
Selfie: Co-locating Metadata and Data
to Enable Fast Virtual Block Devices

Xingbo Wu
Wayne State University
wuxb@wayne.edu

Zili Shao
The Hong Kong Polytechnic

University
cszlshao@comp.polyu.edu.hk

Song Jiang
Wayne State University
sjiang@wayne.edu

Abstract
Virtual block devices are widely used to provide block inter-
face to virtual machines (VMs). A virtual block device man-
ages an indirection mapping from the virtual address space
presented to a VM, to a storage image hosted on file system
or storage volume. This indirection is recorded as metadata
on the image, also known as a lookup table, which needs to
be immediately updated upon each space allocation on the
image for data safety (also known as image growth). This
growth is common as VM templates for large-scale deploy-
ments and snapshots for fast migration of VMs are heavily
used. Though each table update involves only a few bytes of
data, it demands a random write of an entire block. Further-
more, data consistency demands correct order of metadata
and data writes be enforced, usually by inserting the FLUSH
command between them. These metadata operations com-
promise virtual device’s efficiency.

In this paper we introduce Selfie, a virtual disk for-
mat, that eliminates frequent metadata writes by embedding
metadata into data blocks and makes write of a data block
and its associated metadata be completed in one atomic
block operation. This is made possible by opportunistically
compressing data in a block to make room for the metadata.
Experiments show that Selfie gains as much as 5x perfor-
mance improvements over existing mainstream virtual disks.
It delivers near-raw performance with an impressive scala-
bility for concurrent I/O workloads.

Categories and Subject Descriptors D.4.2 [OPERATING
SYSTEMS]: Storage Management—Storage hierarchies

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SYSTOR ’15, May 26–28, 2015, Haifa, Israel.
Copyright c© 2015 ACM 978-1-4503-3607-9/15/05. . . $15.00.
http://dx.doi.org/10.1145/2757667.2757676

1. Introduction
Virtualization has been an imperative and widely used tech-
nique to support isolation and consolidation, and to improve
resource and power efficiency in various computing plat-
forms, from cloud systems to personal/mobile computing
devices. A virtual storage device, such as a virtual disk, is
one of the most essential components in a virtual machine
(VM) and its efficiency is critical to the VM’s performance,
especially for I/O-intensive applications. A virtual disk, em-
ulating functionalities available in a physical block device, is
hosted as a disk image on another storage layer, which can
be any file or block abstraction, such as a regular file, a disk
partition, or a logical volume (QEMU 2015; oVirt 2014).

To enable virtual disk and support such much desired fea-
tures as thin provisioning, COW (Copy-on-Write), and snap-
shots, various disk image formats have been proposed and
deployed, including QCOW2 for QEMU/KVM (McLough-
lin 2008), VirtualBox’s VDI (Ellison 2008), VMware’s
VMDK (VMWare 2007), and Microsoft’s VHD (Microsort
2012). Unlike real block device, in addition to storing blocks
of data these images also need to record several types of
metadata and keep them up to date. The metadata include
lookup table, bitmap, and reference counts to enable space
allocation and address mapping. For data persistency on
newly allocated space on a virtual disk, not only data blocks
but also the metadata associated with the blocks must be
written onto the disk. Because of frequently taking snap-
shots and using COW in the VM environment, such writes
are common (Lagar-Cavilla et al. 2009). Unfortunately, the
extra metadata writes can make virtual disks much slower
than physical disks for several reasons.

First, metadata is usually only a couple of bytes, much
smaller than a data block (usually 4 KB). Because a virtual
disk is still a block device, persisting a few bytes of metadata
demands writing an entire block, resulting in a very high
write amplification.

Second, metadata are usually clustered together and are
separated from the data. When a hard disk is used, the two
writes (of metadata and data) for serving one WRITE com-
mand to a virtual device incurs disk head seeks between

them, and multiple WRITE commands for writing sequential
data blocks lead to random disk writes, potentially slowing
down the disk throughput by several folds.

Third, it is often required that writes of metadata and data
for a WRITE command are ordered for data consistency on
the virtual disk. For example, writing data block(s) must pre-
cede writing into lookup table so that unintended data would
never be returned upon a READ command. To enforce the
ordering, a FLUSH command has to be issued between the
writes. With frequent issuance of FLUSH, there would be lit-
tle room for on-disk schedulers such as NCQ (Native Com-
mand Queuing) to optimize the order of disk accesses, lead-
ing to much degraded disk efficiency. The performance be-
comes even worse with multiple concurrent I/O streams.

Last but not least, synchronous writes are common. Ap-
plication developers and system designers are decreasingly
willing to leave their data in the volatile buffer and to take
the risk of losing data. For example, in a workload study with
Apple software iWork and iLife suites, it is reported that
“...half the tasks synchronize close to 100% of their written
data while approximately two-thirds synchronize more than
60%” (Harter et al. 2011). It is also concluded that “For file
systems and storage, the days of delayed writes (C.Mogul
1994) may be over; new ideas are needed to support ap-
plications that desire durability.” (Harter et al. 2011). Syn-
chronous writes demand immediate persistence of metadata,
making the system buffer incapable.

There have been efforts to remove or ameliorate the per-
formance barrier, including QED (QEMU Enhanced Disk
format) (Hajnoczi 2010) for removing the ordering require-
ment when the virtual disk is hosted on a file system, and
FVD (Fast Virtual Disk) (Tang 2011) for potentially reduc-
ing frequency of updating metadata by adopting a larger al-
location and address mapping unit. However, they have not
addressed the root cause of the issue, which is metadata up-
dates attached to data block writing, and their effectiveness
is often conditional and limited (see Sections 3 and 4 for
analysis and comparisons).

In this paper, we aim to fundamentally address the is-
sue by removing the necessity of having separate metadata
write(s). This essentially leaves almost only writing of data
blocks on the critical path of regular virtual disk operations
and allows a virtual disk to behave much like a real disk.
While immediately persisting metadata at the time of data
write cannot be avoided for a successful service of a syn-
chronous WRITE command, we are challenged with the is-
sue of where to efficiently write the metadata. To this end,
we propose to store metadata in their corresponding data
block(s). By doing this, the metadata write as well as its in-
duced overhead with write amplification and disk head seeks
can be completely eliminated. Furthermore, when a piece of
metadata is embedded in a data block, the aforementioned
ordering problem is also removed as a block’s write can be
considered as an atomic operation in a block device. In the

meantime, integrity of data in a WRITE command cannot
be compromised, and a data block is of fixed size (usually
4 KB) and cannot be expanded to accommodate the meta-
data. To this end we propose to compress data in the block
to make room for the metadata, and believe that data in
performance-sensitive scenario is usually compressible for
our purpose.

