Prophet:. Scheduling Executors with Time-varying Resource
Demands on Data-Parallel Computation Frameworks

Guoyao Xu*, Cheng-Zhong Xu*, and Song Jiang*
*Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
Email: {xu.yao, czxu, sjiang} @wayne.edu

Abstract—Efficiently scheduling execution instances of data-
parallel computing frameworks, such as Spark and Dryad, on a
multi-tenant environment is critical to applications’ performance
and systems’ utilization. To this end, one has to avoid resource
fragmentation and over-allocation so that both idleness and
contention of resources can be minimized. To make effective
scheduling decisions, a scheduler has to be informed of and
exploit resource demands of individual execution instances,
including both short-lived tasks and long-lived executors. The
issue becomes particularly challenging when resource demands
greatly vary over time within each instance. Prior studies often
assume that a scheduling instance is either short lived or of
gradually varying resource demands.

However, when in-memory computing platforms, such as
Spark, become increasingly popular, the assumption no longer
holds. The execution instance for scheduling becomes executor,
which executes an entire application once it is scheduled. Usually
it is not short lived. Its resource demands are significantly time-
varying. To address the inefficacy of current cluster schedulers,
we propose a scheduling approach, namely Prophet, which takes
resource demand variation within each executor into the schedul-
ing decision. It leverages the fact that execution of a data-parallel
application is pre-defined by a DAG structure and resource
demands at various DAG stages are highly predictable. With
this knowledge, Prophet schedules executors to minimize resource
fragmentation and over-allocation. To deal with unexpected re-
source contention, Prophet adaptively backs off selected task(s) to
reduce the contention. We have implemented Prophet in Apache
Yarn running Spark. We evaluated it on a 16-server cluster, using
10 categories of a total of 90 application benchmarks. Compared
to Yarn’s default capacity and fair schedulers, Prophet reduces
application makespan by up to 39% and reduces their median
completion time by 23%.

I. INTRODUCTION

Applications running on today’s large-scale data-parallel
processing frameworks, such as Apache Hadoop [1], Dryad [2]
and Spark [3], usually have DAG (Directed Acyclic Graph)
composed of stages in their execution durations. Each stage
consists of a number of tasks conducting the same type of
data processing. A task requires multiple resources for its
running, including CPU, memory, as well as disk and network
bandwidths. While tasks belonging to the same stage are of
similar demands for each of the resources, those belonging to
different stages can have very different demands for different
resources. For example, in machine learning applications, such
as K-Means and SVM (Support Vector Machine) [4], [5], tasks
of their map stages are I/O- and CPU-intensive and tasks of
the reduce stages are network-intensive. The frameworks, such

as Hadoop and Spark, usually run on a resource management
system. YARN[6] and Mesos[7] are current popular systems
that are responsible for resource allocation and sharing. It is
critical for task schedulers in a YARN-like system to efficiently
schedule the tasks of vastly diverse multi-resource demands
onto a cluster of servers, so that both applications’ execution
time and the cluster’s throughput can be maximized.

Scheduling tasks with multi-resource demands onto servers
of limited amount of resources (CPU, memory, disk, and
network) is often formulated as a multidimensional bin pack-
ing problem. As long as these demands are known a priori
or can be accurately estimated, this problem can be solved
heuristically in a polynomial time [8]. A common technique
used for this estimation is to profiling tasks by leveraging the
fact that jobs of an application are recurring and they “repeat
hourly (or daily) to do the same computation on newly arriving
data.” [8].

Such a profiling strategy is not sufficient to fully address
the issue by itself in practice, as the demands measured
during a task’s run vary (sometimes dramatically). While it
is known that a multidimensional bin packing problem is
NP-hard and has to be solved with heuristics, it is almost
impossible to accommodate time-varying demands into the
model to efficiently produce an effective scheduling decision.
A conservative alternative is to use peak usage of a resource
to represent the varying demands of a task during running
to prevent resource over-allocation [8], which occurs when
aggregate demand from all running tasks exceeds available
resources. It often leads to interference between tasks and
serious performance degradation. However, this conservative
approach generates risk of resource fragmentation, which
occurs when resources are idle but tasks with demands on
them that ready for scheduling cannot use them.

To achieve high scheduling efficiency, a scheduler has to
simultaneously minimize fragmentation and over-allocation of
resources [8]. When each application can have a large number
of tasks and each task has a relatively short execution time,
using peak demand may not create extremely large pockets of
fragmentation in terms of wasted resource time. However, this
becomes a serious issue with in-memory computing frame-
works, such as Spark [3] and Storm [9], where scheduling
units have long execution time with varying demands.

An application of a Spark-like in-memory computing frame-
work, does not expose its tasks to the underlying resource man-

agement system, like YARN and Mesos. Instead, the concept
of executor! is introduced as the scheduling instance in these
systems. Once executors of an application are launched on
servers by the system’s scheduler, the application’s scheduler
is responsible for scheduling its tasks to these pre-allocated
executors. Specifically, an executor is usually a Java virtual
machine (JVM) and tasks are threads running on the JVM.
Each Spark application has a set of executors scheduled by
the resource manager to different servers and they stay alive
until all tasks of the application are completed. This two-
level scheduling is adopted for two reasons. One is to cache a
subset of data in memory to enable in-memory reuse of data
across tasks in an executor in a fault-tolerant manner. The
other is to significantly reduce overhead of launching tasks,
which is critical for in-memory computing. In contrast, in a
Hadoop application each task runs on a dedicated JVM, which
is scheduled by the system’s resource manager.

