
intelliQoS: Rethinking Storage QoS Implementation
for System Efficiency

Yuehai Xu, Marc Patton, Michael Devon Moore, and Song Jiang
The ECE Department, Wayne State University,

Detroit, MI, 48202
Email: {yhxu, marc.patton, michael.moore9, sjiang}@wayne.edu

Abstract—The objective of maintaining a high efficiency for
a shared storage system often has to be compromised with
the enforcement of Service-level Agreement (SLA) on quality of
service (QoS). From the perspective of I/O scheduling, I/O request
service order optimized for disk efficiency can be substantially
different from the order required for meeting QoS requirements.
When QoS takes priority, the storage system has to serve requests
with a sub-optimal efficiency. In this paper, we propose to relate
QoS requirements specified for I/O requests to users’ experiences.
By assuming that only user-observable QoS is necessary for
the system to fulfill, we relax QoS requirements on the storage
system as long as such a relaxation is not noticeable to users.
The relaxation produces a leeway critical for the I/O scheduler
to improve disk efficiency. We implement a prototype system,
named as intelliQoS, as a proof of concept. In the system
the scheduler is allowed to schedule requests in its preferred
order as long as the user does not sense any performance
degradation through the outputs from the application. In this
way the user can still experience the same service quality as
required although individual requests’ latency requirements can
be missed for higher storage efficiency. Our experiments on
Xen virtual machines (VMs) show that intelliQoS significantly
improves system efficiency by up to 80% without violating user-
observable QoS requirements.

Index Terms—Service-level Agreement (SLA); Quality of Ser-
vice (QoS); I/O Request Scheduling; Spatial Locality.

I. INTRODUCTION

Consolidation of I/O services on a shared storage system
makes economic sense as it leads to better utilized system
resources and reduced management cost. However, a major
concern of the shared use of storage system is the reduced
system efficiency due to interference among different work-
loads. Different from the overhead associated with shared use
of other system resources such as processor and network,
the overhead due to interleaving service of requests between
different users’ workloads on the hard disks can be significant.
As we know, spatial locality is the key to the disk efficiency
and the requests from the same application usually exhibit
stronger locality than those from different applications. From
the perspective of I/O request scheduler, effective exploitation
of the locality requires continuously dispatching of requests
from the same application for an extended period of time
before serving a batch of requests from another application. In
this way the long-distance disk seeks can be minimized, and
the efficiency of the storage system would not be severely re-
duced by the sharing. However, this effort on the amelioration

of interference for higher disk performance can be foiled by
enforcement of QoS policies.

There have been efforts on providing support of QoS
differentiation among requests from different applications on
production systems. QoS requirements can be specified using
either latency or throughput. A deadline, derived from latency
or throughput requirement, is usually attached to individual
requests for the scheduler to meet in the implementation of
QoS. The reluctance of directly using throughput as a metric
in the scheduling is due to its lack of clarity on the time period
in which a required throughput is measured. For example, a
10MB/s requirement might be interpreted by a scheduler in its
implementation as 10MB for every second or as 600MB for
every minute. For the latter case, the throughput measured
in some 1-second time periods can be much smaller than
10MB/s, which may not be what is expected by the user who
sets the requirement. In the meantime, implementation of the
throughput in a larger time window, such as one minute, gives
a larger space for the scheduler to improve disk performance,
or a QoS requirement specified in a larger time scale would
dictate less deviation from the request service order optimized
for disk efficiency.

Unfortunately today’s I/O schedulers are not aware of the
time scale against which a throughput can be applied for
implementing QoS requirements without compromising user-
observable performance. Consequently, either they have to
abide by the deadline specified for each request, leaving
limited room for optimizing request scheduling for their lo-
cality [3], or they would take risk of missing the deadlines by
batching multiple requests of stronger locality and higher disk
efficiency [2]. In both cases, the space for locality exploitation
is limited because the deadlines attached to individual requests
are usually too tight to accommodate a sufficiently large batch
of requests for being serviced together.

