
TotalCOW: Unleash the Power of Copy-On-Write
for Thin-provisioned Containers

Xingbo Wu
Wayne State University
wuxb@wayne.edu

Wenguang Wang
VMware, Inc.

wenguangw@vmware.com

Song Jiang
Wayne State University
sjiang@wayne.edu

Abstract
Modern file systems leverage the Copy-on-Write (COW)
technique to efficiently create snapshots. COW can signif-
icantly reduce demand on disk space and I/O bandwidth by
not duplicating entire files at the time of making the snap-
shots. However, memory space and I/O requests demanded
by applications cannot benefit from this technique. In ex-
isting systems, a disk block shared by multiple files due to
COW would be read from the disk multiple times. Each
block in the reads is treated as an independent one in dif-
ferent files and is cached as a sperate block in memory. This
issue is due to the fact that current file access and caching are
based on logic file addresses. It poses a significant challenge
on the emerging light-weight container virtualization tech-
niques, such as Linux Container and Docker, which rely on
COW to quickly spawn a large number of thin-provisioned
container instances. We propose a lightweight approach to
address this issue by leveraging knowledge about files pro-
duced by COW. Experimental results show that a prototyped
system using the approach, named TotalCOW, can signif-
icantly remove redundant disk reads and caching without
compromising efficiency of accessing COW files.

1. Introduction
Copy-on-Write (COW) is a widely adopted technique for
minimizing cost of creating replicas in the memory and
on the storage devices, such as hard disks. In modern file
systems, such as ZFS [11] and Btrfs [20], COW enables
an efficient creation and management of snapshots. Taking
Btrfs as an example. When creating a snapshot of a set of
files, only their key metadata need to be duplicated. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
APSys ’15, July 27–28, 2015, Tokyo, Japan.
Copyright c© 2015 ACM 978-1-4503-3554-6/15/07. . . $15.00.
http://dx.doi.org/10.1145/2797022.2797024

snapshot is created as a new directory1. At this moment,
there is only one physical copy of the set of files on the disk.
In the meantime, there are two sets of logically independent
files presented to users. When the files are modified, only
the blocks containing the modifications are re-written at a
newly allocated space on the disk, and the other blocks are
still shared. In this way, the cost of file duplication is mostly
proportional only to the actual number of modified blocks,
rather than total size of the files. As a result, creating backups
of a large file system can be done in a timely manner with
negligible impact on the running applications.

Snapshots have been widely used in the deployment of to-
day’s virtualized systems and their efficiency is of great im-
portance. The emerging container-based virtualization plat-
forms, such as Linux Container [5], Docker [2], and Hyper-
V Container [9], leverage snapshots to spawn a (large) num-
ber of container instances derived from a common container
template. In this case, multiple snapshots will be created
from the template, which is often a directory containing a
root file system. Each container will be booted from its own
snapshot and read shared content in the template until it is
modified. In this way many commonly used files in the tem-
plate will likely be shared by a large number of virtual ma-
chines. For example, it is common to see a Hadoop cluster
consisting of hundreds or even thousands of nodes [7] is de-
ployed from a template containing Hadoop’s program pack-
age of over 300 MB. Together with other necessary software,
the template can exceed 1 GB. By using the container-based
technique leveraging COW snapshots to share a few copies,
one can save hundreds of Gigabytes of disk space in the sys-
tem installation.

1.1 The Issue
A file system with the COW capability on the storage device
has the advantage of reducing disk space consumption and
I/O operations for file duplication. However, when shared
blocks in snapshots are read into the memory, this advan-
tages is not retained. Unix operating systems use a common
abstraction layer–Virtual File System (VFS)–on the top of

1 To create a snapshot, the source directory needs to be a ‘subvolume’ in
Btrfs.

page

page

Address Space

0 1 2 3 4 5
null null null null

File System
(Btrfs)

readpage()
writepage()

Disk

Block I/O

file

file

file

page

page

VFS

page

Page Cache

Figure 1: VFS Organization.

various device-specific file systems. Figure 1 illustrates rela-
tionship between VFS and its underlying file systems. When
an application requests a block of data from a file managed
by an on-disk file system, the data block will be read from
the disk into the page cache in memory, assuming that they
are not in the cache yet, before it is delivered to the applica-
tion. Interestingly, when a data block has only one physical
instance on the disk but belongs to multiple (logical) files
due to use of COW, without any knowledge on the sharing
VFS cannot use the data block in the memory cached for a
different file. Instead, it has to issue a new read request for
the block again and allocates a new space in the memory to
cache a duplicate copy.