First, we need only 10 bytes in a 4 KB block, or 0.25% of
a block, to accommodate metadata associated with the block.
As long as the data is compressible, the compression ratio
would be almost certainly much larger than what is needed.
Second, there are many scenarios in which data have not
been compressed when it is written to the disk, or data is
still compressible at the (virtual) disk. One scenario is that
data being actively processed is usually not compressed on
the disk. Examples include compiling the Linux kernel and
frequently updated data structures such as file system meta-
data, on-disk B-tree, database index, and log or journal data.
Another scenario is that individual data items may have been
compressed but blocks filled with multiple such items are of-
ten still compressible. Examples include compressed values
in individual key-value pairs packed into an SSTable (Chang
et al. 2008), and individually compressed memory pages
swapped out to the disk as blocks in the virtual memory
management (Jennings 2013). In both examples, data items
are easier to be located and retrieved if they are individu-
ally compressed. Third, users are often less sensitive to the
performance of writing large volume of data that is incom-
pressible, such as movie files or archival data which have
been compressed as a whole, as the operation often happens
in the background. Furthermore, WRITE commands for very
large data allow batched metadata writes. Even though meta-
data writes cannot be removed, the batched writes have been
reasonably efficient and their performance is less of concern.

By exploiting opportunity of metadata embedding, we
propose a virtual disk image format and its corresponding
block device driver, collectively named as Selfie, implying
the fact that co-locating data and its associated metadata
makes the block self-descriptive. In summary, we make the
following three contributions in this paper:

• We proposed to embed metadata into data blocks for
their temporary storage to enable their almost-zero-cost
persistence without requiring any hardware support or
changes of device access protocol.

• We applied the idea in the optimization of a virtual disk’s
operations. We designed Selfie that opportunistically
compresses data in a block to make room for storing
its associated metadata. By doing this, Selfie has great
potential to significantly improve performance without
compromising features offered by existing virtual disks.

• We have implemented a Selfie prototype in QEMU and
extensively evaluated it against widely used QCOW2 vir-
tual disk image and recently proposed ones such as FVD

L1-ID L2-ID Offset

L1 Table

L2 Table

Cluster
Address

Cluster

VBA

L2-table
Address

Block-0

Block-1

Block-2

Figure 1: In-memory lookup table in QCOW2.

and QED with representative benchmarks. The measure-
ments show that Selfie improves performance, in terms
of I/O throughput or execution time, by up to five times.

2. The Design of Selfie
To enable a virtual disk, Selfie provides a disk image of its
defined format for storing data and metadata and conducts
block address translation to map a virtual disk space to the
data space designated in the image. It has an in-memory data
structure to support normal address translation and an on-
image data structure for re-constructing the in-memory one
after a failure.

2.1 Maintaining In-memory Lookup Table
Similar to other virtual disk drivers, such as QCOW2, Selfie
maintains an in-memory lookup tree (or table) to translate a
virtual block address (VBA), which is in the address space
presented to the virtual machine as a block abstraction, to an
image block address (IBA), which is actually also a logic
block address in the disk image. The disk image can be
hosted on a file in the host machine’s file system or on a
logical block volume. For time- and space-efficient trans-
lation from VBA to IBA, the lookup table consists of two
levels of sub-tables, namely L1 and L2 tables, as shown
in Figure 1. There is only one L1 table, and each entry of
the L1 table links to an L2 table. Each entry of an L2 table
points to a cluster, which is the unit for space allocation on
an image and contains multiple blocks (e.g., a 64KB clus-
ter consists of 16 4KB-blocks). Accordingly a VBA consists
of three components: L1-ID, L2-ID, and offset. L1-ID and
L2-ID indicate specific entries in the corresponding L1 and
L2 tables, respectively, and the offset specifies the block in
the corresponding cluster, or the IBA a VBA is mapped to.
The lookup table is essential for accessing data on a virtual
disk. For every write of data whose mapping from VBA to
LBA has not been established in the tree, or the correspond-
ing cluster has not been allocated on the image, the disk
driver must allocate the cluster and record the mapping to the
cluster in the tree. However, it is not sufficient to only keep
the mapping information in the volatile memory, as its loss,
possibly due to power failure, makes the data inaccessible.
In serving synchronous writes, a virtual disk must make the

mapping information be immediately and completely persis-
tent on the image, or synchronously maintain an on-image
lookup table, as existing virtual disks, such as QCOW2, do.

A unique aspect of Selfie’s design is how the mapping
information is persisted without synchronously maintaining
the on-image lookup table. The idea is to embed the informa-
tion into the data blocks. To effectively apply the idea, there
are two challenges to address during a virtual disk’s recov-
ery from a failure. The first one is how to tell the blocks that
have been compressed and contain the mapping information,
which are named as Z-blocks, from other blocks that do not
contain the information due to their data’s incompressibil-
ity, which are named as N-blocks. The second one is how to
minimize recovery time with the mapping information dis-
tributed across many data blocks.

2.2 Zoning On-image Space
Due to possible co-existence of Z-blocks and N-blocks on
a Selfie’s image, the two types of blocks cannot be distin-
guished by themselves. The blocks need to separated into
different areas so the type of a block can be be identified
from the area’s type. Therefore, in addition to the mapping
information, another kind of metadata is area type.

A convenient form of area could be cluster, the image al-
location unit. That is, clusters can be dedicated to storing
either Z-blocks (Z-clusters) or N-blocks (N-clusters). Ac-
tually a lookup table is to map a virtual cluster address, a
concatenation of L1-ID and L2-ID as shown in Figure 1, to
an on-image cluster address. Using a larger cluster, rather
than disk access unit (block), as the unit for space alloca-
tion and address tracking is a common practice on various
virtual disks, including QCOW2, to retain spatial locality in
the block accesses. If we use cluster-sized area, both kinds
of metadata are recorded and tracked at the unit of cluster
and both need to be made persistent with a cluster allocation
in response to a block write. Though the mapping informa-
tion can be embedded in Z-blocks, the area type has to be
recorded outside of data blocks. With such a design, Selfie
would fail to improve the disk’s efficiency at all.