While there are two levels of scheduling for in-
memory computing, the executors’ scheduling plays a more
performance-critical role as it represents the resources allo-
cation and sharing between applications. Recent work like
Tetris [8] exploits the knowledge of future (peak) resource
demands of tasks. However, It cannot be applied directly
on executors’ scheduling. When an executor becomes the
scheduling object, the rationale made by existing schedulers
based on peak resource usage to represent the object’s varying
resource demand is less likely to be valid. An executor runs
multiple batches of tasks belonging to different DAG stages
may have (very) different resource demands. Therefore, using
the peak demand to represent different demands of a resource
during the lifetime of an executor for resource allocation can
cause serious resource fragmentation (or wastage).

Additionally, for a smooth run of tasks in an executor
without interference from other application executors, it might
be desired to have all four major required resources (CPU,
memory, disk, and network) pre-allocated or reserved. Users
only need to pre-specify their resource demands on CPU (num-
ber of cores) and memory (size of memory) for an executor.
As these demands usually represent the bottom line of a user’s
requirement on quality of service, the requested resources
are pre-reserved at the time of executor scheduling. However,
network and disk resources are shared among executors on a
server without isolation or reservation. They are more likely to
incur over-allocation, and tend to cause disk seeks or network
incast that may significantly compromise system’s throughput.
In addition, neither users nor current cluster managers [6],
[7] would specify network and disk demands of executors,
let alone consider their highly variable demands. This may
lead to application performance degradation and poor resource
efficiency.

To improve cluster efficiency and speed up individual appli-
cations’ performance for in-memory computation, we design

IThe executor may be named differently. In the YARN environment, it is
sometimes called container [6]. In the paper introducing Spark, it is called
worker [3], while in the paper describing Mesos [10] and in Spark Apache’s
official website [11], it is called executor.

an executor scheduler, namely Prophet, which can select an
executor whose scheduling would result in the smallest amount
of fragmentation and over-allocation of network and disk
resources. With the knowledge of an executor’s future varying
(peak) disk and network demands at any stage during its
lifetime and of each stage’s start time and its duration, Prophet
can estimate resource availability at any time frame in the near
future and make an informed scheduling decision accordingly
to minimize resource fragmentation and over-allocation. To
deal with unexpected resource contention, Prophet selects
task(s) in an executor to back off to adaptively ameliorate the
contention.

In summary, we make the following contributions in the

paper.

o We identify a performance-critical issue about the ex-
ecutor scheduling on in-memory data parallel computing
platforms. We show that without considering resource
demand variation within an executor, one can hardly
enable an effective scheduling. By showing stability and
predicability of resource demands in an executor, we
make it possible to take the dynamics on the resource
demands into account.

o We design an online executor scheduler, named Prophet,
that adopts a greedy approach by choosing the currently
optimal executors in terms of expected resource fragmen-
tation and over-allocation to dispatch. It also dynamically
avoids severe resource contention and subsequent dra-
matic performance degradation due to unexpected over-
allocation with its task backoff mechanism.

e We have implemented Prophet on YARN and Spark
1.5 to support Spark and evaluated it on a 16-server
cluster. Experiments show that Prophet can minimize
resource fragmentation while avoiding over-allocation.
It can substantially improve cluster resource utilization,
minimize application makespan, and speed up application
completion time. Compared to Yarn’s default capacity
and fair schedulers, Prophet reduces the makespan of
workloads in SparkBench [4] by 39% and the median
job completion time by 23%.

The rest of the paper is organized as follows. Section
IT describes motivation of the work and demonstrates pre-
dictability of resource demands in an executor. Section III
describes design of the Prophet scheduling scheme. Section
IV describes the implementation and evaluation of Prophet.
Section V reviews the related work, and Section VI concludes
the paper.

II. MOTIVATION AND BACKGROUND
A. Workload Analysis

To illustrate the potential efficiency loss due to resource
fragmentation and over-allocation, we use four Spark bench-
marks and their input data generators available in Spark-
Bench [4], to reveal their executors’ resource demand varia-
tions. Among the four benchmarks, two (K-means and SVM)
represent machine learning workloads, and the other two

Execution Time(s)

(a) K-means

Execution Time(s)

(d) SVD++

(c) Pagerank

Fig. 1: Disk bandwidth usages of four Spark benchmarks (K-means,
SVM, PageRank, and SVD++). DAG stages are marked with dotted
lines.

_180
160
2140
£120
2100
5 80
£ 60
g 2
g2

3
8

Network Bandwidth(Mbps)
o 8 B
g 8 8

o

mmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmm

Execution Time(s)

mmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmm

(a) K-means

200

Network Bandwidth(Mbps)

Network Bandwidth

Execution Time(s)

(d) SVD++

Execution Time(s)

(c) Pagerank

Fig. 2: Network bandwidth usages of four Spark benchmarks (K-
means, SVM, PageRank, and SVD++). DAG stages are marked with
dotted lines.

(PageRank and SVD++) represent graph computation work-
loads. They are briefly described in the below.

o K-means is a machine learning workload clustering a set
of data into K clusters.

e SVM (Support Vector Machine), is a machine learning
classifier workload analyzing data and recognizing pat-
terns of high dimensional feature spaces while efficiently
conducting non-linear classifications.

o PageRank is a graph computation workload ranking web-
site pages and estimating their importance.

e SVD++ is a graph computation collaborative filtering
workload improving the quality of recommendation sys-
tem based on the users’ feedbacks.