II. OUR SOLUTION

Our proposed solution for achieving both QoS and effi-
ciency goals is based on the facts that (1) QoS on the storage is
measured according to user-observable service quality, and (2)
only I/O QoS that can negatively affect user-observable QoS
is significant in its implementation. Accordingly, a request’s
deadline can be extended as long as it does not cause a
user-observable QoS violation, and the scheduler does not
have to always immediately service requests of imminent

deadlines. The key to realization of the idea is to determine
what requests’ deadlines can be extended and how much the
extension can be.

A user usually receives its service from a service provider
as shown in Figure 1. The user first sends a request to an
application. This can be a transaction request for browsing
a product catalog or a submission of a job for running at
the server. Then the application processes the transaction or
executes the job, during which I/O requests are generated and
outputs to the user are produced to inform the user of running
results or progress. Users perceive service quality only through
the outputs, including the timing at which they are produced.
The outputs can be used to delimit the requests issued by an
application into groups. We can consider any two consecutive
outputs to form a container holding a group of requests on
which a throughput can be defined and measured. The deadline
of the container is defined as the time for its latter output
to occur. The premise of our design is that as long as a
container’s deadline is met, missing deadlines of individual
requests in the container does not change user-observable
QoS. In this work we use the concept of container to design
and implement a system for intelligently implementing QoS,
named as intelliQoS. In the system, outputs are detected
and associated with their requests to form containers, and
intelliQoS uses the container as scheduling unit when locality
can be effectively exploited, and as the unit for the QoS
enforcement.

Fig. 1: There are three tiers in a typical system architecture
involving consolidated storage service: service subscribers, ap-
plication servers, and storage server. Service-level agreement
(SLA) specifies the QoS requirements on the applications at
the application servers, which further determine I/O QoS re-
quirements accordingly to the storage servers. The application
servers can be co-located with storage servers. For example,
they are virtual machines hosted on the servers attached to a
SAN.

III. DESIGN OF intelliQoS

A generic system architecture that the design of intelliQoS
assumes is depicted in Figure 1. In the three-tier architecture,

the output refers to messages from the application servers to
the service subscribers, including system administrators. There
are two major components in intelliQoS, which are container
forming and container-aware scheduling.

A. Forming Containers

Forming container is actually to relate I/O requests to the
outputs, or to determine what requests have to be completed
for an output to be produced. Usually synchronous requests is-
sued by a process (or thread) are in a container associated with
their immediately following output issued by the same process.
However, there can be cases where dependency exists between
requests and outputs issued by different but synchronized
processes. The OS kernel can observe requests and outputs,
and can discover their relationship with processes. When
application servers and storage servers are not on the same
physical machine, the information facilitating identification of
containers need to be passed from the application servers to the
storage servers. To this end, we piggyback a unique process
identification to each request sent to the storage server, and
create a fake request for each output with its associated process
identification to notify the storage server of the occurrence
of the output. The overhead of communicating the additional
information is small.

Another typical system configuration is that application
servers are virtual machines co-located with the storage server
on the same host, which is connected with storage devices.
The hypervisor or host VM in a VM system can monitor any
requests to the storage and any output messages to the clients
through NIC, and can associate outputs to requests at the
granularity of guest VMs without any instrumentation of guest
OS. That is, requests from the same guest VM are placed into
containers according to occurrences of this VM’s outputs. This
is certainly a conservative option as one process’s container
may have to be made smaller due to outputs from other un-
related processes on the same VM. A smaller container limits
the potential of performance improvement of the proposed
approach. To overcome this, guest OS has to be instrumented
to discover the association between requests (or outputs) and
processes on the same guest OS. As a quick proof-of-concept
prototype of using container for efficient QoS implementation,
intelliQoS is built for the virtual machine environment with
co-located application servers and storage systems and with
containers formed at the level of VMs.

