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Abstract 

 
Lustre is a parallel file system that presents high 
aggregated IO bandwidth by striping file extents across 
many storage devices. However, our experiments 
indicate excessively wide striping can cause 
performance degradation. Lustre supports an 
innovative file joining feature that joins files in place. 
To mitigate striping overhead and benefit collective 
IO, we propose two techniques: split writing and 
hierarchical striping. In split writing, a file is created as 
separate subfiles, each of which is striped to only a few 
storage devices. They are joined as a single file at the 
file close time. Hierarchical striping builds on top of 
split writing and orchestrates the span of subfiles in a 
hierarchical manner to avoid overlapping and achieve 
the appropriate coverage of storage devices. Together, 
these techniques can avoid the overhead associated 
with large stripe width, while still being able to 
combine bandwidth available from many storage 
devices. We have prototyped these techniques in the 
ROMIO implementation of MPI-IO. Experimental 
results indicate that split writing and hierarchical 
striping can significantly improve the performance of 
Lustre collective IO in terms of both data transfer and 
management operations. On a Lustre file system 
configured with 46 object storage targets, our 
implementation improves collective write performance 
of a 16-process job by as much as 220%. 

1 Introduction 
 
Many of the scientific applications running on 
contemporary high end computing platforms are very 
data-intensive, such as those in climate modeling, 
fusion, fluid dynamics, and biology. For example, the 
Gyrokinetic Toroidal Code (GTC [12]) -- an 
application for fusion -- can require a throughput of 
several 10s of gigabytes per second in order to 
minimize the portion of time spent in IO and to 
achieve good scalability on systems with tens or 
hundreds of TeraFlops (1015) per second. 
 

Figure 1 shows a diagram of software layers in typical 
ultra-scale platform that supports data-intensive 
applications. Collectively, these layers provide 
portable abstractions for IO accesses. At the top end, 
scientific applications perform IO through middleware 
libraries such as Parallel netCDF [9], HDF [23, 24] and 
MPI-IO [22], often cooperatively among their 
processes. Parallel file systems, towards the bottom of 
the stack, directly serve IO requests by striping file 
extents and/or IO blocks across multiple storage 
devices. Obtaining good collective-IO performance 
across many processes on top of these software layers 
is a complex task. It requires not only awareness of the 
processes' collective data access patterns, but also 
thorough understanding of the entire software stack 
and, in particular, the behavior of underlying file 
systems.   
 

 
 

Figure 1 IO Software Stacks for HPC Applications 
 
As shown in Figure 1, the mid-level libraries, 
represented by MPI-IO, are directly implemented on 
top of file systems. ADIO [19] is the abstract IO 
interface of MPI-IO, which can be specialized for 
specific file system implementations. Together, these 
programming stacks offer crucial avenues for efficient 
storage accesses. Numerous techniques have been 
investigated and implemented to improve the 
scalability of MPI-IO data operations, such as two-
phase IO [20], data sieving [21], and data shipping 
[13]. Some of these techniques are designed for 
generic file systems, and, as such, are unable to avoid 
specific limitations of a particular file system. Yet 
other techniques exploit specific features of individual 
file systems, such as list IO for PVFS2 [2, 5] and data 
shipping for GPFS [13, 16]. 
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Lustre [8] is a file system that has been deployed on 
many supercomputers, such as Jaguar at Oak Ridge 
National Laboratory, Thunderbird at Sandia National 
Laboratory, Tera-10 at CEA in Europe, and 
TSUBAME at Tokyo Tech in Japan [3]. Because many 
of the applications running on these systems use (or 
could use) collective IO operations, developing 
scalable collective-IO operations over Lustre will 
benefit a large number of applications. Not 
surprisingly, there has been an effort to provide a 
Lustre-specific ADIO implementation, in which file 
hints are introduced to specify striping pattern on a 
per-file basis. However, the research on how to 
leverage Lustre-specific file system features to 
optimize MPI-IO design and implementation is still at 
a nascent stage.  
 
In this paper, we show that excessively wide striping in 
Lustre can cause performance degradation. An 
important question, then, is how to continue 
aggregating IO bandwidth available from many storage 
devices while avoiding the performance hit of wide 
striping.  
 
Consequently, Lustre provides a file joining feature for 
joining multiple files into a single combined file. Using 
this feature, a file with mixed striping patterns can be 
created by joining multiple files with different striping 
parameters. We believe that leveraging this feature 
could help mitigate the detrimental drawbacks of wide 
striping while still retain the benefits from aggregating 
bandwidth of many storage devices. 
 
