
Spatial-Locality-Aware Virtual Storage Devices with Tangible QoS
Expressions

Pei Yan, Song Jiang
Dept. of Electrical & Computer Engineering

Wayne State University
Detroit, MI 48202, USA

pyan@wayne.edu, sjiang@eng.wayne.edu

Abstract

Consolidated storage service receives its momentum
in the building of various IT system infrastructures be-
cause of its cost efficiency, reliability, and maintain-
ability. Meanwhile, only when users who run their ap-
plications on the consolidated storage system have a
similar or better performance experience compared to
those using direct-attached storage on each server can
the storage design really be widely accepted. We pro-
pose a framework in which performance of servicing
requests from one user is well isolated from that for the
others in such a way that each user can be regarded
as being allocated an independent virtual disk (VD)
of performance as specified in its service-level agree-
ment (SLA). Three SLA expressions that we believe
are most tangible to users are supported in the spatial-
locality-aware framework, which we name as rent-
a-disk, latency-conscious, and throughput-conscious.
Our proposed I/O scheduling algorithm for implement-
ing the three types of VDs provides strong isolation, low
interference, and high fidelity of performance for each
VD if SLA is not violated. Our algorithm also enables
different types of VDs to cooperate with each other to
improve performance for each VD as well as for the
entire physical storage.

1. Introduction

While data increasingly becomes the center of to-
day’s computing, more and more applications and ser-
vices rely on high-performance and reliable storage sys-
tems to deliver their promised service qualities. This
technical trend has put a high demand on the hardware
and management investments, which may be beyond
the resources available to a single division or depart-

ment. Therefore, an increasingly common practice is to
consolidate the storage resources in a single data cen-
ter to simultaneously provide storage services through
the high-speed network to participating users. An ex-
ample is Amazon.com’s Internet-wide storage service,
Simple Storage Service or S3 [2]. The shared I/O ser-
vice provided through the consolidated storage system
promises high performance of data access, low amor-
tized cost, and high reliability. However, this promise
can become reality only when a user receives his or
her expected performance from the consolidated stor-
age infrastructure. There are several issues to address
in ensuring that a particular user receives his or her
expected I/O performance.

The first issue is how to take disk layout of requested
data into account. This is important because the hard
disk is such a storage device that random access can de-
liver an I/O performance one order of magnitude worse
than sequential access on the same disk. Therefore, to
meet the same user-specified I/O performance require-
ments or service-level agreement (SLA), in terms of
either latency or throughput, the resources consumed
can be vastly different for different data request pat-
terns (random or sequential). This is because both
latency and throughput are measured in the amount of
data accessed, disregarding spatial locality of the data.
Existing performance isolation policies are mostly de-
rived from the bandwidth allocation algorithms de-
signed in the networking domain and thus do not ex-
plicitly consider the unique performance characteristic
of the hard disk. The consequence is that resource can-
not be well provisioned by only knowing latency and/or
bandwidth requirements in the SLA. In our design, we
use disk service time that is actually spent, rather than
the amount of data that is accessed, to allocate resource
to a particular VD for a stronger performance isolation
among VDs. In this way, spatial locality of requested

1-4244-0328-6/06/$20.00 c©2006 IEEE.

data only affects the latency or throughput it receives,
rather than the amount of resource available to others.

The second issue is how a customer should express
the performance requirements on his/her VDs in SLA.
Existing policies usually ask a user of a VD to pro-
vide both latency and bandwidth requirements. These
SLA expressions commonly assumed in prior studies
have two drawbacks. First, they are not closely rele-
vant to users’ experiences with disks. If users’ intention
of using a VD is to replace his/her local physical disk,
they would expect the VDs to produce performance
similar or better than the physical disk with the un-
derstanding that actual latency or bandwidth varies
with data spatial locality. Second, using both latency
and throughput at the same time to specify SLA is
usually unnecessary for users and limits the space for
performance optimization for storage system design-
ers. In our design, we customize three types of VDs
according to different users’ performance needs, each
with its SLA expressions. Among them, rent-a-disk is
used to simulate the performance of a physical disk in
a tangible manner, latency-conscious and throughput-
conscious VDs are designed for those users who care
only latencies or only throughputs of their applications,
respectively.