Figures 1 and 2 show disk and network bandwidth demands
of the four Spark benchmarks (Spark 1.5.0) on Hadoop Yarn
2.4.0, respectively. Each executor is exclusively run on a server
of 24 cores, 32GB of memory, three 7200 RPM disk drives,
and 1Gbps NIC. It is obvious that for both disk and network
usages the amount of requested bandwidth varies from almost

0 MB/s to around 300MB/s for disk or around 160MB/s for
network. Their very low resource demands can stay for more
than half of some executors’ lifetimes, such as for network
usages of K-means and SVM, while their peak demands are
still very high, such as around 160MB/s. Should the resources
be allocated according to the peak demands, they would be
significantly wasted due to the serious fragmentation. Even
worse, starvation may occur on applications with both high
peak network and disk demands as servers may not have
available resources to meet both peak demands simultaneously
(even though such an availability is not necessary). On the
other hand, if they are not pre-allocated, multiple executors on
the same server may simultaneously experience high demand
on the same resource, causing resource over-allocation. This
can lead to severe interference (disk seeks or network incast)
between the executors, which can sharply degrade applica-
tions’ performance.

It is necessary to take resource variation of executors into
their scheduling decision so that both resource fragmenta-
tion and over-allocation can be minimized. This is a highly
challenging issue considering that even scheduling objects of
constant resource demands (e.g., using peak demands) can be
NP-hard [8].

B. Predictability

Recent studies on large-scale data-parallel systems reveal
that most applications in production clusters exhibit recurring
execution behaviors with predictable future resource demands
and mostly constant execution time in each DAG stage for
given CPU cores and with sufficient memory [8], [12], [13],
[14], [15]. Therefore, tasks’ statistics measured in their prior
runs enable effective estimation. Specifically, “since tasks in a
phase perform the same computation on different partitions
of data, their resource use is statistically similar.” [8]. An
offline or online profiling of tasks’ runs would provide a
scheduler with knowledge on tasks’ resource demands. To
illustrate this, in addition to the aforementioned four bench-
marks, we select another six Spark benchmarks. Three of them
(LR, TriangleCount, and TeraSort) are from SparkBench [4],
and the other three (WordCount, Sort, and Grep) are from
BigDataBench [16]. They are described in the below.

o Logistic Regression (LR) is a machine learning classifier

benchmark to predict continuous or categorical data.

o TriangleCount is a fundamental graph analytics counting
number of triangles in a graph to detect spam or hidden
structures in web pages.

o TeraSort is a sorting benchmark using map/reduce to sort
input data into a total order.

e WordCount reads Wikipedia text entries as input, and
counts how often words occur.

e Sort is a benchmark designed for sorting words from a
Wikipedia dataset.

o Grep is a benchmark filtering and finding specified words
from a Wikipedia dataset.

For each of the ten benchmarks, we used 9 settings, includ-

ing three CPU core numbers for each executor (one, three,

TABLE I: Three categories of input dataset sizes for each of 10 benchmarks

Benchmarks SVM | KMeans | LR | PageRank

SVD++ | TriangleCount | Terasort | WordCount | Sort | Grep

38.3G
19.2G
9.6G

21.9G
10.9G
5.5G

37.1G
18.5G
9.3G

4.0G
1.9G
933.1M

Large Input Dataset
Medium Input Dataset
Small Input Dataset

365.6M
163.3M
78.1M

364.7TM
167.2M
86.5M

37.3G
18.6G
9.3G

4G
22G
11G

74G
22G
11G

74G
22G
11G

100
90
80
70
60 -

50 -

CDF (%)

30

201

Stage Disk Peak Resource Demand
Stage Network Peak Resource Demand
10 Stage Start Time

2 4 6 8 10 1 14
Relative Standard Error (%) of Each Stage in Each Application

Fig. 3: Relative standard errors of disk/network bandwidth and stage
start time over the five runs of each of 10 benchmarks with different
settings on CPU core and input size. Each run uses a different input
dataset.

and five) and three categories of input dataset sizes (small,
medium, and large). The dataset sizes for each benchmark and
category are shown in Table 1. Each of the settings run five
times with different input datasets of the same size. For each
of the five runs in a dedicated cluster of 16 nodes, we collect
each stage’s start time and peak disk/netowrk bandwidths of
an executor and compute their relative standard errors over
the five runs. Figure 3 plots the errors with CDF (cumulative
distribution function) curves. As shown, the relative errors are
mostly smaller than 10%. Though contents of the input data
sets have the potential of affecting executor’s behaviors, such
as number of iterations to reach a convergence in machine
learning applications, the impact is small. More importantly,
each stage’s start time is very stable (with a 5% or smaller
relative standard error).

Because usually the same setting (CPU cores for each ex-
ecutor and input dataset size) remains in use for an application
for an extended time period [14], [15], [13], profiling results
about stage start time and peak resource demands of a run
is sufficient for an executor scheduler to make an informed
decision for its future runs. However, when an application uses
a new setting that has not been profiled, we need a method to
estimate the results. To this end, we adopt a supported vector
machine (SVM) with linear regression technique. In particular,
we feed results from 25 profiling runs covering representative
settings into the machine to build a prediction model. The
model then takes in a new setting (about CPU cores and
dataset size) and produces its predicted stage start time and
peak resource demands. Because changing CPU core count
and input size usually does not lead to disruptive change of
an executor’s behaviors, the model consistently provides high-
quality estimations (mostly less than 10% errors).