The root cause of the issue is that VFS manages the cache
on the abstraction of logical files, rather than on physical
disk space [17]. While this is a sound design choice (as
some file data may not have been mapped to the disk space
yet), it can lead to significant wastage of memory space
and I/O bandwidth in the reading of different COW’ed files.
In other words, the benefit of a COW file system exists
only with the on-disk data, and not with in-memory cached
data. This issue can be serious for several reasons. First,
compared to the disk the memory is of very limited capacity
and is much more expensive. Wastage of memory space
would reduce memory available for running applications and
lead to more block/page replacements and corresponding I/O
operations. Second, repeatedly reading data that have been in
the memory from the disk imposes unnecessary workload on
the disk. Furthermore, the additional I/O time is often on the
critical path of applications’ execution, compromising their
performance.

1.2 Inadequacy of the UnionFS/OverlayFS Approach
OverlayFS [6] and UnionFS [19] are popular alternatives to
the COW file systems for creating COW containers from
templates. Arguably they can partially address the aforemen-
tioned issue. Unlike a COW file system that copies data and
manages copied data at the block granularity, they enable
COW at the file granularity. That is, if any part of a file
is modified, the entire file is physically copied to produce
a new file. For a shared file in the template that is not yet
modified and onto which multiple logical files in different

virtual machines (or containers) are mapped, OverlayFS and
UnionFS use a unification layer to directly map the logical
files onto the file in the template. In this case, the pathnames
of the logical files are actually symbolic links pointing to
the real file in the template, and the unification layer trans-
lates a symbolic pathname to the real file’s pathname. As
VFS can see the real file pathname, it is aware that multiple
logical files with different symbolic pathnames but sharing
one common physical file are actually a single file. Accord-
ingly, reading the data in the file via different symbolic links
would not incur multiple I/O operations and keep redundant
data in the page cache. As OverlayFS and UnionFS apply
COW at the file granularity instead of at the block granular-
ity, they work well as long as most modified files are small,
or not significantly larger than a disk block (4KB). How-
ever, it would take a long time to service a small write on a
large file, as an entire large file has to be duplicated before
the write request is completed. This time is on the critical
path of the request service, causing unexpected performance
degradation of I/O service. To make the matter even worse,
after new files are physically produced possibly due to small
writes, all the benefits of COW, including on-disk and in-
memory space saving and reduced I/O operations, are lost.
With these limitations, the solution provided by OverlayFS
and UnionFSare not adequate and cannot be considered as a
general-purpose one.

1.3 Our Contributions
To address the issue, we have three objectives: (1) minimiz-
ing disk space provisioning using Copy-on-Write; (2) effi-
cient cache sharing to minimize memory footprint, and (3)
effective caching to avoid unnecessary I/O operations. We
propose a non-destructive approach that requires easy instru-
mentations of operating system and file system to achieve
the objectives. A prototype system is implemented in the
Linux kernel with the Btrfs file system. Collectively the de-
sign and the implementation are named TotalCOW as they
retain the benefit of the on-disk COW technique and enable
in-memory COW to greatly improve the memory and I/O
efficiency of accessing snapshots in a COW file system.

Our contributions in this paper include:

• We identify and analyze the issue on memory and I/O ef-
ficiency with the use of COW file systems for container-
based virtualization systems.

• We propose a two-level approach to be applied in operat-
ing systems to effectively address the issue.

• We develop a prototype system (TotalCOW) and evalu-
ate its effectiveness in term of memory usage and I/O
throughput.

The rest of the paper is structured as follows. Section 2
describes the design of TotalCOW, which is evaluated in
Section 3 with a comparison with Btrfs and OverlayFS.

We discuss the effectiveness of TotalCOW in Section 3.3.
Section 4 describes related works, and Section 5 concludes.

2. The Design of TotalCOW
Efficient copy-on-write of on-disk data has been well sup-
ported by some file systems, such as ZFS and Btrfs, as
one of their major features. However, VFS uses a com-
mon interface, or a set of functions (e.g., readpage() and
writepage()), to interact with different file systems. In
VFS, file blocks are cached in the page cache based on their
logical addresses in their corresponding files. Once a block
is read from the disk into the cache managed by VFS via the
interface, all the information specific to a file system, such
as the data’s disk location, is lost. VFS’ interface leaves lit-
tle room for passing information about COW’ed blocks from
file systems to the kernel for VFS to avoid potential redun-
dant reads and caching.