The third issue is how to make co-existing VDs of
different types to mutually benefit from each other.
While existing policies allocate spare disk resource to
requests’ streams, the targets of the allocation are
usually chosen simply according to the request dead-
lines. While throughput-conscious VDs do not have
pre-set deadlines for each individual request, they arti-
ficially impose evenly spaced deadlines to requests and
strictly observe them. This practically takes out the
opportunity of exploiting latency-insensibility of the
throughput-conscious VDs to improve service quality
for the latency-conscious VDs. In our design, we ex-
ploit the opportunity by treating throughput-conscious
VDs as a reservoir so that excess disk resource can
be accumulated and released afterward, if needed, to
keep requests to the latency-conscious VDs from miss-
ing their deadlines.

2 Related Work

Many of existing QoS-based resource allocation for
storage services are derived from algorithms for allo-
cating bandwidth and latency in the networking area.
To allocate bandwidth among traffic flows, these algo-
rithms assign tags to requests in each flow based on
their respective claimed bandwidths using either real
time, such as virtual clock [15], or virtual time, such as
WFQ [5], WF 2Q [3], SFQ [7], SCFQ [6].

Following the practice in the networking domain,
some I/O scheduling strategies for storage service qual-
ity guarantee tag requests from flows of different QoS
requirements with their deadlines (or called finish
times), which are calculated from users-specified band-
width and latency [9, 10, 14, 8]. In Stonehenge [9],
each request flow is directed to a virtual disk (VD)
and both required bandwidth (or throughput) and la-
tency need to be specified for a VD. However, these two
metrics are correlated. At a particular time, a VD is ei-
ther throughput-bound or latency-bound. A feedback
control mechanism is introduced to determine whether
the physical storage is overloaded and is able to accept
additional VDs by monitoring how the latency require-
ment is statistically met. In pClock [8], an additional
metric is introduced to characterize a flow – burstiness
– and the scheduling algorithm can guarantee that the
latency requirement is always met if its request bursti-
ness (or the number of pending in the bucket in the
leaky bucket model) is within the burstiness bound
and request arrival rate is less than a pre-set bound. In
some other I/O scheduling schemes such as Fasade [11],
users provide a curve that describes the required max-
imum latencies under different request arrival rates. In
all of these approaches, users need to specify perfor-
mance bounds using effective throughput and latency,
as they do in the networking service. However, effective
throughput and latency for a disk-based storage system
are not only affected by arrival rate, which users can be
well aware of, but also determined by spatial locality of
the requested data, which is related to the data on-disk
layout and users are hard, if not impossible, to know.
In addition, as we know that a user can be interested
in only one of the performance metrics for a particu-
lar application, leaving out one of the two constraints
would bring more opportunities for performance opti-
mization.

While hosting multiple virtual disks on one physical
disk, the disk head has to move among disk regions be-
longing to different VDs. The movements represent the
overhead associated with hosting multiple VDs in the
same physical system. Argon [13] uses data prefetch
and write-back to increase the granularity of service
provided to the competing VDs so that the overhead
can be reduced. Argon uses explicit disk time quanta
to allocate disk resource to VDs. Our design takes
a similar approach. Different from Argon, which fo-
cuses on the reduction of interference among multiple
VDs, our work is concerned with how to provide con-
ditioned performance guarantees to different request
flows. Furthermore, Argon allocates sufficient amount
buffer cache to a VD, if available, to support targeted
disk efficiency.

3 Performance Guarantee for Virtual
Disks using Spatial-locality-aware
I/O Scheduling

To meet performance requirements, the system ca-
pacity demand associated with the requirements of a
VD must be evaluated before a decision is made on the
acceptance of the VDs. However, spatial locality of re-
quested data, which is usually hard to predict before-
hand, affects both effective throughput and effective
latency, and consequently makes performance require-
ments presented in these metrics hard to be associ-
ated to their commensurate system capacity demands.
Therefore, we use peak bandwidth, which is delivered
under the fully sequential access pattern, to express
performance requirement or to cap system capacity de-
mands of effective latency/throughput requirements.

3.1 Three Types of VDs

We propose three types of VDs, named as rent-
a-disk, latency-conscious, and throughput-conscious.
Each type of disk provides a convenient method for
users to specify tangible QoS requirements that corre-
late to their experienced/expected performance of ded-
icated DAS disks.