III. DESIGN OF PROPHET

As an executor scheduler, in addition to its main objective
of minimizing resource fragmentation and over-allocation,
Prophet has two other objectives. One is fairness across appli-
cations, and the other is load balance across servers running
applications. In the scheduling, all arriving applications will be
placed into a waiting queue. When an application is submitted,
its required reserved CPU, memory, and number of executors
are specified by users. When there exist applications whose
specified CPU and memory resource demands can be met by
currently available resources in the cluster, Prophet greedily
chooses one that would result in minimal fragmentation and
over-allocation of network and disk resources for dispatching.
Then the required number of executors are created on different
servers. Note that for load balance across servers in an applica-
tion’s execution, Prophet always creates the required number
of executors at the time when the application is scheduled.
It does not create executors fewer than the required ones
when resources are not sufficient. Otherwise, if the number of
executors is allowed to increase, all newly created executors
will request data from existing ones and cause them to become
performance bottleneck. For fairness and starvation avoidance,
Prophet chooses an application for scheduling from a subset
of pending applications that have waited for the longest time
(by default 50% of all pending ones). Each application is
also assigned a deadline when it arrives at the queue. It will
be scheduled immediately when its deadline is passed. The
deadline can be assigned according to current average waiting
time (e.g. three times of its average).

A. Prophet’s Scheduling Algorithm

Prophet’s scheduling algorithm is designed under the as-
sumption that future resource demands of an executor, either
one that is running or one that is candidate to be scheduled, is
known in advance (or can be predicted). By knowing the total
demands of executors currently running at a server, Prophet
can compute how much the resource would be available in the
near future. This is illustrated in Figure 4 for disk bandwidth of
a server with two executors being scheduled on it. In the figure,
each executor has two stages of different peak disk bandwidth
demands. However, their combined effect leaves the available
resource of four distinct values, or four resource availability
stages. At this time we have two candidate applications’
executors for Prophet to decide which one to schedule, as
shown in Figures 5(a) and (b), respectively.

If only disk bandwidth is considered, Prophet needs to
examine future fragmentation areas (FAs) and over-allocated
areas (OAs) in Figure 5. FA or OA refers to the area between
the two lines for available bandwidth and the demand in the

»
»

—~
QO
N
Disk Bandwidth
Demand

Stage 1

Stage 2 I -

Time

»
»

—~~
(o}
N
Disk Bandwidth
Demand

Stage 1 | Stage 2

(c)

Disk Bandwidth

|
>

Time

Fig. 4: Illustration of predicting available disk bandwidth. With
known peak demands on disk bandwidth across stages of two execu-
tors (see (a) and (b)), the shaded area in (c) between their combined
demand and the disk’s capacity represents the disk’s bandwidth to be
available.

Disk Bandwidth
Demand
Disk Bandwidth
Demand

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2

» »

N N
Time Time

Disk Bandwidth
Disk Bandwidth

(b)

Fig. 5: Illustration of how fragmentation area (FA) and over-
allocation area (OA) of disk bandwidth are formed for two executors.
For each executor (see (a) or (b)), the graph at the top shows its peak
demands on disk bandwidth across stages, and the graph at the bottom
shows the demand and available disk resource (shaded area computed
in Figure 4) overlap with each other to form FAs, such as A1, A,
and Az, and OAs, such as By and Bs.

figure. If available bandwidth is larger than the demand, it
is FA, such as A;(i = 1,2,...5). Otherwise, it is OA, such
as B;, (i = 1,2,3). FA represents wasted resource and OA
suggests resource contention and performance degradation. A
good scheduler would simultaneously minimize the two areas.
In this example, Prophet will schedule the executor shown in
Figure 5(a), as it has much smaller aggregate FA/OA area than
that in Figure 5(b). This example also indicates a scheduler
that is unaware of future resource demands and availability
might schedule the executor shown in Figure 5(b), leading to
much worse performance.

To formally describe the design of the scheduling algorithm,

TABLE II: Notations in the Prophet’s scheduling algorithm, r
indicates network or disk resource

cr Capacity of Resource r on Server ¢
P Peak demand of Resource r from Executor j at its Stage k
ALY Available Resource r of Server ¢ at resource Stage s

ti’smm,ti’end Start and end times of Stage k at Executor j

Tart a - -
Ty %P T | Start and end times of resource Stage s at Server 4

we introduce a number of notations as shown in Table II.
Note that in the notations, quantities about duration and
times (t;‘smrt, t;e”d, Tistartand THe"d) are not defined
specifically for certain resource. Instead, they are specified
according to change of stages for any resources.

To quantify fragmentation and over-allocation for candidate
application’s executors, we may simply add FA or OA of an
executor’s every stage, and consider the sum as the executor’s
fragmentation score or over-allocation score, or F' and O in
short, respectively. However, for an executor of many stages,
prediction on demands and resource availabilities at the earlier
stages, or those closer to the current time, is usually more
accurate than that on later stages, because the latter is more
likely to be influenced by unaccounted noises. For this reason,
we give earlier stages a higher weight. Specifically, if the
executor has n stages, the weight for Stage ¢ (: = 0,1, ...,n—1)
is w; = 1 — i/n. Therefore, the two scores can be computed
for Resource r as following.

For any P,/ < A,

F,. = Z ZFormula(s, k)|; (1)
k s
For any P;”7 > AT,
0, = Z Z Formula(s, k) | ; (2)
k s
If ti’end < T;’,start or Tsi’end < t‘]i’smrt,
Formula(s,k) =0 3)

else if ti,start < Tsi,start < Tsi,end < t;;end7
Formula(s, k) = [\Pkr’j - Ag’i| * (Tsi’e”d — Tg’smrt)] * Wy
4)

else if ti,start < T;i,start < ti’end < Tsi’end7
Formula(s, k) = [|p]:7j — AT % (ti,end B Tj*““”)] cwn,
4)

else if Tsi,start < ti,start < Tgend < ti,end7
Formula(s, k) = [|p}:7j — AT (Tsi,end -~ ti,sta'rt)] wy
(6)

else if T;i,start < ti,start < ti’end < Ti’end7
Formula(s, k) = [|P]:’j — AT« (ti’e"d _ ti’st‘m)] * W
(7

In theory, to minimize both fragmentation and over-
allocation in the selection of applications for scheduling, we
might simply use the sum of the two scores as the metric
for the selection. However, resource over-allocation can cause
contention among executors and slow down all involved ones.
More seriously, the slowdown may lead to more idleness
(fragmentation) of other resources. To address the issue, we
give O a higher weight when computing the overall score.

