
OC-Cache: An Open-channel SSD Based Cache for
Multi-Tenant Systems

Haitao Wang∗†, Zhanhuai Li∗†, Xiao Zhang∗†, Xiaonan Zhao∗†, Xingsheng Zhao‡, Weijun Li§, Song Jiang‡
∗School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’An, PR China, 710072

†Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University,
Ministry of Industry and Information Technology, Xi’An, PR China, 710072

‡Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, USA, TX 76010
§Shenzhen Dapu Microelectronics Co. Ltd, Shenzhen, PR China, 518100

wanght@mail.nwpu.edu.cn, {lizhh, zhangxiao, zhaoxn}@nwpu.edu.cn,
xingsheng.zhao@mavs.uta.edu, liweijun@dputech.com, song.jiang@uta.edu

Abstract—In a multi-tenant cloud environment, tenants are
usually hosted by virtual machines. Cloud providers deploy
multiple virtual machines on a physical server to better utilize
physical resources including CPU, memory, and storage devices.
SSDs are often used as an I/O cache shared among the tenants for
large storage systems using hard disk drives (HDDs) as their main
storage devices, which can receive much of SSD’s performance
benefit and HDD’s cost advantage. A key challenge in the use
of the shared cache is to ensure strong performance isolation
and maintain its high utilization at the same time. However, con-
ventional SSD cache management approaches cannot effectively
address this challenge. In this paper, we propose OC-Cache, an
open-channel SSD cache framework which utilizes SSD’d internal
parallelism to adaptively allocate cache to tenants for both good
performance isolation and high SSD utilization. In particular,
OC-Cache uses a tenant’s miss ratio curve to determine the
amount of cache space allocation and where the allocation is
(in dedicated or shared SSD channels) and dynamically manages
cache space according to the workload characteristics. Exper-
iments show that OC-Cache significantly reduces interference
among tenants, and maintains high utilization of the SSD cache.

Index Terms—multi-tenant system, SSD cache, performance
isolation, scheduling framework

I. INTRODUCTION

Multi-tenant systems have become a key infrastructure
in the era of big data and cloud computing. In a typical
commercial multi-tenant cloud system, each tenant is often
served by a dedicated virtual machine (VM) and multiple VMs
simultaneously run on the same physical server to achieve
a high resource utilization. The data of a VM are stored in
the storage system which usually consists of many HDDs to
accommodate increasingly growing data due to their low per-
gigabyte cost. To bridge the performance gap between main
memory and storage system, SSDs are widely deployed as a
cache of HDDs to improve I/O performance [1]–[7]. There
are two important goals in the design and management of
a shared SSD cache, i.e., maximizing utilization of the SSD
and minimizing performance interference among different ten-
ants [2]. Data from different tenants are usually striped across

the whole SSD to deliver high utilization and bandwidth [8],
[9]. However, performance isolation among tenants can be
compromised in this scenario. Strong performance isolation
among tenants is desired in many multi-tenant systems because
they need to observe service level agreements (SLAs) [10],
[11]. Therefore, we need to develop techniques to ensure the
isolation in the shared cache for multi-tenant systems.

Many software-based isolation techniques use software
schedulers to allocate SSD’s bandwidth to tenants by se-
lectively sending requests to the SSD to meet performance
goals specified by individual tenants, such as rate limiter
used in Linux containers [12] and Docker [13]. However,
they cannot manage garbage collection (GC) operations inside
SSDs. Data from different tenants can be mixed in the SSD
blocks. In this scenario, a tenant that issues an excessive
number of random write requests can trigger background
GC operations and slow down I/O requests of other tenants.
Other techniques are based on hardware isolation, such as
multi-streamed SSD [14] and OPS (Over-Provisioning Space)
isolation [15]. They can separate tenants to different SSD
blocks to reduce performance interference introduced by GC
operations. Nevertheless, different tenants can still share the
same SSD channel and compete with each other for bandwidth
in this approach. Therefore, performance interference can still
be severe when these tenants intensively access the SSD.