The rent-a-disk VD is used to simulate a physical
disk whose peak bandwidth is specified. Once a rent-
a-disk VD with a required peak bandwidth is accepted,
we guarantee that it has an effective bandwidth that
is commensurate to the bandwidth available on a dedi-
cated physical disk with the same required peak band-
width. We call the peak bandwidth peak equivalent of
the effective bandwidth, which allows effective band-
widths associated with different spatial localities to be
comparable. For users who replace their local disks
with shared storage services, such as outsourcing I/O
services to the third-party storage service providers, to
run their programs, the rent-a-disk VD aims to retain
performance characteristics of their dedicated disks.

The latency-conscious VD is designed for
transaction-oriented applications, in which a la-
tency value is specified to bound the duration from
a request’s arrival to its completion. While the
latency requirement itself is hard to characterize
system capacity demand, users need to specify a
peak bandwidth to cap the VD’s capacity demand.
The latency bound is guaranteed only if a dedicated
disk with the peak bandwidth does not violate the
bound. In this way, a latency-conscious VD looks like
a rent-a-disk VD whose request latencies are bounded.
A difference from the rent-a-disk VD is that the
latency-conscious VD provides additional opportunity

for its performance optimization, through using spare
system capacity or through the cooperation with the
throughput-conscious VD.

The throughput-conscious VD is designed for ap-
plications that are only interested in average I/O
throughput they receive or aggregate request service
times, rather than instantaneous bandwidth or latency.
Example applications include transferring of a large
amount of data and background jobs such as file backup
and data recovery. In the throughput-conscious VD,
a throughput value is specified to bound the effective
throughput averaged over the duration from the be-
ginning of the flow to the current time. In addition,
like in the latency-conscious VD, users need to specify
a peak bandwidth to cap the VD’s capacity demand.
The effective throughput bound is guaranteed only if
the peak equivalent of the effective throughput is not
greater than the peak bandwidth.

3.2 The Scheduling Framework

In our proposed framework, all the three types of
VDs are supported. In the design, there are two crit-
ical questions to answer, both of which are related to
the spatial locality of requested data. First, what is the
metric that should be used to quantify the allocations
of storage system capacity to each VDs? Some existing
strategies use number of requests serviced or number of
bytes accessed as the metric. As an example, an allo-
cation policy may ensure that 20% of the requests that
are serviced are from the flow to a specific VD, or 20%
bytes of data that are accessed in a time unit are from
or to a specific VD. However, because the spatial local-
ity of requested data can be non-uniform across VDs,
this 20%s may lead to an allocation of system capacity
to the VD that is way away from the intended percent-
age. We use peak bandwidth as the metric, which is
independent of spatial locality. Therefore, if we alloca-
tion 20% of system’s peak bandwidth to a VD, the VD
will receive one fifth of the system’s capacity. Second,
what is the metric that should be used for accounting
system resource a VD receives? For the same reason
as mentioned before, if we use number of requests or
bytes a VD has serviced for the accounting, a VD that
is randomly accessed would obtain much more than its
fair share of system capacity. Therefore, we use disk
time that is consumed for servicing a request flow to
its VD as the metric. While we know that disk time
for servicing the random data is much larger than that
for servicing the same amount of sequential data, the
spatial locality is reflected in the metric. Therefore, a
VD that receives 20% of total disk time receives 20% of
system capacity, regardless how spatial locality varies

VD A VD B VD C

System
Clock Virtual Clocks

(x = 30%) (y = 20%) (z = 50%)

(a)

VD A VD B VD C

System
Clock Virtual Clocks

(x = 30%) (y = 20%) (z = 50%)

(b)

Figure 1. The I/O request scheduling in a storage system hosting three virtual disks (VDs). The three VDs, A, B, and C,

are of rent-a-disk, latency-conscious, and throughput-conscious types. In the figure the dashed line shows the current system

clock time. The top of the bars for virtual clocks shows the current virtual clock times. The speed differences between the

system clock and virtual clocks reveal how performance requirements of a VD is met in the shared storage system. Thus, the

differences serve as the basis of request scheduling. In each of the bars, the shaded areas represent the real disk times that are

spent, and the unshaded areas exist due to the contractual peak bandwidth less than 100% of system peak bandwidth. Figure

(b) shows that (1) virtual time of VD A is increased to the current system time when it is selected for scheduling but does not

have pending requests. (2) VD B has requests that have missed or are missing their latency bounds. In the case where VD C’s

current average throughput is larger than its throughput bound, disk times are allocated to VD B even if VD C’s virtual clock

time is less than the system time.