To this end, Selfie adopts larger area unit, called zone. As
an example, in our prototype implementation, the block size
is 4KB, cluster size is 64KB (the same as that of QCOW2’s
default cluster size), and the zone size is 64MB. Without los-
ing generality we assume these size numbers in the follow-
ing description. All clusters in a zone are of the same type,
either Z-cluster or N-cluster. Accordingly the zone is named
as Z-zone or N-zone, respectively. The Selfie image format
is illustrated in Figure 2. The zone type is recorded at a stat-
ically allocated space, called zone bitmap, in the image. In
the bitmap, each zone’s type is recorded. An allocated zone
can be either an N-zone or a Z-zone. For a Z-zone, mapping
information embedded in it may have been committed to the
lookup table on the image and it is a committed Z-zone. If
not yet, it is an uncommitted Z-zone. The zone bitmap is
rarely updated as allocation of new zones is much less fre-

Header

L1

Zone
Bitmap

Lead Block

Regular Blocks
VBA LenCompressed Block

Zone-0 (Z-zone) Zone-1 (N-zone)

Two bits for each zone:
00: Unallocated.
01: N-zone.
10: Uncommitted Z-zone.
11: Committed Z-zone.

{
N-cluster

L2 Table

On-image
Mapping

Z-cluster:

8 B 2 B

Figure 2: Selfie’s image format.

User
Write:

New
Cluster:

Lead Block

Regular Block

Zero Block

(a) Allocate-write into blocks of a cluster, including lead block.
User

Write:

New
Cluster:

Lead Block

Regular Block

Zero Block

Zero-
Extend:

(b) Allocate-write into blocks of a cluster, excluding lead block.
Overwrite:

Updated
Cluster:

Lead Block

Regular Block

New Regular Block

(c) Overwrite into blocks of a cluster, including lead block.
Overwrite:

Updated
Cluster:

Regular Block

New Regular Block

New Lead Block

(d) Overwrite into blocks of a cluster, excluding lead block.

Figure 3: Scenarios of writes on Z-zone.

quent than write requests and cluster allocations. The basic
metadata of an image is stored at the beginning of the image,
including the image size and unit size of clusters and zones.

2.3 Writing Blocks into Zones
An image grows with data writes to unallocated addresses.
This growth can be allocation of new clusters in a currently
non-full zone, which can be either Z-zone or N-zone de-
pending on the data’s compressibility. If such a non-full zone
doesn’t exist, the image grows by allocating a new zone. By
checking in-memory lookup table Selfie knows whether the
corresponding cluster has been allocated. If not yet, a clus-
ter is allocated to accommodate the write. A Z-cluster or an
N-cluster will be allocated depending on whether address
mapping information (the metadata) can be embedded into
the cluster.

Because the mapping is created at the cluster level, one
cluster only needs to record its corresponding virtual clus-
ter address (the L1-ID and L2-ID concatenation shown in
Figure 1), which is 8 bytes long, as the mapping informa-
tion. Selfie designates the first block (the lead block) in a
Z-cluster to store the information at its beginning, followed
by two bytes recording length of the compressed data in the
block used for decompression, as shown in Figure 2. The
following blocks in the Z-cluster store data without being

compressed just like regular blocks. Therefore, for a WRITE
command writing one or a sequence of blocks into a cluster,
Selfie only needs to determine whether the data to be stored
in the cluster’s lead block can be compressed to a size at
least 10 bytes smaller. If this is true (see Figure 3a) or the
WRITE command does not write to the lead block (see Fig-
ure 3b), a Z-cluster is allocated in the Z-zone for receiving
the data and the mapping information about the cluster is
embedded in the lead block. Note that a common practice in
virtual disks, such as QCOW2, QED, and FVD, is to make
every block in a cluster be written right after the cluster is
allocated, either by the data in the WRITE command or by
data from the backing image where this image is derived (if
the backing image does not exist or cover the address space,
the block is reset with 0.). This is to make sure that future
READ commands do not return unexpected data.

If the WRITE command writes to non-lead blocks in an
allocated Z-cluster, Selfie simply stores the data into the
blocks without any additional operations (see Figure 3c). If
there are data to be written on the lead block, Selfie checks
the compressibility of the block of data (see Figure 3d). If
they can be compressed to a size 10 bytes smaller than the
block size, the compressed data are written into the lead
block probably with its “Len” field in Figure 2 updated. Oth-
erwise, the entire cluster of data is considered as incompress-
ible and an N-cluster in a non-full N-zone will be allocated to
hold the data. The relocation invalidates the space in the Z-
zone and future Z-zone allocations can reuse this space. Af-
ter a failure Selfie will not be confused on where the cluster
is stored, as the cluster in the N-zone is immediately linked
in the on-image lookup table. There is no need to relocate an
N-cluster back into a Z-zone.

If a WRITE command writes to an unallocated cluster
and its lead block cannot be compressed, an N-cluster is al-
located in the N-zone. Just like Zone 1 shown in Figure 2,
an N-zone may contain both N-clusters and L2-table blocks.
When a new cluster is allocated, the on-image lookup is up-
dated, similarly as existing virtual disks do. If an L2-table
block, which is the counterpart of an in-memory L2 table,
exists on the image to cover virtual address of the new clus-
ter, the L2-table block is updated to record this cluster’s ad-
dress. If such an L2-table block does not exist, it is allocated
to record the cluster’s address. The L1 table is updated to
record the address of the new L2-table block. In QCOW2
a particular order for these two updates has to be enforced
(updating L1 table after updating L2 table) to ensure the L1
table does not point to an uninitialized L2 table. Otherwise,
after a failure between the two updates, a READ command
may access and return data in a random data block. As a
performance optimization, Selfie does not enforce this or-
der by removing a FLUSH command between them. This
does not violate the image’s correctness because Selfie al-
ways clears a zone with zeros immediately after it is allo-
cated. In this way, even when L2 table is not yet updated to

Scenario 1. Metadata not accumulated yet.

Scenario 2. Accumulated for one Z-zone.

Scenario 3. Accumulated for multiple Z-zones.

{
Metadata Cluster (empty)

Allocated Cluster

Metadata Cluster
(w/ mappings of one zone)

Unused Cluster

Metadata Cluster
(w/ mappings of multiple zones)

Figure 4: Accumulating mapping info into metadata clusters.

point to the right cluster, it does not point to any meaningful
cluster. This zone clearing operation is also necessary for Z-
zones, as it allows identification of unallocated clusters. To
minimize possible impact of the zone clearing operation on
front-end application, Selfie maintains a background thread
to pre-initialize zones ahead of use during detected I/O-quite
periods.

2.4 Quickly Recovering from a Failure
Like other virtual disk images, Selfie also maintains an on-
image lookup table consisting of one statically allocated L1
table and multiple L2 tables dynamically allocated in the
N-zones. The difference is that Selfie only synchronously
updates the on-image table for N-clusters. Information on
the updates about Z-clusters is initially stored within the
Z-clusters and actual execution of the updates is delayed
possibly until recovery upon a failure.