B. Container-aware Scheduling

If the size of a container is substantially large and its
requests have strong locality, it is expected to significantly
reduce disk head thrashing between requests from different
applications by scheduling requests in one container at a time.
We assume that each request has been assigned a deadline
by another system component to ensure that user-observable
QoS is satisfied if the deadlines are met. As there are no
outputs within a container, the deadlines of all requests in
the container can theoretically be extended to the container’s
last request’s deadline without compromising user-observable

QoS. In practice, the extended deadlines can be spaced with
a short time gap to account for request service times. To this
end, we need to estimate container size, or the number of
requests in a container, and the deadline of the last request
in the container. For the prediction, we assume that there is a
stability on container size so that we can use history container
sizes to statistically predict next container’s size. The formula
for the prediction of current container size (container sizek)
is borrowed from the Linux kernel where it is used for
prediction of thinktime in the anticipatory scheduler:

sample0 = 0;
total0 = 0;
samplek = (7 ∗ samplek−1 + 256)/8;
totalk = (7 ∗ totalk−1 + 256 ∗ container sizek−1)/8;
container sizek = (7 ∗ totalk + 128)/samplek;

In the formula both recent and history statistics are con-
sidered to smooth out short-term dynamics, and to phase out
historical statistics by giving recent statistics a higher weight.
It is noted that when container sizek is to be predicted
container sizek−1 is a measured value. For each container we
also track its average allowed-latency, which is the time period
from the beginning of the container to the deadline of its last
request divided by the container size. We use a formula similar
to the one used for predicting container size to estimate the
average allowed-latency for the current container. Therefore,
the deadline of the last request for deadline extension can be
estimated as the product of the average allowed-latency and
the container size.

When the next output occurs, it may turn out that the
estimated container size can be larger or smaller than the actual
container size. In the former case, user-observable QoS can be
compromised. To minimize the risk, intelliQoS sets up a safety
zone, which is one third of estimated container size by default.
That is, the container size used for deadline extension is only
2/3 of the estimated container size. In the latter case, the full
potential of container-aware scheduling is not exploited. Note
that intelliQoS only extends the deadlines of requests before
the assumed last request in a container. For the ones between
the last request and the actual last request, we conservatively
keep their deadlines unchanged. As a future work, we plan
to study the tradeoff of risks and benefits of aggressively
extending request deadlines for different applications in terms
of user performance experience and system efficiency.

IV. PERFORMANCE EVALUATION

The intelliQoS prototype is implemented on the Xen virtual
machine (Xen-4.0-testing) with Linux kernel 2.6.32.23. In
the host domain we implement a request-deadline-aware I/O
scheduler, much like the CVC scheduler proposed in Stone-
hedge [3]. The scheduler is adapted from the Linux deadline
scheduler. It dispatches requests according to their CSCAN-
determined order unless requests with imminent deadlines
emerge and it switches to the deadline-driven scheduling. This
scheduler is the vanilla one against it intelliQoS is compared. If

intelliQoS selectively extends request deadlines, the scheduler
works as intelliQoS’s scheduling component. VMs are hosted
on the server of two quadcore processors (Intel Xeron5450)
and 8G RAM. The data of all VMs are stored on a Seagate
SATA hard drive (ST3500514NS) of 7200 RPM and 500GB
capacity with a 32MB built-in cache. Each VM is configured
with 1G memory and two vCPUs. The I/O scheduler for the
guest VMs is NOOP. Blktap2 is used to pass the I/O requests
from guest VMs to host VM, which does the actual dispatching
of I/O requests to the disk.