OverallScore, = (1 —n)O, +n x F,. (8)

In our prototype, we set i as 0.3 by default, which is
experimentally determined to balance the risks of severe
performance degradation and wastage of resources. We leave
a comprehensive study of this parameter as future work.

While for each resource (disk or network resources) Prophet
can compute an overall score, for all resources it obtains a
vector of overall scores for an application’s executor. To con-
vert the vector into a one-dimensional quantity for comparison
across candidate applications, we use the Euclidean norm of
the vector. Accordingly Prophet selects an application whose
executors have the smallest norm. The scheduling algorithm
is described in Algorithm 1.

Algorithm 1 Prophet Scheduling Algorithm

Denote the Available Resource of Server i as: AR;
Denote the User Pre-Defined CPU and Memory Resource
Requirement of Executor j as: RR;

Denote the Overall Score Vector of Executor j as: OSV;

1: When Executor j of application p is added to queue

2: Offline Predictor predicts its P, ,ti’smm,ti’md

3: When a hearbeat is received from Server

4: while there is AR;{cpu, memory} on Server i do

5: for each Executor j in the queue do

6: if RR;{cpu,memory} < AR;{cpu,memory}
then _

7: Acquire latest predicted P, 7, A" from Predictor

8: Compute OSV; of Executor j

9: else

10: OSV; = NULL

11: end if

12 end for

13: Launch Executor j whose Euclidean norm of OSVj is
minimum and not empty on Server @

14: Update AR;{cpu, memory}, A" of Server i

15: end while

B. Ameliorating Contention with Task Backoff

While Prophet attempts to avoid expected over-allocations,
there still can be unexpected ones or expected minor ones

Node C (Yarn Master)

Yarn Resource
Manager

Main Resource
Monitor
Processor

' Executor Scheduler »’ Resource Demand H‘

Predictor
Processor

Launch /| o es &

Allocate | posource
Resource;

Spark Resource |\ | Slri)caarlt(ion Spark Resource
Executor Monitor || ~PP Executor Monitor
Master
Yarn Processor Yarn Yarn Processor 3
Container Container Container i

Node Manager Node Manager

Node B (Yarn worker) Node A (Yarn Worker)

Fig. 6: The framework of Spark applications running on a Yarn
cluster, in which Prophet modules are included (shown as shaded
boxes).

turn out to be major over-allocations. As we have indicated in
Section I, severe over-allocation leads to intensive interference.
For disk and network, such an interference can cause their
effective bandwidths to be much lower than their normal
peak ones due to reasons such as random access and incast,
respectively. When interference essentially blocks tasks of an
executor from moving forward, the executor’s reserved CPU
cores and memory are also wasted. To address the issue,
Prophet has an exception handling mechanism built in the
Spark’s task scheduler. When it is observed that effective disk
or network bandwidth is substantially lower than their peak
one but the disk or network stays busy to serve requests at
a server, a serious over-allocation is detected at the server.
Prophet will examine the profiled resource demands of each
executor on the server and identify ones that are most likely
to overuse the contested resource. It then activates a backoff
mechanism by reducing number of tasks dispatched to the
executors until the effective bandwidth approaches the peak
one or the resource is not busy anymore. Note that the
mechanism is enabled only temporarily, usually lasting for
only a few task scheduling rounds, as an overaction could
compromise utilization of CPU and memory.

IV. IMPLEMENTATION AND EVALUATION OF PROPHET

We implemented Prophet executor scheduler on Hadoop
YARN 2.4.0 and the task backoff mechanism in Spark 1.5.0. In
addition, we implemented a resource usage monitor on each
server to detect over-allocation. In this section, we provide
implementation details, system settings for performance eval-
uation, and evaluation results.

A. Prophet’s Implementation

Figure 6 depicts where the Prophet modules are situated
in the framework of Spark applications running on a YARN
cluster. Yarn’s cluster-wide resource manager is responsible
for receiving executors’ resource requests from each Spark
application master, and communicating with node manager at
each server to decide whether there is sufficient amount of

resource to meet the resource demands. If yes, corresponding
resources will be allocated, and the Spark application master
and its executors will run as containers on servers managed
by node manager. On this framework we made a few instru-
mentations.

o The resource demand predictor runs as a separate process
on the Yarn’s master node hosting its resource manager.
In the background it continuously learns and predicts
executors’ resource demands.

o The executor scheduler is enabled as Yarn’s plug-in
scheduler. It communicates with the predictor before
making its scheduling decisions.

o The task backoff mechanism is implemented in Spark’s
scheduler, which runs with each Spark application master
and communicates with the resource monitor to decide
whether task backoff should be enabled for an application
and if yes, for how long.

o The main resource monitor running as a separate back-
ground process at the master node communicates and
collects information from the resource monitors running
at worker nodes.

These changes are lightweight. They minimally increase
complexity and scalability of Yarn’s scheduling framework.
The profiling and prediction are running in the background.

B. Experiment Setup

We deployed our implementation of Prophet in Hadoop
Yarn 2.4.0 and Spark 1.5.0 on a 16-server cluster. Each server
has 24 cores, 32GB of memory, three 3.5TB 7200 RPM disk
drives with a 110MB/s peak bandwidth for each one. It has a
1Gbps NIC and runs Linux 3.16. We used the 10 benchmarks
that were described in Section 1. In the same as we ran the
benchmarks in Section 1, for each benchmark, we varied its
input size as listed in Table I and its CPU core count (I,
3, or 5). So essentially we had 90 applications to run in the
evaluation. Each application was submitted to the system at
a time randomly picked between 0 second (experiment start
time) and 1200 seconds.