across the VDs.
Suppose that we have three VDs: a rent-a-disk

VD A, a latency-conscious VD B, and a throughput-
conscious VD C. The latency bound of VD B is b sec-
onds, and the throughput bound of VD C is c IO re-
quests per second (if each I/O request is for approxi-
mately same amount of data). Moreover, we assume
that the required peak bandwidths of there VDs ac-
count for x, y, and z (all in percentage) of the system
capacity T, also in terms of peak bandwidth. To quan-
tify the consumption of a VD’s allocated capacity, we
introduce the concept of virtual time of a VD, which
is t/f, where t is disk time received by the VD, and f
is x, y, or z for the three types of VDs, respectively.
If the entire system is dedicated for providing services
to a VD for disk time t, equivalently the VD has used
virtual time t/f to service its requests. Accordingly, in
the next t/f - t time, no requests from the VD need to
be serviced in order to keep their performance require-
ments for any of there types of disks. This is because
performance requirements are defined against a dedi-
cated disk with the fT peak bandwidth.

We set up a system clock for the entire system, which
generally advances as disk times are spent. Each VD
also has its own clock, called virtual clock. If a VD’s
current virtual clock time is not greater than the cur-
rent system time, which indicates that the VD does

not exceed its contractual system capacity and has the
right to receive disk time servicing its requests. Ac-
cordingly, the request scheduler selects requests from
VDs whose virtual clock times are less than the sys-
tem clock times.1 Once such a request is serviced, the
disk service time, t, is added to the system time to ad-
vance the clock, and t/f is added to virtual time of the
request’s VD to advance its virtual clock. However, if
the VD that is selected does not have pending requests,
we proceed to choose next qualified VD. Meanwhile,
we advance the VD’s virtual clock to the current sys-
tem time to ensure that unused allocation of disk time
cannot be saved as credit for future uses. Otherwise,
the saved credits would allow the VD to claim more
than its contractual system capacity. If virtual clock
times of all VDs are larger than the system clock time,
which indicates that the system has spare capacity, we
uses our coordinated system capacity allocation policy,
which will be described later, to choose a VD that has
pending requests, to the spare disk time. Note that the
disk time does not add to the system time or the VD’s
virtual time, because a VD’s reception of bonus sys-
tem capacity should not make it less likely to receive
future disk times or make other VDs more favorable in
receiving future disk times.

1The priority of the selection is given to those VDs that have
large gaps between the two clock times.

Figure 1 illustrates a storage system hosting the
three types of VDs, A, B, and C, whose required peak
bandwidth percentages, x, y, and z, are 30%, 20%, 50%,
respectively.

While users of the latency-conscious disk usually
have difficulty in deciding an appropriate peak band-
width, we use a coordinated system capacity allocation
policy to assist the latency-conscious VDs to fulfill its
latency bound. When the system has spare capacity
and there are latency-conscious VDs, we allocate the
disk times to the VDs, with a priority to the VDs that
have the larger number of requests that have missed or
are missing their latency bounds. If there are non-
latency-conscious VDs, or latency-conscious VDs do
not have pending requests, the spare system capac-
ity goes to the throughput-conscious VDs, instead of
the rent-a-disk VDs. This is because extra services
that throughput-conscious VDs receive can be accumu-
lated into their performance metric – current average
throughput, and be released to assist latency-conscious
VDs afterward, if there is such a need, without compro-
mising their performance requirements. Furthermore,
we may consider to overdraw a small percentage of
contractual system capacity belonging to throughput-
conscious VDs if we find that requests of latency-
conscious VDs are missing their bounds. This percent-
age is called throughput deviation tolerance, denoted
as tolerance. In the overdrawing operation, we make
sure that at any time current average throughout is not
less than (1 − tolerance) of the contractual through-
out. In this way, throughput-conscious VDs actually
provide a cushion in the allocation of system capacity
to enable coordination for a better service quality.

4 Performance Evaluation

4.1 Experimental Settings

We built a trace-driven simulator to extensively
evaluate the performance of our scheduling policy. In
the simulator, we use DiskSim3.0 [1] to simulate the
disk systems, and other simulator components are re-
sponsible to receive, enqueue, and dispatch requests
from multiple flows to their respective VDs in an or-
der that is determined by our scheduling policy. Be-
cause we are mainly concerned with performance impli-
cation of I/O scheduling, we do not consider the effect
of caching or prefetching. Alternatively, we can view
the simulation is carried out at the I/O driver. DiskSim
is a disk simulator that faithfully captures many details
of a disk system and has been validated to be highly ac-
curate. In the evaluation, we use two disk models that
have been validated: SEAGATE ST32171W with 7200

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t
(I

O
P

S
)

Time (s)

Dedicated Slow Disk
75% Fast Disk
25% Fast Disk

Figure 2. Throughputs of sequential flows to two rent-

a-disk VDs.