Compared with the above techniques, Open-Channel SSD
(OCSSD) enables a new opportunity for implementing strong
performance isolation. OCSSD directly exposes internal par-
allel units (e.g., channels) to users so that external software
can manage SSD resources and parallelism to get predictable
performance [16], [17]. In this case, a straightforward isolation
method is to limit a tenant exclusively in one or a multiple
of dedicated channels. For example, FlashBlox [18] pins a
tenant in a number of channels to minimize interference among
tenants. However, this allocation of space based on channels is
inadequate. First, a channel is usually of very large capacity,
typically more than a hundred gigabytes. Second, workloads of
tenants can be diversified in term of their working set sizes and
access patterns. Accordingly, their miss ratio curves (MRCs),
which measures cache a tenant’s cache space demand, can be978-1-5386-6808-5/18/$31.00 ©2018 IEEE

substantially different [19]. Under the circumstance, simply
allocating space at the granularity of channel to tenants, whose
working set size can range from a fraction of a channel’s
capacity to a size of multiple channels, may lead to inefficient
use of channel resources, including its space and bandwidth.

In this paper, we propose OC-Cache, an Open-Channel SSD
cache framework to deliver both strong performance isolation
among tenants and high SSD utilization. OC-Cache computes
a tenant’s cache space demand according to its MRC and
makes a near-optimal cache partition for them to minimize
overall miss ratio of the cache. OC-Cache designates channels
in an OCSSD as either dedicated for an individual tenant or
shared among all tenants, and determines where to place a
tenant’s data according to its cache space demand and access
pattern. It also manages cache space dynamically in response
to changing data access patterns. Experiments using I/O traces
from VMware’s production systems show that OC-Cache can
significantly reduce performance interference among tenants,
and maintain relatively high utilization of the SSD cache.

II. ARCHITECTURE OF OC-CACHE

Figure 1(a) depicts a high-level architecture of OC-Cache.
For each tenant, OC-Cache launches a module named cache
manager on device mapper layer to manage its allocated cache
space transparently to the tenant. A central module named
cache space allocator lies on the user level and allocates
cache space to tenants accordingly. A tenant’s cache manager
integrates an HDD with a part of OCSSD to form a virtual disk
(i.e., vdisk) for each tenant. I/O requests that sent to a tenant’s
virtual disk will go to its own cache space or HDD under
the control of its cache manager. In this way, I/O requests
from different tenants are separated at the host side without
modification of virtualization software stack, which makes it
easy to plug into existing systems.

Figure 1(b) details the cache manager and its block man-
agement. There are two types of channel groups in OC-Cache.
One type is named isolated bucket where one or multiple
channels are exclusively allocated to a tenant to ensure strong
performance isolation among tenants. The other is named
shared pool, whose channels are shared among tenants by
striping their data across its channels to improve SSD cache
utilization. Each tenant may have its own isolated bucket, and
all tenants have a common shared pool. An on-demand cache
allocation approach is used to allocate isolated buckets and
the shared cache to tenants according to workloads.

The cache policy in cache manager maintains a hash table
between logical block number (LBN) to cache block number
(CBN). It employs a stochastic multiqueue (SMQ) [20] to
manage block entries. In short, SMQ maintains a set of
LRU lists stacked into multiple levels. HDD block entries are
initially at level 0 and move to a higher level when they are
accessed. In this way, the more accessed entries (i.e., hotter
entries) stay in the top levels and less accessed ones (i.e.,
colder entries) in the bottom. There are two thresholds to
separate blocks into access frequency levels (i.e., promote level
and hot level). These thresholds can be dynamically adjusted

Cache Manager Cache Manager Cache Manager

OCSSD

HDD-1

Device Mapper Layer

HDD-2 HDD-n

User Level

vdisk

Tenant -1

vdisk vdisk

Tenant-2 Tenant-n

…

…

Cache
Space

Allocator

(a) A high level architecture of OC-Cache

CBN

Cache Manager

Hash Table

Cache Policy

LBN

… Chi Ch0 ~ Ch1

Cache
Manager

Isolated Buckets

Cache
Scheduler

Cache Space
Allocator

Ch2 Chi+1 ~ Chn

Shared Pool

Cache Status:
1. miss ratio
2. cache block size
3. bucket cache size
4. shared cache size

……

tenant ID block level shared bit dirty bit Cache Block Metadata

MRC

(b) Cache manager and cache block management

Fig. 1. Design of OC-Cache.

by the cache policy according to the current I/O patterns of the
workloads. Cache policy also manages cache block metadata,
which are tenant ID, block level, shared bit, and dirty bit. The
tenant ID records the ownership of the cache block. The block
level represents the level of the block in the SMQ. The shared
bit indicates if the block is in the shared pool.