One might intend to revise the interface to allow file sys-
tems to report their data on-disk addresses to VFS, which
would then organize its page cache according to the data’s
disk addresses. In addition to requiring significant changes to
the kernel, which by itself is not a desirable choice, this ap-
proach has several other limitations. First, the mapping from
a file page in VFS to its disk location can be changed by the
file system at any time (such as for disk defragmentation),
and it is a challenge for VFS to keep the information always
up to date. If VFS had to consult the file system on every
read/write operation on the mapping’s validness, file access
would become complicated and inefficient. Second, the ap-
proach cannot handle the case where file blocks have not yet
been mapped to disk addresses, including newly created files
in VFS that have not been committed to the file system, and
file systems that do not need backing physical block devices,
such as NFS and tmpfs.

Without disruptive changes to the existing organization
of kernel page cache and the interface between VFS and file
systems, we propose a lightweight approach to effectively
address the issue of performance loss due to redundant disk
reads and the issue of cache space loss due to redundant
block caching. For the former issue, we build a new layer of
cache that is close to the disk, in which blocks are indexed by
disk addresses. For the latter issue, we develop an efficient
method to quickly identify blocks shared by multiple files so
as to avoid caching redundant copies. In the below, we will
describe the two components of TotalCOW.

2.1 Caching with Disk Addresses
As indexing existing page cache with disk addresses is not
an viable option, we add a new layer of cache between the
block device and the file system. The cache acts as a wrapper
of the block device, and any I/O requests issued to the device
will be first caught by the cache, whose data are indexed
with disk addresses. Because the purpose of the cache is only
to remove redundant disk reads that occur on template files

0 1

page
null

/c1/etc/fstab

0 1
null

/c2/etc/fstab

null

page

Btrfs
(1) Read page

(2) Compare

0 1

page
null

/c1/etc/fstab

0 1
null

/c2/etc/fstab

page

Btrfs
(3) Discard

(4) Create Mapping

Figure 2: Hint-assisted identification and removal of redun-
dant page in the page cache.

and cannot be detected by the page cache, it only caches the
disk blocks belonging to the template files. To this end, the
cache maintains a list of disk block address ranges where
these files are stored. While only blocks in the ranges can be
cached, the list can be considered as a whitelist. We provide
a kernel module to allow users to register and deregister
template files through sysfs [18] into the whitelist. Most
file systems, including Btrfs, provide functions to reveal
file-to-blocks mapping information, such as using ioctl()

with flag FIEMAP. We use this API to obtain disk block
addresses of a file and add corresponding address ranges into
the whitelist.

Note that any block accesses to disk addresses not cov-
ered by the whitelist would bypass the cache. The cache is
a read-only cache—if a block in the cache is written, it is
removed from the cache. The size of the cache can be con-
figured and we use the LRU replacement algorithm. While
TotalCOW uses additional memory for having the cache, it
reduces memory consumption from O(n) to O(1) in terms
of the number of common-source snapshots (n is the number
of the container instances).

2.2 Hint-assisted Avoidance of Duplication in the Page
Cache

To keep the way in which VFS interacts with its underly-
ing file system unchanged, TotalCOW does not attempt to
determine whether two blocks in different files are mapped
to the same disk block by leveraging metadata that are only
available in the file system, such as Btrfs. Instead, upon a
read request it allows VFS to request data blocks from the
file system, if needed, as usual. Because of TotalCOW’s new
cache layer, the request can be efficiently serviced. When
VFS receives the data blocks, for each block it needs to de-
termine whether a block of the exactly same content has ex-
isted in the page cache by comparing its data with data of
(some) blocks in the cache. If yes, the newly retrieved block
is discarded and the block’s logical file address is mapped to
the block currently in the page cache. Figure 2 illustrates the
steps. A block is added into the page cache only when there
is not such a match in the comparison.

A concern in the design is the cost of comparison, which
may involve a very large number of blocks for each newly
loaded block. To minimize the cost, we limit the compar-
ison within a small number of candidate blocks. When a

number of snapshot files are created from one template file,
we call the group of snapshot files/directories as common-
source files/directories, and blocks at the same offset of the
files as common-source blocks. Accordingly, a block is com-
pared only to its peer common-source blocks. To enable this
technique, TotoalCOW must be aware of which files are
common-source ones and use it as a hint for determining
comparison candidates. TotalCOW provides an interface for
users to specify from which template file (directory) a new
snapshot is created. It treats all snapshots derived from the
template as a group.