RPMs and its average seek time of 1.943 ms, which
is referred as slow disk in the rest of the paper, and
SEAGATE ST3450IN with 10033 RPMs and its aver-
age seek time of 0.636 ms, referred as fast disk. In our
experiments, both are used as single-disk system. In
the synthetic traces, the request size is 512Bytes. In
the generation of traces of different spatial locality, we
use the probability of adjacency of the data requested
in any two consecutive requests in the trace to quan-
tify spatial locality. Thus, a 0% spatial locality means
no any two consecutive requests are for adjacent data,
and 100% spatial locality means the entire trace is a
sequence of requests for fully sequential data.

4.2 Performance Guarantee of rent-a-disk VDs

Let us first examine performance guarantee of rent-
a-disk VDs. We use two single disks in the experiment.
Because the peak bandwidth of the slow and fast are
around 3410 and 4500 sequential IO operations per sec-
ond, or IOPS, respectively, i.e., the former is about 75%
of the latter. We create two rent-a-disk VDs on the fast
disk. one has 75% of peak bandwidth of the fast disk,
and the other has 25% of the peak bandwidth. They
are referred as 75% VD and 25% VD thereafter, respec-
tively. The 75% VD is supposed to emulate the perfor-
mance of a dedicated physical disk (the slow disk) on
its host physical disk (the fast disk).

We feed simultaneously two sequential requests flows
into the system, each to one VD. Both flows have suffi-
ciently high arrival rates, so that each VD is saturated.
Figure 2 shows the throughputs of the two flows, or the
bandwidths of the two VDs as the flows of requests are
serviced on the fast disk. As we can see that, the 75%
VD has a bandwidth very close to that of the slow
disk. Meanwhile, the 25% VD has an IOPS of about

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t
(I

O
P

S
)

Time (s)

Dedicated Slow Disk
75% Fast Disk
25% Fast Disk

Figure 3. Throughputs of two request flows to two rent-

a-disk VDs, one is of varying spatial locality and the other

is fully sequential.

1100, or 24% of the peak bandwidth of the fast disk,
which is an accurate emulation of a 25% VD. We have
two additional observations. One is that both VDs
have bandwidths that are a little bit lower than their
required ones. This is due to the interference among
multiple VDs on a physical disk. The other observa-
tion is that the variations of the VDs’ bandwidth are
larger than that of the dedicated slow disk. This is also
due to the co-existence of multiple VDs on one physical
disk and only one VD is serviced at a time. When one
VD is serviced, it gets the disk’s full bandwidth and
the other receives zero. For the same reason, we see
that the instantaneous bandwidths of the two VDs are
complemented with each other.

To observe how spatial locality impacts the alloca-
tion of system capacity, we change the spatial locality
of the 75% VD from 35% to 85% at 0.4 second, and
then to 100% at 1.33 second. The results are shown in
Figure 3. Apparently increasing spatial locality signif-
icantly improves effective bandwidth of the 75% disk.
There are delays between the change of locality and in-
crease of effective bandwidth, because newly arriving
requests are enqueued at the queue tail, it takes time
for the requests to move to the queue head and be
scheduled for disk services when there is a long queue.
We see that the curve for 75% disk matches that for
the dedicated slow disk receiving the same flow except
that the increase of bandwidth for the 75% VD hap-
pens earlier than that for the slow disk. The delay is
caused by the smaller seek times for the fast disk, which
makes the 75% VD have smaller average latencies and
thus more efficient in servicing random requests than
the slow disks. As the figure shows, the effective band-
widths of the 25% VD are almost not affected by the

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t
(I

O
P

S
)

Time (s)

Dedicated Slow Disk
75% Fast Disk
25% Fast Disk

Figure 4. Experimenting with the I/O scheduler that is

based on number of requests.

changing spatial locality for the 75% VD, which sug-
gests that the two VDs are well isolated.