The cache scheduler is in charge of data migrations among
HDD, isolated buckets, and shared pool according to the
level and shared bit of cache blocks (detailed in Section IV).
The cache space allocator makes appropriate decisions for
cache allocation according to MRCs of tenants’ workloads
(detailed in Section III). In general, the MRC of a workload
can be generated from its history access data, or by some
simulation methods such as miniature simulations [19]. During
runtime, cache space allocator can collect some cache status as
history data through device mapper interface in Linux system
periodically to help cache space allocation. When a tenant
finishes its work and leaves the system, all of its dirty cache
blocks are demoted to its HDD. Cache allocator will then
recycle free cache space for future use.

III. CACHE SPACE ALLOCATION

There are two challenges we need to address for an effective
cache allocation. The first is to determine how much cache
space each tenant should be allocated to minimize the overall
miss ratio. The second is to determine the sizes of the shared

2

pool and isolated buckets and where to allocate cache space
for each tenant. To address these challenges, we adopt the
convex hull approach [21] to compute cache partition sizes of
tenants according to their MRCs. We then use an on-demand
cache allocation method to make a partitioning scheme for
shared pool and isolated buckets.

A. The Convex Hull Approach

As shown in Figure 2, the convex hull of an MRC is the
smallest convex polygon that contains the curve. The convex
minorant is the greatest convex curve lying entirely below
the polygon. This approach can get a near-optimal cache
partitioning to minimize miss ratio of the system, which has
been used for partitioning CPU, main memory, and storage
system caches [22]–[25].

convex hull
MRC

M
is

s
R

at
io

Cache Size

convex minorant

Fig. 2. The convex hull and minorant of a sample MRC.

The convex hull approach has several steps. (1) Initialize
partition sizes si to zero for each tenanti. (2) Calculate the
convex minorant mi(si) of the MRC for each tenanti. (3)
Increase sj by one cache space unit which would reduce
the most miss ratio (computed as mj(sj) − mj(sj + 1))
for the tenant. (4) Repeat step (3) until all cache space has
been assigned. We name the cache partition size of a tenant
computed by the approach effective cache requirement (Sr)
and corresponding miss ratio effective miss ratio (Re).

B. On-demand Cache Allocation

The crux of the on-demand cache allocation method is
two-fold. (1) Allocate most of the cache space to isolated
buckets to deliver strong performance isolation, and (2) use
the shared pool to accommodate a part of cache to improve
cache utilization. Assuming there are multiple tenants online
in the system, each of which has its own MRC. Cache space
allocation requests from these tenants form a list denoted by
reqList. There are Nfree channels in the system and each of
which has a capacity of ScGB. A watermark value Wu is used
to indicate the minimum space utilization of each channel.
Algorithm 1 describes the allocation algorithm.

At the beginning (Line 3 - 7), we compute Sr and Re for
each tenant via the convex hull approach and sort the request
queue according to Rm (i.e., average miss ratio reduction
per unit of cache space). We then calculate the number of
channels allocated to a bucket (Nbucket[i]) and shared cache
size (SCache[i]) for each tenant (Line 8 - 28).