As an example, two snapshot directories (/c1 and /c2)
are created from one common template to support two con-
tainers (c1 and c2). Accordingly, two files in the snap-
shots, /c1/etc/fstab and /c2/etc/fstab, are common-
source files as they share a common suffix in their namepaths
(/etc/fstab). Suppose the fstab file in Snapshot /c1 has
been read and fully cached in the page cache. When VFS
tries to read a page in the fstab file in Snapshot /c2, it
sends the request to the underlying file system to retrieve
the block as usual. After VFS receives the block, TotalCOW
compares it with the cached common-source block belong-
ing to /c1, which is identified with the hint. In this way, the
overhead for identifying and removing redundant blocks in
the page cache is small.

By removing redundant blocks, multiple (logical) blocks
can be mapped to the same block in the page cache. When
one of the blocks is modified, TotalCOW creates a private
block in the cache for the block to receive the modification.
At this time the file system may not be aware of this change
until the dirty block is written back to the disk. This design
preserves the functionality of the page cache as a write
buffer. In this way, TotalCOW provides an in-memory COW
in addition to the on-disk COW provided by file systems.

The number of candidate blocks in a common-source
block group is equal to the number of snapshots created from
a template. If the number is large and many blocks have been
modified, the comparison cost can be still substantial. To this
end, we attach a one-byte signature to each block, in the page
cache, belonging to some common-source snapshots. In the
signature, the first bit indicates if the corresponding block
is a private one, which has been COW’ed in the memory
by TotalCOW. The remaining seven bits are hash value of
the block content. For a full-block data comparison, the
candidate block must not be a private one, and the 7-bit hash
value of the new block and that of the candidate block must
match. By conducting the screening, TotalCOW minimizes
the chance of unnecessary comparisons. Figure 3 shows an
example use of the signatures. Note that a candidate block
that is private on the file system may not be considered as
private in the memory by TotalCOW because it is re-loaded
after it becomes private in the file system.

page

/c1/etc/fstab

null

0 1
/c2/etc/fstab

null

0 1
/c3/etc/fstab

null

0 1
/c4/etc/fstab

null

0 1
/c5/etc/fstab

null

0 1

page page

Signatures (5 bytes):
[1_1001010][1_1001010][1_0111000][0_0000000][0_0000000]

null

Figure 3: An example use of signatures. There are five snap-
shots in a common-source group. For a block in Snapshot
/c1, only corresponding block in Snapshot /c2 needs to
be compared. Snapshot /c3 has a mismatched hash value,
Blocks of Snapshots /c4 and /c5 have been modified.

3. Performance Evaluation
In this section we evaluate efficacy of TotalCOW in terms
of its performance improvement and memory efficiency. A
kernel module is implemented to provide an interface to
userspace for configuring snapshot groups. The generic file
read/write routines (mainly in mm/filemap.c) of the Linux
kernel are also modified to hook the core functions of Total-
COW into the kernel. We use the stock Btrfs as the COW file
system in the evaluation of TotalCOW.

We compare TotalCOW to Btrfs on the stock Linux kernel
for managing the snapshots, and to OverlayFS that creates
on-the-fly directories for containers. OverlayFS also uses
Btrfs as its underlying file system.

The test machine has two Xeon L5410 CPUs, 64GB
DDR2 ECC memory, and two 1.5 TB WD15EARX hard drives.
We use Linux 3.18.6 for implementation and testing, and
LXC 1.1.1 for managing containers. In the configuration
of TotalCOW, we do not limit the size of its disk-address-
mapped cache to reveal its full potential on removing unnec-
essary reads on snapshots.

In the below we will first use a read-only workload to
evaluate the systems’ memory and I/O efficiency, and then
use a write-only workload to evaluate the impact of different
COW techniques on the write performance. Both workloads
are generated using Linux command dd and temporary in-
memory file(s). We use dd to copy on-disk file(s) to the
temporary file(s) for generating read-only workload, and
use dd to copy the temporary file(s) to on-disk file(s) for
generating write-only workload.