The input datasets of the machine learning and graph
computation benchmarks (K-means, SVM, Pagerank, SVD++,
LR, and TriangleCount) are kept in memory as Spark RDD
abstraction to support following parameter vector calculation,
update, and broadcast in each iteration.

We compared Prophet to three state-of-the-art Spark
scheduling algorithms implemented in Yarn, which are Dom-
inant Resource Fairness(DRF) scheduler [17], the capacity
scheduler(CS) [18], [19], and Tetris [8]. The capacity sched-
uler was designed to achieve fairness on memory allocation
based on Hadoop’s slot-based resource management, while
DRF considers fairness for both CPU and memory. In ad-
dition to CPU and memory, Tetris considers network and
disk bandwidths. It tries to efficiently pack tasks/executors
when available resources are sufficient to accommodate their
peak demands. Nevertheless, to the best of our knowledge,
all the existing schedulers were designed for task-grained

100

Prophét vs. CS
90 |- Prophet vs. DRF ——
go L Tetris vs. Prophet =—

70
60 -
50
40 -
30
201
10

CDF (%)

0 :
-40 -20 0 20 40 60 80 100
Reduction(%) in Application Execution Time

Fig. 7: CDF curves for reductions of execution times by Scheduler
X over Scheduler Y, shown as X vs. Y. X can be Prophet and Tetris,
and Y can be CS, DRF, and Prophet.

scheduling without considering resource demand variations
during execution of a scheduling object.

C. Experiment Results

Figure 7 shows cumulative distribution function (CDF)
curves about reduction of application’s execution time by
Prophet over CS, by Prophet over DRF, and by Tetris over
Prophet. An application’s execution time is measured from
the time its executors are scheduled to its completion. The
figure shows substantial gaps on execution time between the
schedulers. For example, the figure shows that there are 50% of
applications whose execution times are reduced by up to 31%
if they are scheduled by Prophet over those by CS, reduced
by up to 40% by Prophet over those by DREF, or by up to 18%
by Tetris over those by Prophet.

While CS considers only memory and DRF considers only
memory and CPU, it is a surprise to see Prophet generally
performs better than them in terms of execution time. Prophet
uses prediction and task backoff to avoid over-allocation of
disk and network bandwidths. In contrast, CS and DRF expe-
rience (much) more serious interference between executors at
a server, and take a longer time period to complete. However,
it is interesting to have these two observations. First, there are
a few percentage of applications whose CS/DRF execution
time is shorter than that of Prophet. This is because Prophet
also manages to reduce fragmentation, which may increase
risks of interference. In such cases, CS and DRF may win.
Second, Tetris consistently has a shorter execution time than
Prophet. Execution time can only be compromised by over-
allocation, and not by fragmentation. Tetris uses an executor’s
peak resource demands for allocation. So it is less likely
to have an over-allocation. However, Prophet also needs to
consider reducing fragmentation, which does not help with
execution time. As we know, a metric more meaningful to
users is completion time, which is defined as the period from
an application’s submission time to its completion time.

Figure 8 shows CDF curves of application’s completion
time reduction by Prophet over CS, by Prophet over DRF,
and by Prophet over Tetris. For this metric, Prophet is better

100 T T T T T
Prophet vs. CS

90~ Prophet vs. DRF ——
80 | Prophet vs. Tetris

70
60 -
50
40 -
30
20
10

0 n . . .
-40 -20 0 20 40 60 80 100
Reduction(%) in Application Completion Time

CDF (%)

Fig. 8: CDF curves for reductions of completion times by Scheduler
X over Scheduler Y, shown as X vs. Y. X is Prophet, and Y can be
CS, DRF, and Tetris.

TABLE III: Makespans produced by various schedulers for
running the 90 applications

Scheduler || CS | DRF | Tetris | Prophet | Propeht w/o Backoff
Makespan (s) || 16604 | 18369 | 25537 | 11290 | 15707

than Tetris. For example, there are 50% of applications whose
completion time is reduced by 36% or more, and 10% of
applications whose time is reduced by 12% or less. If we
read makespans of the executions under different schedulers
listed in Table III, it is clear that Prophet is much better
than other schedulers. A makespan measures total time period
used to complete all the 90 applications under a particular
scheduler. It is directly correlated to the system’s resource
efficiency. Prophet reduces the makespan by 32%, 39%, and
56% compared to CS, DRF, and Tetris, respectively. The
reduction over Tetris is the most significant, while Tetris
produces the best application execution time. It is because
Prophet has substantially reduced the waiting time of appli-
cations by improving resource efficiency, while moderately
compromising the execution time.

These results reveal the strength of Prophet, which is aware
of varying future resource demands and takes them into
scheduling decision. If a scheduler does not have the knowl-
edge, it has two options. One option, that is taken by Tetris,
conservatively uses executors’ peak demands for scheduling.
While this minimizes possibility of over-allocations and helps
with the execution time, it would leave significant fragmen-
tations, which compromises resource efficiency. Therefore,
it is expected to see that Tetris has the worst makespan.
Another option, that is taken CS and DREF, simply does not
consider disk and network demands in their scheduling. So
they are more likely to have serious interference than Tetris
and Prophet. That is why their execution time is worse. In
the meantime, they are less likely to have fragmentations than
Teris. That is why their makespans are shorter than Tetris. By
explicitly considering varying resource demands, Prophet can
address both over-allocation and fragmentation issues.