In the process, a request whose cache requirement (Sr) that
larger than free space is removed (Line 10), which means
we may need to add more OCSSDs into the system. For

Algorithm 1: on-demand cache allocation

1 Nshared = 0; //number of shared channels;
2 Sshared = 0; //shared cache size;
3 for each requesti in reqList do
4 Sr[i], Re[i] = ConvexHullApproach(MRCi);
5 Rm[i] = (1−Re[i])/Sr[i];
6 add [Sr[i], Re[i], Rm[i]] to requesti;

7 sort reqList by Rm in descending order;
8 for each requesti in reqList And Nfree > 0 do
9 if (Sr[i] + Sshared) > ((Nshared +Nfree)× Sc)

then
10 remove requesti from reqList;

11 else if dSr[i]/Sce ≤ Nfree then
12 Nbucket[i] = bSr[i]/Scc;
13 Sleft = Sr[i] mod Sc;
14 if Sleft < (Wu × Sc) then
15 SCache[i] = Sleft;
16 Nolds = dSshared/Sce;
17 Sshared = Sshared + SCache[i];
18 Nshared = dSshared/Sce;
19 Nfree =

Nfree −Nbucket[i]− (Nshared −Nolds);

20 else
21 Nbucket[i] = Nbucket[i] + 1;
22 Nfree = Nfree −Nbucket[i];

23 else
24 Nbucket[i] = Nfree;
25 SCache[i] = Sr[i]−Nfree × Sc;
26 Sshared = Sshared + SCache[i];
27 Nshared = dSshared/Sce;
28 Nfree = 0;

29 Nshared = dSshared/Sce;
30 create a shared pool with Nshared channels;
31 for each requesti in reqList do
32 Bucket[i] = CreateBucket(Nbucket[i]);
33 allocate SCache[i] to tenanti from shared pool;
34 allocate Bucket[i] to tenanti;

each requesti, we set its shared cache size (SCache[i]) to
leftover space size (Sleft in Line 13) if it is below the channel
watermark (Wu) (Line 14 - 19), which means we will allocate
Sleft from the shared pool to reduce cache space wastage.
Otherwise, we add one more channel to the tenant’s bucket
(Line 20 - 22), which means all the cache of the tenant will
be in its bucket. If there are not enough free channels for the
tenant, we add all free channels to its bucket and set SCache[i]
to remaining space that cannot fit in the bucket (Line 23 - 28).
After the space calculation, we allocate those isolated buckets
and shared cache spaces to each tenant (Line 29 - 34). Using
Algorithm 1, we can dynamically obtain a near-optimal cache
partition scheme to achieve high SSD cache utilization.

3

IV. CACHE BLOCK MANAGEMENT

During runtime of OC-Cache, tenants who only have
isolated bucket are separated from others by channels and
performance isolation is guaranteed. The key challenge is
to minimize performance interference in the shared pool
caused by the GC operations and bandwidth contention among
tenants, which can be serious when some tenants are issuing
I/O requests intensively to the shared pool. Therefore, we need
to keep the shared pool from being accessed too intensively.
To this end, we propose the heat-aware cache replacement and
adaptive cache migration approaches to manage the cache.

A. Heat-aware Cache Replacement

In the control of cache policy, when an HDD block’s level is
higher than the promote level, it is promoted into the tenant’s
cache space in the shared pool if its shared bit is "1" or in
the isolated bucket if its shared bit is "0". Some low-level
dirty cache blocks are demoted to the HDD when there is
not enough cache space. By doing so, we can avoid frequent
replacement of cache blocks.

To prevent cache blocks in the shared pool from being
intensively accessed, OC-Cache sets the shared bit of a block
according to its heat. Specifically, OC-Cache sets a block’s
shared bit to "1" when its level is higher than the promote
level but lower than the hot level. That is, cache blocks in the
shared pool are usually colder than blocks in isolated buckets.
Therefore, most of the cache accesses are served by isolated
buckets. The effect is two-fold. On one hand, I/O requests in
the shared pool are unlikely to compete for bandwidth with
each other since they are not intensive. On the other hand,
GC operations in the shared pool will not be frequent because
random write requests are not intensive too. Thus, we achieve
strong performance isolation in the shared pool during the
cache replacement.