Figure 4 shows the results of an experiment that is
set up in the same way as that with Figure 3, except
that the I/O scheduler chooses requests for service ac-
cording to number of requests serviced by each VD,
rather than the disk times used. Therefore, approx-
imately 75% of all the requests that have been ser-
viced are to the 75% VD. From Figure 4 we can see
that the bandwidth of the 25% VD is heavily influ-
enced by the changing spatial locality at the 75% VD.
When the locality is weak, or the data access is ran-
dom, the same number of requests serviced actually
consume more disk capacity, and leave less capacity
for the 25% VD. As the figure shows, the 25% VD can
receive its contractual 25% peak bandwidth of the sys-
tem only when the spatial locality of the 75% VD is
100%. In the other time, its effective bandwidths are
significantly lower and the performance agreement is
seriously violated.

We further examine the performance of rend-a-disk
VDs using a real-world trace openmail and the results
are shown in Figure 5. openmail was collected on a
production e-mail system running the HP OpenMail
application for 25,700 users, 9,800 of whom were active
during the hour-long trace. The system has 6 HP 9000
K580 servers running HP-UX 10.20. The size of the
data set accessed by all six clients was 18.6G. In this
experiment, we randomly select an openmail client to
feed into the 75% fast disk while supporting another
fully sequential trace on the 25% fast disk. In Figure
5, it can be seen that the throughput of the 75% fast
disk approximates very well the throughput received
when running the same openmail trace alone on the
dedicated slow disk. Running this openmail trace does

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50

T
h
ro

u
g
h
p
u
t
(I

O
P

S
)

Time (s)

Dedicated Slow Disk
75% Fast Disk
25% Fast Disk

Figure 5. Performance of the rent-a-disk VDs using

openmail.

not affect the performance of the 25% fast disk — the
bandwidth of the 25% fast disk remains at around 1000
IOPS (about 25% of the overall bandwidth of the fast
disk). The random access pattern of openmail only
makes its own throughput low due to the performance
isolation mechanism provided by our IO scheduler.

4.3 The Latencies of VDs with Varying Arrival
Rates and Spatial Locality

While we have shown that in our design a VD can
provide an effective bandwidth that is close to the re-
quired bandwidth, we now show how latencies of VDs
are compared with those in the dedicated disk when we
vary arrival rate and spatial locality of flows to VDs.
The latency, or response time, refers to the time from
the arrival of a request to the completion of service of
the request, including queuing time and disk service
time. When we increase arrival rate of a flow, we must
improve its spatial locality so as to keep the latency
constant. Alternatively, we must reduce arrival rate
if spatial locality is reduced to keep the latency con-
stant. To characterize the relationship, we propose the
iso-percentage-latency curve that shows pairs of arrival
rate and spatial locality values that keep a given per-
centage of requests experience latencies that are equal
to or less than a given latency. Figure 6 shows the iso-
percentage-latency curves with the given percentage of
75% and 100% respectively, and the given latency of 0.3
second on the dedicated slow disk and on the 75% VD
(the other VD is the 25% VD). While the area above
a curve represents the combinations of arrival rate and
spatial locality that produce a latency less than 0.3
second, the figure clearly shows that the 75% fast disk
provides a much larger space to have smaller disk seek
time. This is because the fast disk has a smaller la-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20

S
p
a
ti
a
l
L
o
c
a
lit

y
 (

%
)

Arrival Rate (X2000 Requests/s)

Dedicated 75%
Dedicated 100%

75% Fast Disk 100%
75% Fast Disk 75%

Figure 6. The iso-percentage-latency curves with dif-

ferent arrival rates and spatial localities. Note that the

two curves for dedicated disks are overlapped in the fig-

ure. The last percentage value in each legend indicates the

percentage of requests that have latencies no more than

the given value.

tency. When requests from a VD are serviced with a
shorter time, all the requests receive smaller latencies.

4.4 Cooperation between Latency-Conscious VD
and Throughput-Conscious VD

To investigate the impact of the cooperation of the
latency-conscious VD and the throughput-conscious
VD on the improvement of latencies of the latency-
conscious VD, we choose to run a flow whose arrival
rates are shown in Figure 7 on the 75% VD. On the 25%
VD we test three cases, in which a rent-a-disk VD, a
throughput-conscious VD of 0% throughput deviation
tolerance, and a throughput-conscious VD of 5% devi-
ation tolerance are used, respectively. Figure 8 shows
the cumulative distribution curves (CDF) of the laten-
cies of requests to the latency-conscious VD. The curve
with the rent-a-disk VD exhibits the worst latency dis-
tribution, because the VD is not allowed to release
the extra system capacity it receives when the latency-
conscious VD has an arrival rate of 0. Comparatively,
the throughput-conscious VD provides the opportunity
for the latency-conscious VD to save its unused system
capacity through the throughput-conscious disk when
its arrival rate is 0 and the saved capacity is released
from the throughput-conscious disk for its use when its
arrival rate is surged again. It is understandable that
a throughput-conscious VD with a deviation tolerance
can provide an even larger cushioning space to accom-
modate a surged arrival rate of the flow and keep low
latencies.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200 250 300 350 400 450 500