In this paper, we investigate the feasibility of using 
Lustre file joining to benefit of collective IO. To this 
end, we propose and evaluate two techniques: split 
writing and hierarchical striping. In split writing, 
different processes are allowed to open/create 
individual files, each with a small stripe width for data 
input/output. These files are also referred to as subfiles. 
In addition, only one IO process opens the first subfile 
for initial IO accesses, so bursts of metadata traffic by 
a parallel open are avoided. Hierarchical striping 
determines striping parameters  for the subfiles so that: 
(1) each of them is aggregating bandwidth from an 
appropriate set of IO storage devices; (2) there is no 
overlapping of storage devices between subfiles; (3) 
and a good coverage of storage devices is achieved. 
We have designed and prototyped a Lustre-specific 
collective IO approach based on split writing and 
hierarchical striping. In our experiments, when using 
the proposed techniques, Lustre collective IO 
performance is significantly improved for both data 
transfer and management operations. Split writing is 
able to provide highly scalable collective management 

operations such as MPI_File_Open() and 
MPI_File_Set_size(); hierarchical striping can 
dramatically improve collective IO bandwidth by 
aggregating IO bandwidth available to multiple files. 
We also show that these optimizations in collective IO 
benefit scientific applications' common IO patterns 
using MPI-Tile-IO [14] and a modified NAS BT/IO 
program [25]. 
 
The rest of the paper is organized as follows. In the 
next section, we provide our motivation. Section 3 
provides the detailed design of split writing and 
hierarchical striping, and discusses how they 
accomplish the intended goals. We evaluate our 
proposed techniques in Section 4. Finally, we give an 
overview of related work in Section 5 before 
concluding the paper in Section 6. 

2 Motivation 
 
In this section, we motivate the work of exploring 
Lustre file joining functionality for collective IO 
optimizations. An overview of Lustre is provided first. 
Then, we show the performance trends of Lustre with 
the varying stripe widths.  

2.1 An overview of Lustre 
 
Lustre [8] is a POSIX-compliant, object-based parallel 
file system. It provides fine-grained parallel file 
services with its distributed lock management. Lustre 
separates essential file system activities into three 
components: clients, metadata servers, and storage 
servers. These three components are referred to as 
Object Storage Client (OSC), Meta-Data Server 
(MDS) and Object Storage Targets (OST), 
respectively. Figure 2 shows a diagram of the Lustre 
system architecture. An OSC opens and creates a file 
through an MDS (step 1), which creates objects in all 
OSTs (step 2). IO is then performed in a striped 
manner to all OSTs (step 3). By decoupling metadata 
operations from IO operations, data access in Lustre is 
carried out in a parallel fashion, directly between the 
OSCs and OSTs. This allows Lustre to aggregate 
bandwidth available from many OSTs. Lustre provides 
other features such as read-ahead and write-back 
caching for performance improvements. Here, we 
discuss a few relevant features: file consistency, file 
striping, and file joining. 
 
File Consistency and Locking To guarantee file   
consistency, Lustre serializes data accesses to a file or 
file extents using a distributed lock management 
mechanism. Because of the need for maintaining file 
consistency, all processes first have to acquire locks 



 

 

before they can update a shared file or an overlapped 
file block. Thus, when all processes are accessing the 
same file, their IO data performance is dependent not 
only on the aggregated physical bandwidth from the 
storage devices, but on the amount of lock contention 
that exists among them. 

 
Figure 2 Lustre System Architecture 

 
Flexible Striping and Joining As shown in Figure 2, 
file IO is striped across a number of OSTs. Striping 
pattern parameters can be specified on a per-file or per-
directory basis. Such parameters include stripe size, 
stripe width, and stripe index (the index of the first 
storage device). In addition, Lustre also supports a file 
joining feature. It allows files with different striping 
patterns to be joined into a single file. This feature 
allows a file to use different striping patterns for its 
extents.  
 

Table 1 Commands for Stripe Width Analysis 
 

Program Detail Command 
dd write time dd if=/dev/zero if=/Lustre/file count=4M 

dd read time dd of=/dev/null if=/Lustre/file count=4M 
IOzone write iozone –e –i 0 –j 8 –L 128 –S 2048 –s 4194304 –

r 64K –f /Lustre/file 
IOzone read iozone –e –i 1 –j 8 –L 128 –S 2048 –s 4194304 –

r 64K –f /Lustre/file 
 

2.2 Impacts of Lustre Striping Width 
 
We conducted several experiments to evaluate the 
Lustre performance with various striping patterns. The 
first two experiments measured Lustre read/write 
performance using the UNIX dd command and the 
IOzone benchmark [1]. These experiments were 
conducted with a Lustre file system composed of one 
MDS and 64 OSTs, as described in Section 4, using 
Lustre version 1.4.7. Table 1 lists the commands used 
for these experiments. 
 