To recover from a failure, Selfie scans all Z-clusters in
the Z-zones to collect embedded mapping information, or
virtual cluster addresses, and commit them to the in-memory
lookup table and to the on-image lookup table. The Z-zones
can then be marked as committed in the zone bitmap, as
shown in Figure 2. However, with a large image such a
commitment may take a long time.

To address this issue, Selfie incrementally collects map-
ping information dispersed over many clusters and places
it into much fewer dedicated clusters reserved for this pur-
pose, named as metadata clusters. As shown in Figure 4,
the first cluster in a Z-zone is reserved as a metadata cluster,
which is empty when the zone is not full. When it is full,
the virtual cluster addresses embedded in all the Z-clusters
in the zone are collectively written to the metadata cluster.
Note that Selfie does not need to read the addresses from
the image, as they are also available in the memory. To fur-
ther gather the mapping information together, for every eight
consecutive Z-zones Selfie writes their mapping information
into the metadata cluster of the first of the eight zones, as
shown in Figure 4. A 64KB metadata cluster has the ex-
act space to hold the eight zones’ mapping information. Be-
cause each metadata zone is cleared to be all zeros when a

Z-zone is allocated and zones are allocated contiguously and
never de-allocated, Selfie can unambiguously know in a spe-
cific metadata cluster which zone(s)’ mapping information
are stored and accordingly which Z-clusters can be skipped
during a recovery. In this way, Selfie can reach all mapping
information much faster and quickly complete the recovery.
Also, if Selfie detects a long quiet period, it can opportunisti-
cally commit mapping information with minimal impact on
front-end applications.

3. Performance Evaluation
To evaluate Selfie’s performance, we implemented a proto-
type to reveal insights of its performance behaviors. Selfie is
implemented on QEMU as a block device driver. In particu-
lar, it implements the QEMU’s co-routine driver API, includ-
ing bdrv co readv() and bdrv co writev(). QEMU is
configured to use Linux native asynchronous I/O. In the
Selfie’s prototype, we choose a block size of 4 KB, a clus-
ter size of 64 KB, a zone size of 64 MB, and an L2-table
block (in N-zones) of 4 KB. We use LZ4 as the compression
algorithm (Collet 2015). In Section 3.1 all data are assumed
to be compressible. Section 3.2 examines the impact of data
compressibility.

In the evaluation we compare Selfie with QCOW2, FVD,
and QED. QCOW2 is one of the most popular virtual drivers.
As mentioned, its image format is much like that of Selfie
that has only N-zones. Both incrementally grow their images
with allocation of new clusters. FVD adopts a large cluster
(1 MB) so that it allows only one level of lookup table and
reduces frequency of table updating. However, for small and
non-sequential writes such a large allocation unit can lead
to storage wastage1. To address this issue, FVD has to rely
on the host file or storage system to support sparse image,
where allocation of physical storage space happens upon
data writing, instead of upon cluster allocation. By doing
this, FVD has to introduce new metadata, or a bitmap for
tracking which blocks in a cluster contain data, and the
bitmap often needs to be made persistent upon data writes.
QED is an enhanced QCOW2 driver. By assuming hosting
file system would return zeros (for holes in a sparse file) or
report error (for space beyond the end of file) when a not-yet-
updated L2 table is used for reading data, QED allows out-
of-order updates of data and metadata (L1 and L2 tables).
Both QCOW2 and QED use 64 KB cluster size. To help
reveal potential overhead with a virtual disk, we set up a new
comparison target dubbed “HOST”, where a real disk on the
hosting server replaces virtual disk.

In the experiments both host and guest systems use the
Linux 3.16.2 kernel. The guest system runs on top of QEMU
2.1.0 with KVM enabled and uses virtio to access virtual

1 Selfie does not have the storage wastage issue with its use of large zones
because it is at the cluster level, rather than at the zone level, that ad-
dress mapping information is maintained. So a zone can accommodate data
whose virtual addresses are non-contiguous.

(a) Request size: 64 KB (b) Request size: 512 KB (c) Request size: 4 MB

Figure 5: Throughput of fio with the virtual image hosed on the logical volume and each thread making sequential accesses.

disk. The host system uses CFQ as its I/O scheduler. The sys-
tem is a Dell CS23-SH server with two Intel Xeon L5410 4-
core processors, 64GB DDR2-ECC memory, and two West-
ern Digital hard drives (WD3200AAJS), one for hosting op-
erating system and the other for storing user data and ser-
vicing I/O accesses. In the experiments with SSD, the sec-
ond hard disk is replaced with a Samsung 840 EVO 1-TB
SSD. Peak throughputs of the disk and the SSD are around
100 MB/s and 250 MB/s, respectively.

There are two commonly used methods for hosting a
virtual disk image, either using a logical volume supporting
on-demand space allocation, or using a file, where the image
is actually a file in the host server’s file system and the file
system translates an address on the image file to an address
on the physical disk. We experiment with both methods,
where Linux LVM is used to manage the logical volume and
the file system can be either Ext4 or Btrfs. We use micro-
benchmark fio (fio 2014) to generate I/O workloads, and
applications, such as dd, Postmark, and Linux kernel build.
The benchmarks access the guest’s virtual disk via a raw
partition (/dev/vdb) to avoid interference from guest’s file
system.

3.1 Performance with Micro-benchmark
For experiments with the fio micro-benchmark, the virtual
disk image is first hosted on a logical volume. In each exper-
iment, we change number of threads that concurrently send
synchronous write requests to the disk at their highest rate.
Each thread issues a FLUSH after each write to ensure that
data are safely saved on the disk. Each thread writes to its
own 8GB virtual disk space starting at offset (thread-id ×
8 GB). Here we do not include QED, as it functions correctly
only when a virtual disk is hosted on a regular file.

Figure 5 shows the throughput with threads making
sequential accesses using various write request sizes. As
shown in Figure 5a, without request concurrency (one
thread) and with small request (64 KB) QCOW2’s through-
put (3.5 MB/s) is substantially lower than that of Selfie,
FVD, and HOST (around 6 MB/s). While QCOW2 needs to
update its metadata (L2-table block) every 64 KB data write,
FVD updates its metadata (L1 table) every 1 MB data write,

and Selfie and HOST do not have any metadata to update.
However, the throughput difference is relatively small, be-
cause frequent FLUSHes between small writes have already
made the physical disk very inefficient.