A
rr

iv
al

 R
at

e
(I

O
P

S
)

Time (s)

Instantaneous Arrival Rate

Figure 7. Varying arrival rates of the flow to the 75%

VD.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25

P
er

ce
nt

ag
e

Latency (s)

75% Fast Disk + 25% Throughput-conscious VD (Tolerance=0%)
75% Fast Disk + 25% rent-a-disk VD

75% Fast Disk + 25% Throughput-conscious VD (Tolerance=5%)

Figure 8. CDF curves for latencies of the latency-

conscious VD that is coordinated with three different VDs.

5 Conclusions

In the paper we identify three tangible expressions
for I/O performance requirements to allow users of
a consolidated storage system to conveniently spec-
ify their performance requirements. Our proposed
I/O scheduling framework can provide a strong per-
formance isolation and low interference among VDs
hosted on the same physical disk systems, which is
demonstrated in our experiments.

In the future, we would like to address several issues
that are not well covered in the paper. First, the in-
terference among multiple VDs can be further reduced
by grouping more requests in the same flow to service
together. The negative impact of the optimization is
that latency can become more dynamic. The trade-off
between these two effects should be studied. Second,
we plan to configure more complex storage system con-

sisting of different disk arrays to evaluate our design.
Third, we will collect and run real-world traces for a
more comprehensive evaluation. We will also imple-
ment the framework in a representative storage system
so that more technical issues can be addressed.

References

[1] John S. Bucy, Gregory R. Ganger The
DiskSim Simulation Environment Version
3.0 Reference Manual http://reports-
archive.adm.cs.cmu.edu/anon/2003/CMU-CS-03-
102.pdf.

[2] Amazon Simple Storage Service (Amazon S3)
http://www.amazon.com/gp/browse.html?node=16427261.

[3] J. C. R. Bennett and H. Zhang. Wf2q: Worst-case
fair weighted fair queueing. In Proc. of INFOCOM,
1996.

[4] R. L. Cruz. Quality of service guarantees in virtual
circuit switched networks. IEEE Journal on Selected
Areas in Communications, 13(6), 1995.

[5] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queuing algorithm. Journal of In-
ternetworking Research and Experience, 1(1), 1990.

[6] S. Golestani. A self-clocked fair queueing scheme for
broadband applications. In Proc. of INFOCOM, 1994.

[7] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair
queueing: a scheduling algorithm for integrated ser-
vices packet switching networks. IEEE/ACM Trans.
Netw., 5(5), 1997.

[8] A. Gulati, A. Merchant, and P. J. Varman. pclock:
an arrival curve based approach for qos guarantees in
shared storage systems. In Proc. of 2007 ACM SIG-
METRICS Conference, 2007.

[9] L. Huang, G. Peng, and T. Chiueh. Mutli-dimensional
storage virtualization. In Proc. of 2004 ACM SIG-
METRICS Conference, 2004.

[10] W. Jin, J. S. Chase, and J. Kaur. Interposed propor-
tional sharing for a storage service utility. In Proc. of
2007 ACM SIGMETRICS Conference, 2004.

[11] C. Lumb, A. Merchant, and G. Alvarezg. Facade: vir-
tual storage devices with performance guarantees. In
Proc. of the 2003 USENIX Annual Technical Confer-
ence, 2003.

[12] H. Sariowan, R. L. Cruz, and G. Polyzos. Schedul-
ing for quality of service guarantees via service curves.
In Proc. of the 4th International Conference on Com-
puter Communications and Networks, 1995.

[13] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger. Argon: performance insulation for shared
storage servers. In Proc. of FAST ’07, 2007.

[14] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska,
and E. Riedel. Storage performance virtualization via
throughput and latency control. In Proc. of MAS-
COTS’05, 2005.

[15] L. Zhang. Virtualclock: a new traffic control algorithm
for packet-switched networks. ACM Trans. Comput.
Syst., 9(2), 1991.