Figure 3 shows the performance of Lustre read/write as 
measured from the UNIX dd command and the 
IOzone benchmark. The file stripe width ranges from 
1 to 64 OSTs. These IO performance results suggest 
that wider stripe width does not help IO accesses with 
small request block sizes (512B, dd), and the 
performance trend is improved with larger request 
sizes (64KB, IOzone), up to only 4 or 8 OSTs for reads 
and writes, respectively. Beyond that, even wider 
stripe width gradually brings the IO bandwidth down 
because of the overhead of striping data to more OSTs.  

Unix dd

0

40

80

120

160

2 9

1
6

2
3

3
0

3
7

4
4

5
1

5
8

Stripe Width

E
xe

c
u

ti
o

n
 T

im
e

(s
e

c
)

Write
Read

IOzone 

0

40

80

120

160

1 8 16 24 32 40 48 56 64

Stripe Width

B
W

 (
M

B
/s

)

Write
Read

 
Figure 3 Impact of Stripe Width to dd and IOzone 
Performance 
 
Note that these experiments were done with rather 
small IO requests from a single client to reveal the 
striping cost. It is not to be interpreted as direct 
contrast to the earlier report [15], in which Lustre 
achieves good performance with many processes 
making large IO requests. Based on the Lustre 
architecture shown in Figure 3, we speculate the 
performance degradation of wide striping may come 
from at least two aspects. One is the increased protocol 
processing overhead when an OSC is communicating 
with more OSTs; the other is the reduced memory 
cache locality when the client’s communication buffer 
space is multiplexed for more OSTs. 

3 Collective IO with File Joining 
 
As discussed in Section 2.2, wide striping leads to 
performance degradation beyond certain stripe width 
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for small IO requests. We attempt to investigate how 
Lustre file joining can help mitigate this problem while 
still achieving wide striping when necessary. In this 
paper, we focus on the feasibility of using file joining 
by examining a higher-level parallel IO library, MPI-
IO [22]. We propose two techniques: split writing and 
hierarchical striping to address this issue. Both 
techniques are built on top of file joining. Split writing 
allows processes to create/open separate subfiles for 
IO. Hierarchical striping computes the striping 
parameters for the subfiles to ensure high aggregated 
IO bandwidth from a sufficient number of OSTs.  

3.1 Split Writing 
 
Writing file contents to multiple subfiles is not a new 
idea. However, one needs to be aware of Lustre 
characteristics to take advantage of this idea and the 
strength of Lustre file joining. For example, we need to 
answer a variety of questions, such as when to create 
all the subfiles, when to join them together, which 
process is to manage what subfiles, as well as how to 
maintain MPI-IO semantics for file consistency.  
 

 
Figure 4 Diagram of Split Writing 

 
Figure 4 shows a diagram of split writing among three 
MPI processes. At the beginning of the file creation, 
only one process, rank 0, creates an actual subfile. All 
other processes open their portion of file extents as a 
ghost subfile. Ghost subfiles (marked with dashed 
boxes) are actually created only when applications 
write to them. This optimization avoids a burst of 
metadata operations for the same file to the metadata 
server, a problem known as parallel open to large scale 
applications. By delaying the creation of other subfiles, 
metadata operations are amortized across the course of 
the entire file IO. At the end of parallel open, all 
processes exchange and synchronize on the file 
attributes, including those of the ghost subfiles. File 
attributes are also exchanged and synchronized in 
every MPI_File_sync() operation to ensure 
consistency during run-time. Note that this does not 
violate MPI-IO consistency semantics as MPI-IO 
specification requires all IO processes to call sync 
operations if global data consistency is desired.  
 

When a file is to be closed, all processes exchange 
information such as the number of its subfiles, their 
real names, and their representative file domains. 
Remaining ghost files are left as holes in the final file. 
No alteration is introduced on the Lustre internal 
storage management of file holes. These subfiles are 
then joined into a single file. Instead of joining files in 
a tree fashion through many processes, the subfiles are 
joined by Rank 0. Interestingly, this does not increase 
the processing overhead because all metadata 
operations are essentially serialized by the Lustre MDS 
as a single thread per request. More clients will only 
add to its processing burden.  
 

3.2 Hierarchical Striping 
 
Lustre stripes file objects across its object storage 
targets (OSTs). The striping pattern is determined by a 
combination of three parameters: stripe size, stripe 
width (or stripe count), and stripe index.  
 