There are two factors whose changes may cause signif-
icant increase of Selfie’s throughout. One is to increase re-
quest concurrency by having more threads. As seen in Fig-
ure 5a, its throughput increases almost linearly. In contrast,
HOST has little improvement. Higher concurrency is not
translated into better performance because the concurrent re-
quests from different threads are essentially random ones,
and the disk head thrashes between the 8 GB disk regions
accessed by different threads. For QCOW2 and FVD, both
need to write metadata with data writes. For correctness not
only writes of data and metadata from one thread but also
updates of metadata about writes from different threads need
to be serialized. This mostly cancels the benefit of high con-
currency. In contrast, Selfie takes the best of both worlds.
Like HOST, Selfie writes only data blocks without paying
the cost of writing metadata and enforcing write ordering.
Meanwhile, like QCOW2 and FVD the image is written in
the request arrival order, turning random writes from differ-
ent threads on the virtual disk into sequential ones.

With larger request sizes (512 KB and 4 MB), as shown in
Figures 5b and 5c HOST’s throughout significantly increases
as large requests greatly reduce the impact of random access.
Selfie’s throughput also increases with larger requests. How-
ever, with large requests it almost does not increase with the
thread count because Selfie has reached to its highest pos-
sible throughput (around 33 MB/s) at small thread count.
Note that by clearing any newly allocated zones with ze-
ros, Selfies essentially doubles amount of data written to a
disk 2. Also its throughput is limited by FLUSHes between
requests. Without the additional write, HOST’s throughput
reaches its peak value at around 80 MB/s.

Figure 6 shows throughput of random accesses, which
are evenly distributed over a 300 GB virtual disk space.
As expected, QCOW2 and Selfie’s throughput does not de-
crease when the I/O pattern changes from sequential access

2 The Selfie’s zone pre-clearing cost can be mostly removed on SSDs
supporting the TRIM command.

(a) Request size: 64 KB (b) Request size: 512 KB (c) Request size: 4 MB

Figure 6: Throughput of fio with the virtual image hosed on the logical volume and each thread making random accesses.

(Figure 5) to random access (Figure 6). They always make
any writes to newly allocated space sequential. In contrast,
HOST’s throughput decreases significantly as the access ran-
domness directly results in more frequent disk head seeks.
FVD’s throughput with 4 KB and 512 KB requests decreases
slightly. FVD’s allocation unit is 1 MB. When the random re-
quests are smaller than 1 MB, writes to different 1 MB clus-
ters are still random, reducing its throughout.

We re-do the experiments shown in Figure 5 with the im-
age hosted by a file on Ext4 file system. Because QED func-
tions with file-system supported image, we include it here.
The results are presented in Figure 7. Comparing the two fig-
ures, we observe that Selfie mostly keeps its throughput on
the logical volume. However, both QCOW2 and FVD have
substantial throughput decreases. This difference is caused
by their different methods of growing virtual disk images.
Selfie grows its image by one zone (64 MB) at a time, while
QCOW2 and FVD do by a cluster of much smaller sizes
(4 KB and 1 MB, respectively) at a time. Frequently grow-
ing a file and updating the file size increase the burden on
the file system by adding more filesystem metadata opera-
tions such as journaling and metadata writes. This issue does
not disappear with large requests because the allocation unit
does not change with request size. In contrast, by using a
large allocation unit, Selfies effectively allows file system to
amortize cost of the metadata operations. QED’s throughout
is higher than that of QCOW2 and FVD. However, it is far
lower than that of Selfie. QED’s performance advantage lies
on its elimination of write ordering in the metadata writes.
However, it still needs synchronously write metadata, while
Selfie completely removes metadata writing from the critical
path of write. We also experiment with random requests on
the filesystem hosted images, and have similar observations.

3.2 Performance with Other Applications
We now experiment with other benchmarks including some
commonly used applications. They access virtual disk via
the guest file system and disk images are supported by a
logical volume on the host system, unless stated otherwise.

The first application is Linux command dd that runs on
the guest system to read a 8 GB file from a virtual disk

Figure 8: Execution time of dd for reading an 8 GB file from a
virtual disk to memory, and then writing it back to the virtual disk.
A sync is issued after the writing. For Selfie there are three cases:
0%, 50%, or 100% of blocks are compressible.

and then write it back as a new file. In the experiment we
would like to answer three questions. First, does Selfie affect
the read performance? Second, does Selfie still have perfor-
mance advantage with asynchronous write? Third, how does
Selfie perform with writes of incompressible data?

As shown in Figure 8, the read performance is little af-
fected by Selfie, which is expected as Selfie maintains a
data layout on the image similar to that of QCOW2. To an-
swer the second question, we issue a “sync” only at the end
of dd’s execution to write the dirty data back, which con-
sumes most of the program’s write time. As the server has
64 GB memory, almost all the written data stay in mem-
ory before the sync. As shown, compared to QCOW2 and
FVD, Selfie reduces the execution time by 77% and 66%,
respectively, when all data can be compressed. Without
frequent FLUSHes between requests in this asynchronous
write, QCOW2 and FVD’s performance has little improve-
ment (compare Figures 5c and 8), as FLUSHes between data
and metadata writes within individual requests remain.

To answer the third question, we make 50% or 100% of
data blocks incompressible and re-do the experiment, and
the write time is increased by 75% and 153%, respectively.
These results are expected as uncompressed data are writ-
ten to N-zones with additional metadata writes. However,
even without any compressible blocks, Selfie still provides
execution times 19% and 43% smaller than those of FVD
and QCOW2, respectively. This is because Selfie allows out-
of-order update of data and metadata by using pre-zeroed
zones, an advantage shared by QED. We further run an ex-

(a) Request size: 64 KB (b) Request size: 512 KB (c) Request size: 4 MB

Figure 7: Throughput of fio with the virtual image hosed on the Ext4 file system and each thread making sequential accesses.

Table 1: Breakdown of execution time of Kernel Build.
mkfs copy make

Selfie 4.062s 4.682s 22m4.452s
QCOW2 31.584s 12.935s 31m30.410s
FVD 14.714s 7.469s 34m56.730s
Host 3.961s 0.831s 20m41.463s

periment, in which the 100% incompressible file overwrites
the compressible file currently on the Selfie image, to evalu-
ate the impact of operations for relocating data from Z-zones
to N-zones. The measurement shows the write time has little
difference from that presented in Figure 8 for writing a 100%
incompressible file as a new file. This is because the reloca-
tions do not involve any read operations and any additional
writes to invalidate the original data in the Z-zones.

To determine the impact of compression cost on the per-
formance of dd with 100% compressible data, we simply by-
pass the (de)compression operation in Selfie without altering
the I/O sequence. We found that there is almost no change of
its read and write times with this bypassing. This is not sur-
prising as LZ4 can do compression at 340 MB/s and decom-
pression at 610 MB/s, much higher than disk’s throughput.
In addition, because only the lead block in a Z-cluster needs
to be (de)compressed, merely 1/16 of the data are involved.
The (de)compression cost is negligible to Selfie.