To reveal insights on how disk and network bandwidths are
actually consumed, we show their utilizations under the four

)

N
(2]
o

s 2140
S 5120
g g
= = 80
) G 40
o o 20
4000 8000 12000 16000 074000 8000 12000 16000
Time(s) Time(s)
(@) CS (b) DRF
100
£ 80 & &0
5 | 5
= 60 = 60
o N
E 4 E 40
=) =)
% 2 | % 20 {
[a] a
N i HI Ll SR i) |
12000 18000 240 o 2000 4000 6000 8000 10000
Time(s) Time(s)
(c) Tetris (d) Prophet

Fig. 9: Disk utilizations during running 90 applications under various
schedulers.

__180

o\" 160 B
c 140 c 140
S S
£ 120 2
100 100
5 80 3
< 60 X<
5T :
2 o TP A Y 2
z 0 l I, l ‘Mu Il z
4000 8000 12000 16000 4000 8000 12000 16000
Time(s) Time(s)
(a) CS (b) DRF

100

80
60

40

Network Utilization (%)
Network Utilization (%)

il \ Al v n IJ] |

4000 6000 8000
Time(s)

(d) Prophet

"N

12000 18000
Time(s)

(c) Tetris

Fig. 10: Network utilizations during running 90 applications under
various schedulers.

schedulers in Figures 9 and 10. The utilization is the ratio
between aggregate demand on a resource from all executors
at a server and the server’s capacity of that resource. As
shown, for CS and DREF, there are many significant over-
allocations, which suggest much lower effective (disk or
network) bandwidth. In contrast, Tetris and Prophet have little
over-allocation. However, there are much higher utilization
values in Prophet than those in Tetris (for either disk or
network) , indicating that Tetris has much more serious frag-
mentation issue.

While Prophet has two components to achieve its scheduling
objectives, we would like to see the contribution made by each
of the components (prediction-based scheduling policy and
task backoff mechanism). Figure 11 shows CDF curves for
reductions of execution time and completion time by Prophet
over a Prophet version without a task backoff mechanism.

Application Execution Time =——
Application Completion Time

0 5 10 15 20 25 30 35
Reduction(%) by Comparing with Backoff vs. without Backoff

Fig. 11: CDF curves for reductions of execution and completion
times by Prophet over Prophet without task backoff mechanism.

While the prediction-based scheduling policy tries to mini-
mize both fragmentation and over-allocation, the task backoff
mechanism basically addresses only the over-allocation issue.
Application execution time is directly affected by interference
caused by over-allocation. As Figure 11 shows, without the
backoff mechanism, applications’ median completion and ex-
ecution time suffers 10% and 13% degradation, respectively,
when unexpected over-allocation occurs. It is often caused
by the absence of adequate predictability. Simultaneously, it
implicitly demonstrates the impact of predictability on the
scheduling quality. This experiment also reveals that in a
shared execution platform, it is necessary to have a backup
mechanism to keep the system from unexpectedly high re-
source demands.

V. RELATED WORK

There have been many studies on task scheduling on the
data-parallel computing platforms. There are also studies on
leveraging history resource usage to predict future resource
demands for improving data locality and execution efficiency.
In addition, studies on virtual machine placement and mi-
gration are also related on the aspect that Spark’s executors
are actually Java virtual machines. In the below we show
how Prophet scheduling is related to these works and why
it represents a unique contribution.

Shared Use of Network/Disk : In current cluster manage-
ment systems, network and disk resources are usually shared
among tasks or executors without pre-reservation and isola-
tion [6], [7]. While such a sharing approach helps to reduce
fragmentations, it increases the risk of resource contention and
interference. To address the issue, Tetris uses peak demands on
network and disk in its task scheduling scheme to determine
how many and what tasks can be placed on a machine of
limited resources [8]. To address the same issue, Quasar
and Paragon adopt task classification techniques, and adjust
resource scale-up and scale-out allocations based on their
calculated constant demands to avoid over-allocation [20],
[21]. In addition, they try to co-locate tasks of complementary
network and disk demands for higher resource utilization.

However, these schemes can potentially produce significant
fragmentations when scheduling executors of Spark applica-
tions, where each executor has multiple stages with (highly)
varying resource demands during its extended execution time
period. The key reason is that their assumption on stable
resource demands in a task does not hold any longer. In
contrast, Prophet considers varying demands in executors’
scheduling to address both fragmentation and over-allocation
issues.

Cluster Schedulers: The issue of task scheduling in large-
scale data-parallel systems has been extensively studied over
past few years [22], [2], [3]. Quincy and delay schedulers
are designed to improve data locality of individual task while
maintaining fairness of different applications [23], [24]. Both
Fair and Capacity Scheduler [18], [19] are Yarn’s default
schedulers [6] designed for slot-based resource allocation.
They dispatch tasks for high scalability and fairness. Dom-
inant Resource Fairness (DRF) utilizes max-min fairness to
maximize the minimum dominant share for all users when
allocating multiple resources [17]. Implementations of DRF
or earlier schedulers only consider CPU and memory in
their resource allocations. The ILA scheduler is proposed as
an interference- and locality-aware scheduling strategy for
MapReduce virtual clusters [25]. However, none of existing
works are designed for scheduling Spark executors, where
Prophet is.

