approach to solving overlay mismatching problem. In Pro-
ceedings of ICDCS 2004, Tokyo, Japan, March 2004.

[7] Napster. http://www.napster.com/.
[8] S. Ratnasamy, P. Francis, M. Handley, and R. Karp. A scal-

able content-addressable network. In Proceedings of SIG-
COMM 2001, pages 161–172, San Diego, CA, USA, August
2001.

[9] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-aware overlay construction and server selec-
tion. In Proceedings of INFOCOM 2002, New York, NY,
USA, June 2002.

[10] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of SIGCOMM 2001,
pages 149–160, San Deigo, CA, USA, August 2001.

[11] M. Waldvogel and R. Rinaldi. Efficient topology-aware
overlay network. In Proceedings of HotNets-I, Princeton,
NJ, USA, October 2002.

[12] Z. Xu, C. Tang, and Z. Zhang. Building topology-aware
overlays using global soft-state. In Proceedings of ICDCS
2003, pages 500–508, Providence, RI, USA, May 2003.

[13] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to
model an internetwork. In Proceedings of INFOCOM 1996,
volume 2, pages 594–602, San Francisco, CA, USA, March
1996.

[14] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing.
Technical report, UC Berkeley, April 2001.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