The second benchmark application is kernel build, which
prepares and compiles Linux kernel’s source code pack-
age, with substantial computation time. It consists of three
phases. It first uses mkfs.ext4 to create a clean file sys-
tem, then uses cp to copy a compressed Linux-3.16.2 tarball
from a file system on another disk to the new file system,
and finally uses makepkg to automatically build the ker-
nel (tpowa 2015). The makepkg phase entails unpacking the
source code, applying patches, making the binary, and cre-
ating a installation package. We use “-j8” make flag for
multi-threaded compiling.

As listed in Table 1, Selfie runs much faster than other
two drivers (QCOW2 and FVD) in all three phases. Except
in the file copy phases, Selfie’s time is close to that of HOST
(directly running on the host system). The copied file is a
77 MB compressed tarball, which Selfie has to store them

in N-zones and incur the cost for updating metadata. How-
ever, in the kernel make phase, the generated object and bi-
nary files are compressible, and Selfie makes I/O operations
much more efficient. Even though this phase is mostly CPU-
intensive (e.g., the ‘depmod’ operation keeps CPU fully busy
for around two minutes for generating module dependence),
Selfie still reduces this phase’s execution time by 30% and
37% over QCOW2 and FVD, respectively.

The third application is Postmark, an I/O-intensive
benchmark simulating the behavior of mail servers. It con-
sists of three phases. Here, it first creates 100,000 files, then
conducts mixed operations, including file creation, deletion,
read, and append, where 500000 files are involved. Finally
all files are deleted. We adopt the benchmark’s default file
size distribution between 500 B to 9.77 KB. In the execution
about 2/3 of the disk writes are overwrites, which do not
cause metadata writes on the image. In addition, 17% of the
first-time writes are served in N-zones in Selfie. Figure 9(a)
shows the execution times. Even though with significant
portion of I/O accesses whose performance Selfie cannot
improve, such as reads and overwrite, and I/O accesses for
which Selfie cannot remove metadata writes, such as writes
to N-zones, Selfie retains its performance advantage over
FVD and QCOW2 (2.1X and 2.6X, respectively), and pro-
vides a performance closer to that of HOST.

For this benchmark, we also replace the hard disk with
an SSD and re-do the experiment. As shown in Figure 9(b),
Selfie’s performance improvement over FVD and QCOW2
is reduced to about 1.4X. For SSD, Selfie’s benefit on re-
duced writes and FLUSHes is retained. While reducing
writes helps with SSD’s durability, reducing FLUSHes con-
tributes most of the performance improvement.

Furthermore, to understand the impact of a log-structured
file system on the virtual disks’ performance, we replace
Ext4 with Btrfs as the host filesystem. Figures 9(c) and (d)
show Postmark’s execution times with Ext4 and Btrfs. It
is obvious that the performance is significantly worse on
Btrfs than that on Ext4, which is consistent to the suggestion
provided on the official KVM website (KVM 2014).

Figure 9: Execution times of Postmark

Figure 10: Recovery time for a Selfie image of different size.

3.3 Recovery Time
In this section we measure the time of recovering a Selfie’s
image, that was created by running dd with 100% compress-
ible data blocks, after a failure. Assuming there are no Z-
zone committing operations before the failure, the recovery
time is expected to be proportional to the image size. To
measure the time period it takes for the service to become
available, we include the time for reading mapping informa-
tion from all of the Z-zones and committing them to the in-
memory lookup table in the recovery time. Figure 10 shows
the time with different image size in three cases: metadata
are spread over individual Z clusters, one Z-zone’s metadata
are collected into a metadata cluster, or multiple Z-zones’
(up to eight) metadata are collected into a metadata cluster.
In each case, the time is indeed proportional to the image
size. The time saving due to use of the metadata clustering is
significant. Recovering a 128 GB image without using meta-
data cluster takes about 21 minutes. By using a metadata
cluster to collect metadata for one Z-zone, the time is re-
duced to 11.6 seconds. If we further allow multiple Z-zones’
metadata to be packed into one metadata cluster, the time is
reduced to mere 1.9 seconds.

4. Related Work
Selfie applies the compression technique to address the per-
formance issue with metadata updates in virtual disks. Be-

low we will describe related work on the compression tech-
nique, the efforts on the issue with metadata in virtual disks,
and finally the efforts on reducing metadata overhead in gen-
eral.

4.1 Data compression
Compression is a widely used technique to reduce data size
for more compact storage. It may also help with I/O per-
formance. One example is to compress process memory and
write-back data in memory so that more data can be held
in memory for virtual memory or file data to reduce I/O ac-
cess (Jennings 2013; VMWare 2011). With data compres-
sion before they are written to the disk, smaller amount of
data is written and read for higher effective I/O through-
put. Some file systems support transparent data compression
for space and I/O efficiency, such as NTFS (btdebug 2008),
Btrfs (Btrfs 2014), and ZFS (OpenZFS 2015). Their ap-
proach is to compress multiple contiguous data pages (usu-
ally 64 KB or larger) into fewer ones and probably pad the
last page with zeros for alignment. Selfie looks for compres-
sion opportunities at the block device level. Even for the data
compressed by an operating system, the padded pages can be
still available for further compression in Selfie.

Like Selfie, ZBD also applies compression at the block
level between OS and the storage (Klonatos et al. 2012;
Makatos et al. 2010). Using block-level compression, ZBD
can increase effective storage capacity by up to 2X. The
work also shows that most of its workload can be com-
pressed. This is consistent to what’s reported on data stored
in a production deduplication file system, where data that
have been deduplicated can be further compressed at a ra-
tio of about 2 (Zhu et al. 2008; Wallace et al. 2012). MC is
a technique for improving compression ratio by rearranging
data blocks in a large data file (Lin et al. 2014). The work
shows that many full system backups and VM images can
be compressed by at least 2x to 3x. These results suggest
Selfie’s potential for large performance gains.

One limitation with the use of compression in existing
storage systems is that benefit of compression is proportional
to the compression ratio. However, Selfie does not rely on
high compression ratio. Actually, the fast LZ4 algorithm
with moderate compression ratio is sufficient to meet Selfie’s
needs. Moreover, Selfie applies compression on only 1/16 of
the blocks to remove metadata operations.

By applying compression, existent systems, such as ZBD,
have to introduce additional metadata attached to the com-
pressed data. The additional cost for accessing the metadata
may offset their benefits. Experiments about ZBD show its
performance does not increase in most of its test cases, and
sometimes it can be worse than that of a system without us-
ing compression. In contrast, Selfie efficiently uses large
zones to recognize compressed and uncompressed data.
Rather than adding new metadata, Selfie removes metadata
overhead out of a system’s critical path.