B. Adaptive Cache Migration

The performance isolation in the shared pool can still be an
issue with dynamic workloads as the heat of cache blocks may
change over time. That is, cache block level in the shared pool
may gradually become higher than the hot level (i.e., become
hot) which can make the shared pool intensively accessed
when there are many hot cache blocks. This can compromise
performance isolation. In the meantime, the level of cache
blocks in the isolated buckets can become lower than the hot
level. In this case, for a tenant who has a bucket and a part
of cache space in the shared pool, the bandwidth of its bucket
is not fully utilized but I/O requests are slowed down in the
shared pool, leading to a low cache utilization.

To address this issue, OC-Cache dynamically migrates
cache blocks between isolated buckets and the shared pool
for tenants who own cache space in both of the two parts.
Specifically, the cache policy monitors the heat of cache blocks
by their levels and tracks the number of hot cache blocks (i.e.,
higher than hot level) in the shared pool. It periodically checks
if the ratio of hot cache blocks in the shared pool exceeds the
watermark Whot. If so, cache policy will pick some hot blocks

in the shared pool from top level of SMQ and inform the cache
scheduler to swap them with some cold blocks (i.e., lower
than hot level) from isolated buckets in the background until
the ratio of hot cache blocks in the shared pool reduces under
the Whot. Performance of affected tenants may be slightly
lowered during the migration. However, this will not last long
since only a small fraction of cache blocks are involved.

V. EVALUATION

A. Experimental Setup

We have implemented OC-Cache as a dm-cache mod-
ule [26] in the Linux kernel. Our experimental platform is
configured with two 16-core 2.10GHz Intel Xeon CPUs and
64GB of RAM, running a 64-bit Archlinux 14.04 (Linux
kernel 4.14.0-rc2). As for cache device, we use CNEX-8800
LightNVM SDK R1.2, an OCSSD which has 16 channels and
each channel has a capacity of 100GB.

We compare OC-Cache with the conventional solution that
all tenants share the whole SSD cache (Shared-Cache for
short) and FlashBlox [18] that each tenant exclusively occupies
several dedicated channels (FlashBlox for short). In order to
avoid interference in the storage, each tenant resides on a
dedicated HDD. We create four tenants and choose a repre-
sentative I/O trace for each tenant in each test. These traces
are real-world virtual disk traces from VMware production
environments and collected by CloudPhysics [27]. We use the
same trace names as they are referred to in [27]. However,
MRCs are produced according to the policy in OC-Cache. We
set the channel utilization watermark Wu as 50% and cache
migration watermark Whot as 20%. We replay these traces to
virtual disks of tenants simultaneously with a 4KB I/O block
size. In the evaluation, we call a tenant stable when it submits
I/O requests as fast as possible and noisy when it submits I/O
requests at a varying rate.

B. Performance Metrics

We present three performance metrics to evaluate a SSD
cache: (1) space utilization, Uspace = Sreq/Sallo where Sreq

is cache space size required and Sallo is cache space size
allocated to tenants; (2) bandwidth utilization, Uband =
Btens/Bdev where Btens is the aggregate bandwidth of all
tenants, Bdev = Br×(1−Rw)+Bw×Rw, Br/Bw is read/write
peak bandwidth of cache device and Rw is write ratio of
workloads; (3) performance isolation, Ip = Cv/Cv(blox)
where Cv =

∑n
i=1(µi/σi), µi and σi are mean value and

standard deviation of tenanti’s throughput. Cv(blox) is the
Cv of FlashBlox, which is regarded as a baseline. For all
of the three metrics, the higher the better. To make a fair
comparison, we provide the same number of free channels for
Shared-Cache, FlashBlox and OC-Cache.

C. Experimental Results

We first conduct a pure read test, in which tenant-2 is
configured to be noisy. In this test, I/O traces for tenant-0 to
tenant-3 are t02, t12, t06 and t27 sequentially. According to
convex hull approach (Section III-A), the (Re, Sr) of tenants

4

0 500 1000 1500
0

100

200

300

400

500

600

Shared-Cache

0 500 1000 1500

FlashBlox

0 500 1000 1500

OC-Cache

Th
ro

ug
hp

ut
 (M

B/
s)

Time (seconds)

tenant-0 tenant-1 tenant-2 tenant-3

(a) Throughput curves

0

20

40

60

80

100 (a)Space Utilization (%)

0

20

40

60

80

100 (b)Bandwidth utilization (%)

0

20

40

60

80

100 (c)Performance Isolation (%)

Shared-Cache FlashBlox OC-Cache

(b) The three metrics

Fig. 3. Performance of all read tenants: tenant-2 is noisy.

are: (1%, 16), (2%, 70), (5%, 114) and (75%, 40) respectively.
Note that, a read I/O request to a tenant’s virtual disk may
cause write operations in cache because a read miss can
result in cache replacement. Therefore, GC operations can be
triggered by read workloads from tenants.