 
 
Figure 5 Comparison of Default Striping and 
Hierarchical Striping 
 
As discussed earlier, split writing creates multiple 
subfiles. To achieve the best IO rate for the collection 
of subfiles, one needs to ensure the following for the 
subfiles: (1) a small subfile, (i.e., a file smaller than 1 
MB, does not need to be striped); (2) each subfile 
should not stripe too wide (Our experiments (c.f. 
Figure 2) used a stripe width of 2); (3) the subfiles 
should not have any overlap; and (4) the subfiles 
together should cover a sufficient number of OSTs for 
a good aggregated bandwidth. To achieve this, we 
apply a technique called hierarchical striping to 
determine the striping parameters for a subfile, 
including (a) subfile_size: the size of a subfile; (b) 
subset_size: the number of OSTs for this subfile; and 
(c) subset_index: the index of the OST subset. Figure 5 
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shows a comparison between the default striping and 
the hierarchical striping. Compared to the default 
striping pattern of (stripe_size: M, stripe_width: W, 
stripe_index: 0), the provided example has a hierarchical 
striping pattern of (subfile_size: S*M, subset_size: 2, 
subset_index: 0), with each subfile’s striping parameters 
as (M, 2, 2*i). The index, i, is the rank of a subfile. 
Note that, by default, Lustre has a load balancing 
mechanism to select an OST for the stripe_index. 
Hierarchical striping maintains the same feature to use 
this index as the first OST of the first subset.  
 
Hierarchical striping also reshapes IO access pattern to 
the OSTs. A file created to stripe across all OSTs 
forces the process to communicate with all the OSTs. 
Hierarchical striping reduces the number of 
connections between Lustre clients and OSTs. 
Communication memory buffers are more frequently 
recycled among a few connections, resulting in better 
memory locality. Hence, hierarchical striping could 
both reduce striping overhead and enhance the 
communication scalability [26]. 

4 Performance Evaluation 
 
We have implemented a prototype of the proposed 
techniques in the ROMIO of MPICH2-1.0.3 release. In 
this section, we describe its performance evaluation. 
Our experiments are conducted on a cluster of 80 Ciara 
VXB-7520J blades: each with dual Intel Xeon 3.4 GHz 
processors, 2MB cache, 800MHz Front Side Bus, 4GB 
physical memory, and a Gigabit Ethernet card 
connected to PCI-X 100 Mhz bus. On the nodes 
configured as Lustre OSTs, a 7200 RPM, ATA/100 
Western Digital hard disk WD800JB is used for disk 
storage.  These nodes are running CentOS 4.4 Linux 
operating system and Lustre version 1.4.7. Out of the 
eighty-node cluster, a Lustre file system is configured 
with 46 OSTs and one MDS, unless specified 
otherwise. 
 

4.1 Collective Management Operations 
 
Management operations, such as MPI_File_open() and 
MPI_File_set_size(), do not involve massive data 
transfer, but they do require support for scalable 
metadata operations from the underlying file system 
[8]. To evaluate the benefits of our optimizations to 
these management operations, we have performed the 
following experiments using a microbenchmark 
available in the PVFS2 [2] distribution. The first 
experiment measures the average time to create a file 
using collective MPI_File_open(). As shown in Table 
2, compared to the original ADIO implementation, our 

implementation, denoted as New, significantly 
improves the time to create an MPI file. Furthermore, 
the creation time does not increase as the number of 
processes increase. This improvement is due to two 
benefits of split writing. First, split writing is able to 
reduce the striping width when creating new files, 
therefore reducing the striping cost. Secondly, 
although it presents an abstraction of a shared file to all 
processes, there is only one process that actually 
creates the file, therefore reducing the amount of 
metadata requests to the Lustre MDS. 
 
The second experiment measures the average time to 
perform a resize operation using collective 
MPI_File_Set_size(). As shown in Table 2, our 
implementation brings down the cost of resize 
operations dramatically. This is because split writing 
allows only one process to update the attributes (such 
as size) of a file. When the subfiles are to be closed, 
their attributes, such as file size, are committed to the 
physical storage. Our approach essentially eliminates 
the contention of metadata operations from many 
processes. The remaining cost is due to a single system 
call and the need of synchronization among parallel 
processes. 
 