4.2 Virtual Disk Drivers
Virtual disks have been a focus for improvement, and many
efforts have been made to reduce unnecessary writes and ex-
ploit I/O parallelism. For example, to support snapshots in-
ternal within an image, QCOW2 uses a metadata (reference
count) to track the number of references for clusters in mul-
tiple snapshots. Immediate updating of this metadata is ex-
pensive. So it is removed from critical path by employing
after-failure scanning of all snapshots to recover any out-of-
date counts (Hajnoczi 2012). In this sense, Selfie similarly
uses scanning to recover dispersed mapping information. To
speed up the process, Selfie pre-collects the information. The
challenge for QCOW2 is that it cannot directly use the ap-
proach to avoid immediately updating of mapping informa-
tion, while it is a unique contribution for Selfie to embed the
information within data blocks to address the issue.

The necessity for immediately mapping metadata is a ma-
jor performance concern demanding optimization. It usu-
ally means frequent and in-order additional writes, leading
to more head seeks and reduced concurrency. There are op-
timizations attempting to ameliorate the issue. FVD uses a
larger mapping unit and reduces the lookup table to one level
to reduce the frequency of metadata update (Tang 2011). Be-
cause FVD assumes an effective mapping provided by the
host storage between the address in its mapping unit and
physical disk, it pushes the burden of managing the mapping
information to the next lower level. Moreover, using a large
mapping unit weakens the advantage of thin provisioning.

QED takes a different approach. Instead of reducing
metadata access, QED improves the I/O concurrency for
both data and metadata by relaxing the order requirement
among the writes (Hajnoczi 2010). To make the relaxation
possible, QED requires its image be mapped to a regular file.
However, disk partitions and logical volumes are important
abstractions to support virtual disk images. QED has limited
uses with this restriction.

There are virtual disk drivers from major companies, such
as VMDK from VMWare (VMWare 2007), VHDX from Mi-
crosoft (Microsort 2012), and VDI from VirtualBox (Elli-
son 2008). They use image layouts for on-demand allocation
similar to that of QCOW2, and share the performance issue
on inefficient metadata updating with QCOW2.

4.3 Updating Metadata in File System
Like a virtual disk image, a file system consists of data and
metadata including inode and dentry. When they are com-
mitted to the disk, these data and metadata must be con-
sistent. To guarantee the consistency, their writes must fol-
low a predefined order. However, doing this would reduce
the request concurrency and limit the effectiveness of the
I/O scheduler for higher disk efficiency. Chidambaram et
al. eliminate the ordering in serving requests by introduc-
ing back-pointers (Chidambaram et al. 2012). This method
requires use of SCSI drive for writing the back-pointer in

the drive’s 8-byte checksum area attached to each 512-byte
sector. ReconFS adopts a similar approach for flash disks
by temporarily writing metadata into the OOB (out-of-band)
area in SSDs (Lu et al. 2014), which enables lazy meta-
data update. It relies on SSD to expose the internal area
to users by providing additional API functions. OptFS opti-
mizes journaling commitment by introducing Asynchronous
Durability Notification command to a disk interface, remov-
ing expensive disk flushes (Chidambaram et al. 2013).

A critical issue with these strategies is that their real-
world applications depend on particular hardware supports
and the required supports are either only available on less-
popular disks or not available yet, and their benefits can-
not be materialized until the hardware vendors are willing
to provide the supports. Even for devices providing extra
space for each block, the space may not be available for stor-
ing the metadata. For example, the 8-byte checksum area in
SCSI disks may have been occupied for end-to-end data pro-
tection. Even for relatively large OOB area in the SSD, the
ECC scheme may leave little or no space for other meta-
data (STLinux 2014). In contrast, Selfie does not have such
limitation at all. It is readily usable on commodity block de-
vices, and the devices do not have to be aware of the opti-
mization.

5. Conclusions
In this paper we propose Selfie, a virtual disk driver, that re-
moves all overheads associated with metadata updating out
of the critical path, including data seeks for extra writes and
flushes for enforcing correct request service order. It oppor-
tunistically takes advantage of data block’s compressibility
and embeds metadata into data blocks. Compared with other
similar efforts, Selfie addresses the root cause of the ineffi-
ciency issue—existence of the metadata (look-up table), and
removes the need of immediately updating the table on the
disk.

We have implemented a Selfie disk driver on QEMU. Ex-
periments show that Selfie provides a much better perfor-
mance than other drivers (QCOW2, QED, and FVD). Specif-
ically, its throughput is higher than that of the other drivers
by 2 to 8 times for synchronous writes, and by 1.5 to 4 times
with macro-benchmarks (dd, postmark, and kernel build). It
takes less than two seconds to recover or reboot from a large
Selfie image (128 GB). A notable advantage of the technique
is that it does not require any hardware support and is ready
for use on any stock block devices. Without much effort, this
technique can be extended into other system or application
scenarios, such as file systems and databases where metadata
causes substantial performance drag.

6. Acknowledgments
This work was supported by US National Science Founda-
tion under CAREER CCF 0845711 and CNS 1217948.

References
btdebug. Understanding ntfs compression. http://goo.gl/

P9FfRk, 2008.

Btrfs. Compression - btrfs wiki. http://goo.gl/1RJRpC, 2014.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:
A distributed storage system for structured data. ACM Trans.
Comput. Syst., 26(2):4:1–4:26, June 2008. ISSN 0734-2071. .
URL http://doi.acm.org/10.1145/1365815.1365816.

V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Consistency without ordering. In Proceedings
of the 10th USENIX Conference on File and Storage Technolo-
gies, FAST’12, pages 9–9, Berkeley, CA, USA, 2012. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=

2208461.2208470.

V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Optimistic crash consistency. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 228–243, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2388-8. . URL http://doi.

acm.org/10.1145/2517349.2522726.

J. C.Mogul. A better update policy. In Proceedings of 1994 Summer
USENIX Conference, 1994.

Y. Collet. lz4. http://cyan4973.github.io/lz4/, 2015.

T. Ellison. All about vdis. http://goo.gl/wgmtZN, 2008.

fio. fio. http://freecode.com/projects/fio, 2014.

S. Hajnoczi. qed: Add qemu enhanced disk format. http://goo.
gl/WrRHtE, 2010.

S. Hajnoczi. qcow2: implement lazy refcounts. http://goo.gl/
32U8UC, 2012.

T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. A file is not a file: Understanding the i/o
behavior of apple desktop applications. In ACM Symposium on
Operating System Principles(SOSP), 2011.

S. Jennings. Transparent memory compression in linux. http:

//goo.gl/xAqSsP, 2013.