A. Adapting Storage Efficiency to User-observable QoS

In this experiment, we investigate how user-observable QoS
can be affected by attempts for improving storage efficiency.
The benchmark used in this experiment is FIO-1.5.0, a popular
and highly configurable I/O benchmark. We configure it to
asynchronously read 4K random data from a 128MB file with
its ioengine parameter set as libaio. The iodepth parameter is
set to 100, which means that we allow at most 100 requests
in flight. In the system there are two VMs, each runs on
an FIO benchmark. The I/O latency requirement on each
request is set to 20ms for both VMs, or 50 IOPS for each
VM, which is equivalent to a throughput of 200KB/s. The
files read by the two FIOs are separated by a space gap of
32GB on the disk. To simulate different intensity of interaction
between the application and the users, we change frequency
of calling printf(), which is used in FIO to report throughput
measured between two consecutive outputs to users, during
each run of the benchmark. Figure 2 shows user-observed
throughputs (reported by FIO’s printf()) with different QoS-
aware schedulers. While batching can be used for improving
disk efficiency, we show the throughput with the vanilla QoS
scheduler that allows requests from the same VM to serve in
a batch of 8 (Figure 2-b) or a batch of 16 (Figure 2-c).

As shown in the figures, the user-required QoS can be satis-
fied by using the vanilla scheduler due to its effort on meeting
individual requests’ deadlines. However, its throughput stays
only a little above required 200KB/s throughput. When we
increases the batching size to 8 and then to 16, the average
throughput improves by almost up to 100%. However, because
the batching blindly groups requests for scheduling without
regard of its implication on user-observable throughput, the
user-observable QoS requirement (200KB/s) is more and more
frequently and severely violated with the increase of batching
size and output frequency. In contrast, intelliQoS tracks con-
tainer sizes determined by output occurrences and intelligently
groups requests for scheduling according to the sizes. The
adaptivity built in the QoS-aware scheduler allows the schedul-
ing to opportunistically take advantage of “blind spot” in users’
performance experience for higher storage efficiency without
QoS violations. Note that while the throughput improvement
beyond what users ask for may not seem interesting, the
corresponding efficiency improvement would be valuable for
other purposes such as accommodating more workloads in a
production system.

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500

 U
se

r-
ob

se
rv

ed
 T

hr
ou

gh
pu

t (
K

B
/s

)

 Output Number

 (a) No batching

Vanilla QoS Scheduler
QoS requirement

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500

 U
se

r-
ob

se
rv

ed
 T

hr
ou

gh
pu

t (
K

B
/s

)

 Output Number

 (b) Batching of 8 Requests

Vanilla QoS Scheduler
QoS requirement

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500

 U
se

r-
ob

se
rv

ed
 T

hr
ou

gh
pu

t (
K

B
/s

)

 Output Number

 (c) Batching of 16 Requests

Vanilla QoS Scheduler
QoS requirement

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500
 U

se
r-

ob
se

rv
ed

 T
hr

ou
gh

pu
t (

K
B

/s
)

 Output Number

 (d) intelliQoS

intelliQoS Scheduler
QoS requirement

Fig. 2: User-observed throughputs for the first 2,500 outputs of one FIO instance using different QoS-aware schedulers. (a)
The vanilla QoS-aware scheduler meeting each request’s deadline; (b) The vanilla scheduler with batching of 8 requests; (c)
The vanilla scheduler with batching of 16 requests; and (d) intelliQoS. The throughputs reported by the outputs are shown
in three stages delimited by vertical lines, as output frequency is changed at those moments. The frequencies are 1, 2, and 5
outputs/s, in this order.

B. Experiments with Macrobenchmark

TPC-C is a standard benchmark to measure the performance
of a transaction processing system. We use MySQL 5.0.22
as the database server and dbt2-0.40 to create tables in it.
We choose the number of warehouse as 10 to generate the
database. Same with the experiment with FIO, we set up
two VMs of the same QoS requirement (50ms latency for
each I/O request). Each VM runs a TPC-C server, which is
connected to a client via a gigabytes network. Each client has
16 connections to its TPC-C server and the test time is set
as 5 minutes. We use TShark 1.0.15 to capture and analyze
network packages to discover outputs to each client. The user-
observable performance, or the transaction response time, is
shown for the entire run of one TPC-C instance (Figure 3-a)
and for each category of transactions (Figure 3-b). As shown
in the figures, intelliQoS can significantly reduce the response
time for transactions in different categories. For example, for
new-order transactions, the time is reduced by 42%, or its
NOTPM (number of transactions per minute) is increased by
39% (from 110.7 to 181.0). In Figure 3-a, for transactions of
same type, which can be recognized by comparing shapes of
the two curves, intelliQoS always produces smaller response

times. Assuming the vanilla scheduler can meet the user’s QoS
requirement, intelliQoS meets the requirement with a much
higher efficiency.