Figure 3 shows the result. The performance of stable tenants
fluctuates much more visibly on Shared-Cache compared with
FlashBlox and OC-Cache (Figure 3a). This is mainly because
I/O requests from different tenants can easily go to the same
channel on Shared-Cache and contend for bandwidth, which
makes the performance of all tenants sharing this channel fluc-
tuate even only one is noisy. The performance interference is
severer for those tenants whose miss ratio is low (e.g., tenant-
0) because they access cache more frequently so that is more
likely to contend with others. And GC operations triggered by
cache replacement can also aggravate the performance inter-
ference. As a contrast, OC-Cache ensures strong performance
isolation among tenants through on-demand cache allocation
and adaptive cache management according to tenants’ work-
loads. As shown in Figure 3b, take FlashBlox as a baseline,
the performance isolation of OC-Cache is 30% higher than
Shared-cache.

As for cache space utilization, OC-Cache is 15% lower
than Shared-cache because there is a part of free space in
the buckets of some tenants (e.g., tenant-1) on OC-Cache
which cannot be utilized by others since they are isolated.
However, it is 28% higher than FlashBlox since there is more
unused cache space on FlashBlox. The bandwidth utilization
of OC-Cache is almost the same as Shared-cache and 14%
higher than FlashBlox. This is because on FlashBlox, even if
a tenant’s channel bandwidth is under-utilized (e.g., tenant-3),
it cannot share with others since it is isolated. In contrast, OC-
Cache improves bandwidth utilization by putting a fraction of
cache space of tenants in shared-pool. While on Shared-Cache,
cache data tenants are all striped to the whole device so that

0 500 1000 1500
0

200

400

600

800
Shared-Cache

0 500 1000 1500

FlashBlox

0 500 1000 1500

OC-Cache

Th
ro

ug
hp

ut
 (M

B/
s)

Time (seconds)

tenant-0 tenant-1 tenant-2 tenant-3

(a) Throughput curves

0

20

40

60

80

100 (a)Space Utilization (%)

0

20

40

60

80

100 (b)Bandwidth utilization (%)

0

20

40

60

80

100 (c)Performance Isolation (%)

Shared-Cache FlashBlox OC-Cache

(b) The three metrics

Fig. 4. Performance of mixed workloads: tenant-1 and tenant-2 are noisy and
perform write workloads, others are stable and perform read workloads.

the bandwidth can be better utilized when dealing with read
workloads and cache replacement is not intensive.

The performance interference will become worse when
there are more noisy tenants and read/write mixed I/O re-
quests on Shared-Cache. To demonstrate this, we use the
same four workloads (i.e., t02, t12, t06 and t27) to conduct
a read/write mixed test. In this test, tenant-1 and tenant-2
are noisy tenants who perform write workloads. As shown
in Figure 4a, throughput curves of tenants on Shared-Cache
fluctuate severely, and stable tenant with low miss ratio (i.e.,
tenant-0) is drastically interfered by noisy tenants. While on
OC-Cache, the performance of tenant-0 is much more stable.
As shown in Figure 4b, the performance isolation of OC-
Cache is about 2.4× of Shared-Cache with a slightly lower
space utilization (15%) and bandwidth utilization (10%) than
Shared-Cache. The performance isolation of OC-Cache is 4%
lower than FlashBlox because some tenants (i.e., tenant-0,
tenant-2, and tenant-3) share cache space in the shared pool
which can interfere with each other. But the interference is
little because OC-Cache adopts heat-aware cache replacement
and adaptive cache migration according to tenants’ workload
to reduce performance interference in the shared pool.