3.1 Read-only Workload
We evaluate memory efficiency of TotalCOW in a simplified
scenario where all containers read their respective snapshot
files mapped to a common template file on the disk. The
size of each file is 2 GB. The machine’s 64 GB memory is
sufficient to accommodate 8 duplicates (16 GB) of the file in
the page cache. We measure the elapsed time spent on read
as well as the final cache usage after the reading is done.

The experiment results are shown in Figure 4. Btrfs has
the worst execution time and the largest cache footprint as

(a) Execution time on the file reads

(b) Cache space consumed by the read data

Figure 4: Reading common-source files in eight containers.

Figure 5: Overwriting 2 MB data in files of different sizes

each container independently reads a copy from the disk
and keeps a private copy in system’s page cache. OverlayFS
produces the best efficiency because the eight containers
actually access the same file in VFS. TotalCOW’s cache
footprint is doubled compared to OverlayFS due to its use
of a new cache layer. A page needs to be cached both in
the page cache and in the new cache. However, its execution
time is only a little bit longer than that of OverlayFS because
copying pages within memory is much faster than that from
the hard disk. The disk space consumption is minimized in
all three systems as all use Btrfs as the file system and no
new blocks are allocated with read requests.

3.2 Write-only Workload
In this experiment we use a write-only workload to evalu-
ate efficiency of copy-on-write operations. As discussed in
Section 1, a small write in OverlayFS may lead to copying
of an entire file, which can cause long stall times for large
files. In contrast, Btrfs natively supports COW on the disk at
the block granularity, making the I/O cost proportional to the
actual amount of written data. TotalCOW relies on Btrfs to
handle COW, so it does not incur any additional I/O cost for
servicing writes. The only overhead could be that for evict-
ing dirty blocks in the new cache layer, which requires only
in-memory operations.

We first set up an experiment to evaluate the performance
of making small modifications in a file. Note that the origi-

Figure 6: Overwrites with various data sizes on a 1 GB file

nal file is in a snapshot and none of the modifications would
be applied directly on the original file. Four files of different
sizes {2 MB, 16 MB, 128 MB, 1 GB} are created as the tem-
plate file in each setting. The execution time is collected by
overwriting the first 2 MB data in each file. A fdatasync()

is called after each test to flush the dirty data to the file sys-
tem. Specifically, for a 2 MB file the entire file is overwrit-
ten, while only 1/512 of the 1 GB file is overwritten. Figure 5
shows the execution times with different file sizes. Both To-
talCOW and Btrfs use less than 0.2 seconds to complete the
write, regardless of the file size. As we expect, the result
shows that a COW file system can efficiently handle write on
shared files. In contrast, OverlayFS takes more than 20 sec-
onds to write 2 MB data into the 1GB file. This is equivalent
to merely 200 KB/s throughput, far lower than the raw disk
bandwidth. Note that this does not mean OverlayFS consis-
tently has such low performance. Once a file has been du-
plicated, further writes will be as efficient as other systems.
In addition to the aforementioned performance issue, the
replicated file consumes additional disk space and common-
source files can no longer share its blocks in the page cache.

We conduct another experiment to investigate the perfor-
mance impact of writes of different data sizes. In this exper-
iment we fix the template file’s size to 1 GB. Data of various
sizes (2 MB, 16 MB, 128 MB, 1 GB) are used to overwrite
a part of the file. Figure 6 shows the execution times with
different overwrite sizes. For TotalCOW and Btrfs, the exe-
cution time increases proportionally with the size of write.
OverlayFS takes at least 20 seconds to complete a write. Its
execution time is almost unchanged with the increase of the
write size. An entire file is read from the snapshot file into
the memory once the file is opened for write. It is then writ-
ten to a newly created file no matter how small the fraction of
the file for overwriting is. Even if the write is a small asyn-
chronous one, the request’s response time can still be long.
When a sync command is issued, the entire file is flushed to
the disk to physically produce a new file.

We also collect the page cache consumptions after each
test to understand memory efficiency of each system. Fig-
ure 7 shows the memory consumptions after the 2 MB over-
write tests. The cache consumptions of TotalCOW and Btrfs
do not increase even for large files. It is because the page

Figure 7: Page cache consumption after overwriting 2 MB
data

Figure 8: Page cache consumption after writing on a 1 GB
file

cache only holds the overwritten 2 MB data. TotalCOW does
not consume more memory than the stock Btrfs, because it
does not allocate space in the new layer of cache for over-
written data. OverlayFS consumes significantly more cache
space when overwriting a large file. It takes 2 GB in the page
cache after writing only 2 MB data in a 1 GB file. OverlayFS
leaves two files in the page cache after the file copying. One
is the original file which supplies the data, and the other is a
new file which receives the data.