Plan-ahead Scheduler Techniques: It is known that future
resource demands and execution times are predictable in
recurring applications, which are common in current data
analytic production clusters. There are optimization techniques
that take advantage of this knowledge to plan ahead and
make scheduling decisions accordingly. Apollo estimates task
execution time from historical task runtime statistics to per-
form estimation-based task delay scheduling for improved
data locality and reduced task completion time [12]. Tetris
estimates tasks’ peak multi-resource demands from previous
runtime statistics to conduct multi-dimensional task-packing
scheduling [8]. Both Jockey and ARIA predict the completion
time of a running application through past execution pro-
files and a control loop estimating applications progress, to
automatically adjust resource allocation to meet applications
SLO [13], [26]. Corral predicts future application arrival time
and characteristics, such as input and intermediate data sizes,
from recurring application statistics. It then coordinates input
data placement with task placement to improve data locality
and reduce amount of cross-rack network data transfer [14].
Although prediction on application behaviors based on its
history has been shown to be highly effective for informed
scheduling, none of these approaches could be applied for
scheduling of Spark’s executors. While in-memory comput-
ing platforms, including Spark, become popular, the efficient
scheduling based on prediction is on high demand, and Prophet
makes a timely contribution.

VM Packing/Schedulers: To some extent, virtual machine
(VM) scheduling bears much resemblance to executor schedul-
ing. Both need to consider demands of multiple resources and

both will host multiple processes or tasks to run. Because
the actual resource demands of VMs and executors can be
highly variable, their scheduling need to avoid both resource
over-allocation and fragmentation. There have a number of
works on VM scheduling. Among them, AutoControl automat-
ically adapts resource allocation to dynamic workload changes
based on feedback control approach [27]. Sandpiper migrates
VM to alleviate overload condition to maximize resource
utilization [28]. However, they do not adopt predictive plan-
ahead packing placement strategy to avoid interference due
to workloads co-location because future resource demands of
VMs running Web-based or interactive applications are highly
unpredictable. Hence neither of these approaches could be
applied to scheduling of Spark executors, because it would be
too expensive to (frequently) migrate data-intensive executors
and incur transferring of large volume of data.

VI. CONCLUSION

Existing task schedulers are not suitable for scheduling ex-
ecutors with time-varying resource demands on an in-memory
data-parallel computing platform, such as Spark. They suffer
from serious over-allocation and fragmentation problems and
can substantially compromise application performance and
system resource utilization. Motivated by observations on
recurring resource usage patterns in the platform, we propose
a scheduling scheme, Prophet, to learn and leverage the
patterns in the executors’ scheduling. In particular, Prophet
can accurately predict resource availability at a server and
varying demands from executors in the near future. It allows
the demands to best match available resources. This will help
with both application performance and system utilization. In
addition, Prophet has a task backoff mechanism to accom-
modate unexpected over-allocation to improve the system’s
robustness.

We have implemented Prophet on Yarn and Spark. Extensive
experiments with publicly available benchmarks show that
Prophet can reduce makespan by up to 39% and median
application completion time by 23%, compared to Yarns
default capacity and fair schedulers.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
constructive comments. In particular, Dr. Chenyang Lu, as
shepherd of the paper, provided valuable suggestions to im-
prove its quality. We also thank Ruigi Sun and Xingbo Wu for
their comments and discussions. This work was supported in
part by the China National Basic Research Program (973 Pro-
gram, No. 2015CB352400), NSFC under Grant U1401258 and
Research Program of Shenzhen JSGG20150512145714248.
This work was also partially supported by US National Science
Foundation under Grants 1217948 and 1527076.

REFERENCES

[1] “Apache hadoop,” http://hadoop.apache.org.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
SIGOPS, 2007.

10

[3]

[4]

[5]
[6]

[7]

[8]
[9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

(171

(18]
[19]
[20]
[21]
[22]

(23]

[24]

[25]

[26]

(27]

(28]

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in NSDI,
2012.

M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: A
comprehensive benchmarking suite for in memory data analytic platform
spark,” in CF, 2015.

“Spark benchmark suite,” https://github.com/SparkTC/spark-bench.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
0. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache hadoop
yarn: Yet another resource negotiator,” in SOCC, 2013.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and 1. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in NSDI, 2011.

R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in SIGCOMM, 2014.
A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and
D. Ryaboy, “Storm@twitter,” in SIGMOD, 2014.

“Apache mesos,” http://mesos.apache.org/.

“Apache spark,” http://spark.apache.org/.

E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and
L. Zhou, “Apollo: Scalable and coordinated scheduling for cloud-scale
computing,” in OSDI, 2014.

A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca,
“Jockey: guaranteed job latency in data parallel clusters,” in Eurosys,
2012.

V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Cae-
sar, “Network-aware scheduling for data-parallel jobs: Plan when you
can,” in SIGCOMM, 2015.

S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, 1. Stoica, and J. Zhou,
“Re-optimizing data-parallel computing,” in NSDI, 2012.

L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi,
S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu, “Bigdatabench:
a big data benchmark suite from internet services,” in HPCA, 2014.
A.Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types.” in NSDI, 2011.

“Hadoop mapreduce - fair scheduler.” http://bit.ly/1p7sJ11.

“Hadoop mapreduce - capacity scheduler.” http://bit.ly/1tGpbDN.

C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and qos-
aware cluster management,” in ASPLOS, 2014.

C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” in ASPLOS, 2013.

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, 2008.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: fair scheduling for distributed computing clusters,” in
SOSP, 2009.

M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Eurosys, 2010.

X. Bu, J. Rao, and C.-z. Xu, “Interference and locality-aware task
scheduling for mapreduce applications in virtual clusters,” in HPDC,
2013.

A. Verma, L. Cherkasova, and R. H. Campbell, “Aria: automatic resource
inference and allocation for mapreduce environments,” in /CAC, 2011.
P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant, “Automated control of multiple virtualized resources,”
in Eurosys, 2009.

T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif, “Black-box
and gray-box strategies for virtual machine migration.” in NSDI, 2007.