V. RELATED WORK

The commonly used metrics for specifying QoS require-
ments to storage service are throughput and latency. A deadline
associated with each request is computed from the specifi-
cation. It is then attached to the request as a tag for the
I/O scheduler to decide a service order accordingly [1]–[4].
Sometimes the deadlines can be adjusted according to the
load of the system. For example, in the pClock scheduling,
the deadlines can be adjusted by the request burstiness (the
number of pending requests) and request arrival rate [1].
In these works the setting of requests considers conformity
with the QoS specified in the SLA, but does not consider
giving more space for the I/O scheduler to exploit locality
as intelliQoS does. As soon as intelliQoS relates request
deadline to the user-observable QoS, the extended deadlines
readily facilitate improving disk efficiency by using schedulers
considering both QoS and locality such as CVC in [3].

A work that is close to intelliQoS in spirit is external
synchrony [5], which asynchronously implements synchronous

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 T
ra

ns
ac

tio
n

R
es

po
ns

e
tim

e
(s

)

 Transaction Number

 (a)

Vanilla QoS Scheduler
intelliQoS Scheduler

 0

 10

 20

 30

 40

 50

Stock
 Level

Delivery New
Order

Order
 Status

Payment

T
ra

ns
ac

tio
n

R
es

po
ns

e
tim

e
(s

)

(b)

Vanilla QoS Scheduler
intelliQoS Scheduler

Fig. 3: (a) Transaction response times with the vanilla QoS scheduler and intelliQoS during the execution of one TPC-C
instance. Because the two runs are of a fixed runtime, intelliQoS completes more transactions. (b) Average response times for
transactions in different categories.

I/O for high disk efficiency and keeps synchrony for external
observers. This is achieved by correlating the write-back
operations with the outputs to users. IntelliQoS takes a similar
approach but for a different purpose – retaining locality while
providing external QoS guarantee. Furthermore, intelliQoS
faces a bigger challenge – it has to predict when the next
output would occur.

VI. CONCLUSION AND FUTURE WORK

In the paper we propose the concept of container that
captures both user-observable QoS and locality, and investigate
its feasibility on achieving both external QoS guarantee to
users and high I/O efficiency with a prototype implementation
in a VM system. The preliminary results are promising and
encouraging. Our future work plan includes investigation of
how accurately the container size can be predicted in various
application scenarios, the implication of aggressively extend-
ing request deadlines, and implementation in a distributed
environment.

ACKNOWLEDGMENT

This work was supported by US National Science Foun-
dation under CAREER CCF 0845711 and CNS 1217948.
We thank the anonymous reviewers, who helped improve the
quality of the paper substantially.

REFERENCES

[1] A. Gulati, A. Merchant, and P. J. Varman, “pClock: an arrival curve
based approach for QoS guarantees in shared storage systems,” in
Proceedings of the ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, 2007.

[2] A. Gulati, A. Merchant, P. Varman, “mClock: Handling Throughput
Variability for Hypervisor IO Scheduling,” in Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
2010.

[3] L. Huang, G. Peng, and T. Chiueh, “Mutli-dimensional storage vir-
tualization,” in Proceedings of the ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, 2004.

[4] C. Lumb, A. Merchant, and G. Alvarezg, “Facade: virtual storage de-
vices with performance guarantees,” in Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, 2003.

[5] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn, “Rethink
the Sync,” in Proceedings of the 7th symposium on Operating systems
design and implementation, 2006.