Figure 8 shows memory consumptions of the overwrite
tests on 1 GB files. Similar to the previous experiment, To-
talCOW and Btrfs also efficiently use the page cache without
apparent memory wastage. In contrast, OverlayFS consumes
twice as much memory as the template file regardless the
write size. It implies that the first-time write cost in Over-
layFS is determined by the size of the template file, rather
than the actual write size.

3.3 A Summary
As revealed in the performance results and analysis, both
Btrfs and OverlayFS exhibit their respective advantages and
disadvantages. On one hand, OverlayFS performs very well
for sharing read-only files in the memory, while Btrfs in-
curs extra I/O load and consumes extra memory space. On
the other hand, Btrfs performs ideally when doing copy-
on-write, while OverlayFS shows inconsistent write perfor-
mance and suboptimal page cache utilization with partial file
modification.

TotalCOW addresses both of their disadvantages by ex-
tending the well-supported on-disk COW into in-memory
cache space. Our design and experiments show that the all
three objectives listed in Section 1 are achieved. By expos-
ing key knowledge of on-disk sharing into the kernel space,
cache memory and I/O resource can be efficiently used.

4. Related Works
Thin provisioning has been a major goal of the virtualization
technology for various types of resources including memory
and storage.

Virtual machines usually allocate minimal memory for
guest OSs using delayed mapping [4]. The memory provi-
sioning can also be reduced online by deallocating unused
pages via balloon device [1]. Memory usage can also be re-
duced via compressing [14, 21] and deduplication [3, 13].
These techniques were proposed without exploiting knowl-
edge on COW’ed files in the file system. In the context of
page cache sharing, TotalCOW greatly improves the dedu-
plication efficiency by reducing scope of search for redun-
dant pages in the memory with the use of small amount of
hint.

Virtualization systems employ memory deduplication
techniques, such as Linux KSM (Kernel Same-page Merg-
ing) [3] and VMware’s Transparent Page Sharing [13], to
merge redundant pages across multiple virtual machines.
Both methods use a scan approach to search for candidate
pages for merging. Even though hashing or tree structures
are used to accelerate the scan process, the overhead of mem-
ory deduplication can still be substantial. This is because the
duplicated pages can be scattered across a large virtual mem-
ory space. Blindly scanning many non-duplicated pages is
unnecessary and wastes CPU cycles. To avoid competing
CPU cycles with other processes, the scan process has to be
throttled [3], However, this throttling can introduce a long
wait period for redundant pages to be detected and removed.
These limitations make the current memory deduplication
techniques less ideal for lightweight containers. TotalCOW
is a hint-based approach to minimize the effort for searching
redundant blocks. Furthermore, it does not place redundant
pages into the page cache in the first place, while KSM at-
tempts to remove duplicate pages that have existed in the
memory.

Efforts on storage systems have been made to reduce the
provisioning of the persistent storage media. For example,
some file systems support deduplication and compression
for their on-disk data [8, 10, 15, 16]. Due to the fact that
these methods can lead to considerable computation cost,
off-line approaches usually achieve better performance by
employing more intelligent techniques for identifying redun-
dant blocks [22]. Instead of directly reducing data size, copy-
on-write technique saves storage space by preventing data
growth while maintaining the logical correctness [11]. How-
ever, little attention has been paid on retaining the efficiency

when data reach the memory [12]. TotalCOW extends the
space efficiency available in a COW file system to the mem-
ory for better utilization of I/O and cache resources. It is a
complementary technique for file systems to providing bet-
ter service to operating system and end users.

5. Conclusions
In this paper we propose two techniques and their imple-
mentation, collectively called TotalCOW, to address the per-
formance and memory efficiency issue in COW-based file
systems. TotalCOW uses a non-disruptive approach in VFS
to enable in-memory COW. It complements the on-storage
COW capability provided by the COW file systems. Com-
pared to OverlayFS and UnionFS, TotalCOW retains the ad-
vantage of COW file systems. Experiments show that Total-
COW works efficiently for both read and write requests in
terms of program execution time and memory efficiency.

6. Acknowledgments
We are grateful to the paper’s shepherd Dr. Taesoo Kim
and anonymous reviewers who helped to improve the pa-
per’s quality. This work was supported by US National Sci-
ence Foundation under CAREER CCF 0845711 and CNS
1217948.