In conclusion, OC-Cache can significantly improve perfor-
mance isolation among tenants on a shared SSD cache and
deliver a high SSD utilization.

VI. RELATED WORK

In this section, we discuss previous works about SSD cache
allocation and performance isolation in multi-tenant systems.
SSD Cache Allocation. There are some previous works
about SSD cache allocation in multi-tenant systems. S-CAVE
[2] considers the number of reused blocks when estimating
a tenant’s cache demand, and allocates cache by several
heuristics. vCacheShare [4] allocates a read-only cache by

5

maximizing a unity function that captures a tenant’s workload
characteristics inclduing write ratio, estimated cache hit ratio,
disk latency and reuse rate of the allocated cache capacity.
CloudCache [6] meets workload’s actual cache demand and
minimizes the induced wear-out by capturing only the data
with good temporal locality. These works can effectively
improve cache utilization, but performance isolation between
tenants is not adequately considered. In contrast, OC-Cache
considers both performance isolation and cache utilization.
SSD Cache Performance Isolation. Some other works try
to ensure performance isolation between tenants. Centaur [7]
uses SSD cache sizing as a universal knob to meet specific
performance goals. It can realize storage QoS but cannot
ensure strong performance isolation among tenants since I/O
requests from different tenants can go to the same channel.
FlashBlox [18] can ensure strong performance isolation be-
tween tenants by running them on dedicated channels, but
doing so can hurt the cache utilization since tenants’ cache
requirements are diverse. OC-Cache uses a similar method as
FlashBlox to reduce interference among tenants. However, it
adopts an on-demand cache allocation method to appropriately
allocate isolated channels and shared cache space according
to workloads of tenants, delivering both good performance
isolation and high cache utilization.

VII. CONCLUSION

In this paper, we propose OC-Cache, an Open-Channel SSD
cache framework for multi-tenant systems. OC-Cache allocates
appropriate cache space to tenants according to their MRCs
and determines where the cache space should be allocated
(i.e., in isolated buckets or the shared pool) by an on-demand
allocation method. During runtime, OC-Cache reduces perfor-
mance interference in the shared pool through adaptive cache
block migration between isolated buckets and shared pool
according to I/O patterns. Experiments based on production
VMware traces show that OC-Cache can significantly reduce
performance interference among tenants, and maintain high
utilization of the SSD cache.

ACKNOWLEDGMENTS

We are grateful to the paper’s reviewers who helped
to improve the paper’s quality. This work was supported
by the National Key Research and Development Program
of China (2018YFB1004401), the National Natural Science
Foundation of China under Grants 61502392 and 61472323.
Haitao Wang was supported by the China Scholarship Council
(201706290094), and Weijun Li was supported by Shenzhen
Peacock Plan (KQTD2015091716453118).

REFERENCES

[1] S. Byan, J. Lentini, A. Madan, and L. Pabon, “Mercury: Host-side flash
caching for the data center,” in Mass Storage Systems and Technologies
(MSST), 2012 IEEE 28th Symposium on. IEEE, 2012, pp. 1–12.

[2] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and L. Zhou, “S-cave: Effective
ssd caching to improve virtual machine storage performance,” in Pro-
ceedings of the 22nd international conference on Parallel architectures
and compilation techniques. IEEE Press, 2013, pp. 103–112.

[3] D. Qin, A. D. Brown, and A. Goel, “Reliable writeback for client-side
flash caches.” in USENIX Annual Technical Conference, 2014, pp. 451–
462.

[4] F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and D. Liu, “vcacheshare:
Automated server flash cache space management in a virtualization
environment.” in USENIX Annual Technical Conference, 2014, pp. 133–
144.

[5] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and G. Wallace,
“Nitro: A capacity-optimized ssd cache for primary storage.” in USENIX
Annual Technical Conference, 2014, pp. 501–512.

[6] D. Arteaga, J. Cabrera, J. Xu, S. Sundararaman, and M. Zhao, “Cloud-
cache: On-demand flash cache management for cloud computing.” in
FAST, 2016, pp. 355–369.