Y. Klonatos, T. Makatos, M. Marazakis, M. D. Flouris, and A. Bi-
las. Transparent online storage compression at the block-level.
Trans. Storage, 8(2):5:1–5:33, May 2012. ISSN 1553-3077. .
URL http://doi.acm.org/10.1145/2180905.2180906.

KVM. Tuning kvm. http://www.linux-kvm.org/page/

Tuning_KVM, 2014.

H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin,
S. M. Rumble, E. de Lara, M. Brudno, and M. Satyanarayanan.
Snowflock: Rapid virtual machine cloning for cloud comput-
ing. In Proceedings of the 4th ACM European Conference
on Computer Systems, EuroSys ’09, pages 1–12, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-482-9. . URL
http://doi.acm.org/10.1145/1519065.1519067.

X. Lin, G. Lu, F. Douglis, P. Shilane, and G. Wallace. Migratory
compression: Coarse-grained data reordering to improve com-
pressibility. In Proceedings of the 12th USENIX Conference
on File and Storage Technologies, FAST’14, pages 257–271,
Berkeley, CA, USA, 2014. USENIX Association. ISBN 978-

1-931971-08-9. URL http://dl.acm.org/citation.cfm?

id=2591305.2591330.

Y. Lu, J. Shu, and W. Wang. Reconfs: A reconstructable file
system on flash storage. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies, FAST’14, pages
75–88, Berkeley, CA, USA, 2014. USENIX Association. ISBN
978-1-931971-08-9. URL http://dl.acm.org/citation.

cfm?id=2591305.2591313.

T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris, and A. Bi-
las. Using transparent compression to improve ssd-based i/o
caches. In Proceedings of the 5th European Conference on
Computer Systems, EuroSys ’10, pages 1–14, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-577-2. . URL http:

//doi.acm.org/10.1145/1755913.1755915.

M. McLoughlin. Qcow2 the qcow2 image format. http://goo.

gl/Nj6vO3, 2008.

Microsort. Vhdx format specification v1.00. http://goo.gl/

PmBJjC, 2012.

OpenZFS. Zfs features. http://open-zfs.org/wiki/

Features, 2015.

oVirt. Vdsm disk images (ovirt). http://wiki.ovirt.org/

Vdsm_Disk_Images, 2014.

QEMU. Qemu/images. http://en.wikibooks.org/wiki/

QEMU/Images, 2015.

STLinux. Data storage on nand flash. http://www.stlinux.

com/howto/NAND/data, 2014.

C. Tang. Fvd: A high-performance virtual machine image for-
mat for cloud. In Proceedings of the 2011 USENIX Con-
ference on USENIX Annual Technical Conference, USENIX-
ATC’11, pages 18–18, Berkeley, CA, USA, 2011. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=

2002181.2002199.

tpowa. linux-3.16.2 pkgbuild. http://goo.gl/ORXBgU, 2015.

VMWare. Virtual disk format 1.1. http://goo.gl/f4R1Ho,
2007.

VMWare. Understanding memory resource management in
vmware vsphere 5.0. http://goo.gl/X8ZyDn, 2011.

G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone,
M. Chamness, and W. Hsu. Characteristics of backup workloads
in production systems. In Proceedings of the 10th USENIX Con-
ference on File and Storage Technologies, FAST’12, pages 4–4,
Berkeley, CA, USA, 2012. USENIX Association. URL http:

//dl.acm.org/citation.cfm?id=2208461.2208465.

B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck
in the data domain deduplication file system. In Proceedings
of the 6th USENIX Conference on File and Storage Technolo-
gies, FAST’08, pages 18:1–18:14, Berkeley, CA, USA, 2008.
USENIX Association. URL http://dl.acm.org/citation.

cfm?id=1364813.1364831.

http://goo.gl/P9FfRk
http://goo.gl/P9FfRk
http://goo.gl/1RJRpC
http://doi.acm.org/10.1145/1365815.1365816
http://dl.acm.org/citation.cfm?id=2208461.2208470
http://dl.acm.org/citation.cfm?id=2208461.2208470
http://doi.acm.org/10.1145/2517349.2522726
http://doi.acm.org/10.1145/2517349.2522726
http://cyan4973.github.io/lz4/
http://goo.gl/wgmtZN
http://freecode.com/projects/fio
http://goo.gl/WrRHtE
http://goo.gl/WrRHtE
http://goo.gl/32U8UC
http://goo.gl/32U8UC
http://goo.gl/xAqSsP
http://goo.gl/xAqSsP
http://doi.acm.org/10.1145/2180905.2180906
http://www.linux-kvm.org/page/Tuning_KVM
http://www.linux-kvm.org/page/Tuning_KVM
http://doi.acm.org/10.1145/1519065.1519067
http://dl.acm.org/citation.cfm?id=2591305.2591330
http://dl.acm.org/citation.cfm?id=2591305.2591330
http://dl.acm.org/citation.cfm?id=2591305.2591313
http://dl.acm.org/citation.cfm?id=2591305.2591313
http://doi.acm.org/10.1145/1755913.1755915
http://doi.acm.org/10.1145/1755913.1755915
http://goo.gl/Nj6vO3
http://goo.gl/Nj6vO3
http://goo.gl/PmBJjC
http://goo.gl/PmBJjC
http://open-zfs.org/wiki/Features
http://open-zfs.org/wiki/Features
http://wiki.ovirt.org/Vdsm_Disk_Images
http://wiki.ovirt.org/Vdsm_Disk_Images
http://en.wikibooks.org/wiki/QEMU/Images
http://en.wikibooks.org/wiki/QEMU/Images
http://www.stlinux.com/howto/NAND/data
http://www.stlinux.com/howto/NAND/data
http://dl.acm.org/citation.cfm?id=2002181.2002199
http://dl.acm.org/citation.cfm?id=2002181.2002199
http://goo.gl/ORXBgU
http://goo.gl/f4R1Ho
http://goo.gl/X8ZyDn
http://dl.acm.org/citation.cfm?id=2208461.2208465
http://dl.acm.org/citation.cfm?id=2208461.2208465
http://dl.acm.org/citation.cfm?id=1364813.1364831
http://dl.acm.org/citation.cfm?id=1364813.1364831

	Introduction
	The Design of Selfie
	Maintaining In-memory Lookup Table
	Zoning On-image Space
	Writing Blocks into Zones
	Quickly Recovering from a Failure

	Performance Evaluation
	Performance with Micro-benchmark
	Performance with Other Applications
	Recovery Time

	Related Work
	Data compression
	Virtual Disk Drivers
	Updating Metadata in File System

	Conclusions
	Acknowledgments