References
[1] Automatic ballooning. http://www.linux-kvm.org/

page/Projects/auto-ballooning.

[2] Docker. https://www.docker.com/.

[3] Kernel samepage merging. http://www.linux-kvm.org/

page/KSM.

[4] Kvm memory. http://www.linux-kvm.org/page/

Memory.

[5] Linux containers. https://linuxcontainers.org/.

[6] Overlay filesystem. http://goo.gl/VlBg98.

[7] Why the world’s largest hadoop installation may soon become
the norm. http://goo.gl/luPsxK.

[8] Btrfs compression. https://btrfs.wiki.kernel.org/

index.php/Compression, 2014.

[9] Microsoft unveils new container technologies for the next
generation cloud. http://goo.gl/OeNw1T, 2015.

[10] J. Bonwick. https://blogs.oracle.com/bonwick/

entry/zfs_dedup, 2009.

[11] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and M. Shel-
lenbaum. The zettabyte file system. In Proc. of the 2nd Usenix
Conference on File and Storage Technologies, 2003.

[12] J. Eder. Comprehensive overview of storage scalability in
docker. http://goo.gl/Hpe565, 2014.

[13] F. Guo. Understanding memory resource management in
vmware vsphere 5.0. http://goo.gl/nSIzxG, 2011.

[14] S. Jennings. Transparent memory compression in linux.
http://goo.gl/xAqSsP, 2013.

[15] S. Jones. Online de-duplication in a log-structured file system
for primary storage. Technical Report UCSC-SSRC-11-03,
University of California, Santa Cruz, May 2011.

[16] X. Lin, G. Lu, F. Douglis, P. Shilane, and G. Wallace. Migra-
tory compression: Coarse-grained data reordering to improve
compressibility. In Proceedings of the 12th USENIX Confer-
ence on File and Storage Technologies, FAST’14, pages 257–
271, Berkeley, CA, USA, 2014. USENIX Association.

[17] W. Mauerer. Professional Linux Kernel Architecture. Wrox
Press Ltd., Birmingham, UK, UK, 2008.

[18] P. Mochel. The sysfs filesystem. In Linux Symposium, page
313, 2005.

[19] D. Quigley, J. Sipek, C. P. Wright, and E. Zadok. Unionfs:
User-and community-oriented development of a unification
filesystem. In Proceedings of the 2006 Linux Symposium,
volume 2, pages 349–362, 2006.

[20] O. Rodeh, J. Bacik, and C. Mason. Btrfs: The linux b-tree
filesystem. Trans. Storage, 9(3):9:1–9:32, Aug. 2013.

[21] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case for
compressed caching in virtual memory systems. In Proceed-
ings of the Annual Conference on USENIX Annual Technical
Conference, ATEC ’99, pages 8–8, Berkeley, CA, USA, 1999.
USENIX Association.

[22] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck
in the data domain deduplication file system. In Proceedings
of the 6th USENIX Conference on File and Storage Technolo-
gies, FAST’08, pages 18:1–18:14, Berkeley, CA, USA, 2008.
USENIX Association.

http://www.linux-kvm.org/page/Projects/auto-ballooning
http://www.linux-kvm.org/page/Projects/auto-ballooning
https://www.docker.com/
http://www.linux-kvm.org/page/KSM
http://www.linux-kvm.org/page/KSM
http://www.linux-kvm.org/page/Memory
http://www.linux-kvm.org/page/Memory
https://linuxcontainers.org/
http://goo.gl/VlBg98
http://goo.gl/luPsxK
https://btrfs.wiki.kernel.org/index.php/Compression
https://btrfs.wiki.kernel.org/index.php/Compression
http://goo.gl/OeNw1T
https://blogs.oracle.com/bonwick/entry/zfs_dedup
https://blogs.oracle.com/bonwick/entry/zfs_dedup
http://goo.gl/Hpe565
http://goo.gl/nSIzxG
http://goo.gl/xAqSsP

	Introduction
	The Issue
	Inadequacy of the UnionFS/OverlayFS Approach
	Our Contributions

	The Design of TotalCOW
	Caching with Disk Addresses
	Hint-assisted Avoidance of Duplication in the Page Cache

	Performance Evaluation
	Read-only Workload
	Write-only Workload
	A Summary

	Related Works
	Conclusions
	Acknowledgments