[7] R. Koller, A. J. Mashtizadeh, and R. Rangaswami, “Centaur: Host-side
ssd caching for storage performance control,” in Autonomic Computing
(ICAC), 2015 IEEE International Conference on. IEEE, 2015, pp.
51–60.

[8] F. Chen, B. Hou, and R. Lee, “Internal parallelism of flash memory-
based solid-state drives,” ACM Transactions on Storage (TOS), vol. 12,
no. 3, p. 13, 2016.

[9] J. Zhang, J. Shu, and Y. Lu, “Parafs: A log-structured file system to
exploit the internal parallelism of flash devices.” in USENIX Annual
Technical Conference, 2016, pp. 87–100.

[10] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing perfor-
mance isolation across virtual machines in xen,” in ACM/IFIP/USENIX
International Conference on Distributed Systems Platforms and Open
Distributed Processing. Springer, 2006, pp. 342–362.

[11] D. Shue, M. J. Freedman, and A. Shaikh, “Performance isolation and
fairness for multi-tenant cloud storage.” in OSDI, vol. 12. Hollywood,
CA, 2012, pp. 349–362.

[12] “Control group,” https://www.kernel.org/doc/Documentation/cgroup-v2.
txt, (Accessed on 08/03/2018).

[13] “docker run,” https://docs.docker.com/engine/reference/commandline/
run/, (Accessed on 08/03/2018).

[14] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho, “The multi-streamed solid-
state drive.” in HotStorage, 2014.

[15] J. Kim, D. Lee, and S. H. Noh, “Towards slo complying ssds through
ops isolation.” in FAST, 2015, pp. 183–189.

[16] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang, “Sdf:
software-defined flash for web-scale internet storage systems,” in ACM
SIGARCH Computer Architecture News, vol. 42, no. 1. ACM, 2014,
pp. 471–484.

[17] M. Bjørling, J. González, and P. Bonnet, “Lightnvm: The linux open-
channel ssd subsystem.” in FAST, 2017, pp. 359–374.

[18] J. Huang, A. Badam, L. Caulfield, S. Nath, S. Sengupta, B. Sharma, and
M. K. Qureshi, “Flashblox: Achieving both performance isolation and
uniform lifetime for virtualized ssds.” in FAST, 2017, pp. 375–390.

[19] C. Waldspurger, T. Saemundsson, I. Ahmad, and N. Park, “Cache
modeling and optimization using miniature simulations,” in Proceedings
of USENIX ATC, 2017, pp. 487–498.

[20] “stochastic multiqueue,” https://www.kernel.org/doc/Documentation/
device-mapper/cache-policies.txt, (Accessed on 08/03/2018).

[21] H. S. Stone, J. Turek, and J. L. Wolf, “Optimal partitioning of cache
memory,” IEEE Transactions on computers, vol. 41, no. 9, pp. 1054–
1068, 1992.

[22] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to partition
shared caches,” in Microarchitecture, 2006. MICRO-39. 39th Annual
IEEE/ACM International Symposium on. IEEE, 2006, pp. 423–432.

[23] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and
S. Kumar, “Dynamic tracking of page miss ratio curve for memory
management,” in ACM SIGOPS Operating Systems Review, vol. 38,
no. 5. ACM, 2004, pp. 177–188.

[24] D. Thiébaut, H. S. Stone, and J. L. Wolf, “Improving disk cache hit-
ratios through cache partitioning,” IEEE Transactions on Computers,
vol. 41, no. 6, pp. 665–676, 1992.

[25] R. Prabhakar, S. Srikantaiah, C. Patrick, and M. Kandemir, “Dynamic
storage cache allocation in multi-server architectures,” in Proceedings of
the Conference on High Performance Computing Networking, Storage
and Analysis. ACM, 2009, p. 8.

[26] “dm-cache,” https://www.kernel.org/doc/Documentation/device-mapper/
cache.txt, (Accessed on 08/03/2018).

[27] C. A. Waldspurger, N. Park, A. T. Garthwaite, and I. Ahmad, “Efficient
mrc construction with shards.” in FAST, 2015, pp. 95–110.

6