Table 2 Comparison of the Scalability of 
Management Operations 
 

No. of Processes Original New 

Create (Milliseconds) 
4 8.05 8.75 
8 11.98 8.49 

16 20.81 8.63 
32 37.37 8.98 

Resize (Milliseconds) 
4 182.67 0.56 
8 355.28 0.81 

16 712.68 1.03 
32 1432.5 1.36 

 

4.2 Concurrent Read/Write 
 
To measure the concurrent read/write performance, we 
use a parallel program that iteratively performs 
concurrent read and write to a shared file. Each process 
writes and then reads a contiguous 256MB data at 
disjoint offsets based on its rank in the program. At the 
end of each iteration, the average time taken for all 
processes is computed and recorded. Twenty-one 
iterations are performed, and the lowest and highest 
values are discarded. 
 
Figure 6 shows the performance of concurrent read and 
write. Compared to the original, our implementation 



 

 

improves the aggregated bandwidth by 220% and 95% 
for writes and reads, respectively. Note that the 
measured write bandwidth is close to the aggregated 
peak write bandwidth for all 46 IDE disks. As it 
reaches the plateau, the available bandwidth for 32 
processes drops slightly for writes. Read bandwidth is 
further improved with the increase of processes. The 
aggregated read/write bandwidth of the original 
implementation remains much lower compared to our 
optimized implementation. In addition, we have also 
tested the performance of concurrent read and write to 
an existing join file. It is interesting to note that both 
implementations report low IO rates. These low rates 
are due to the manipulation and placement of extent 
attributes for a joined file. An optimization on the 
management of a joined file’s extent attributes is 
needed for a proper fix. Nonetheless, this performance 
degradation is mostly avoided during file IO to a new 
file because a file is not joined until it is to be closed.  
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Figure 6 Performance of Concurrent Read/Write 
 

4.3 NAS BT-IO 
 
NAS BT-IO [25] is an IO benchmark that tests the 
output capability of NAS BT (Block-Tridiagonal) 
parallel benchmark. It is developed at NASA Ames 
Research Center. Its data set undergoes diagonal multi-
partitioning and is distributed among MPI-processes. 
The data structures are represented as structured MPI 
datatypes and written to a file periodically, which is 
typically every 5 timesteps. There are several different 
BT-IO implementations, which vary how its file IO is 
carried out among all the processes. In our 
experiments, we used an implementation that performs 
IO using MPI-IO collective IO routines, so called full 
mode BT-IO. 
 
Figure 7 shows the performance of BT-IO. Compared 
to the original implementation, our implementation 
actually has longer execution time for BT-IO if we use 
a default subset_size 2 in hierarchical striping. Further 

analysis reveals that data in BT-IO is written 
sequentially in 40 different steps. With a subset_size of 
2 for a Lustre file system of 46 OSTs, the output file’s 
extents are divided into 23 subfiles, each for two 
OSTs. In every step, the data falls into only 1/40th of 
the entire file, i.e. one subfile. Therefore, the effective 
bandwidth is close to what’s available from 2 OSTs. 
We have also tested BT-IO with 8 timesteps. This 
scenario investigates whether the collective IO pattern 
in BT-IO, even with a reduced number of repetitions, 
can benefit from hierarchical striping. The last set in 
Figure 7 shows the performance of modified BT-IO. 
Hierarchical striping does indeed reduce the IO time 
by 5.21 and 3.87 seconds, for class B, 16 and 25 
processes, respectively. This suggests that hierarchical 
striping is beneficial to the scientific IO pattern as 
exhibited by BT-IO, when the file access is no longer 
limited to a single subfile. But further investigation is 
needed to make the benefits generally applicable to 
output files of arbitrary lengths.  
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Figure 7 BT-IO Performance 
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Figure 8 MPI-Tile-IO Performance 
 

4.4 MPI-Tile-IO 
 
MPI-Tile-IO [14] is an MPI-IO benchmark testing the 
performance of tiled data accesses. In this application, 
data IO is non-contiguous and issued in a single step 



 

 

using collective IO. It tests the performance of tiled 
access to a two-dimensional dense dataset, simulating 
the type of workload that exists in some visualization 
applications and numerical applications. In our 
experiments, each process renders a 1x1 tile with 
2048x1536 pixels. The size of each element is 64 
bytes, leading to a file size of 192*N MB, where N is 
the number of processes. 
 
MPI-Tile-IO requires an existing file for read. We 
focus our experiments on tiled write because writes are 
the focus of our study. Figure 8 shows the write 
performance of MPI-Tile-IO with 8 and 16 processes. 
Our implementation improved MPI-Tile-IO write 
bandwidth by 91% and 42%, respectively. These 
results also indicate that our optimizations are able to 
effectively aggregate write bandwidth for applications 
with non-contiguous collective IO as exhibited in MPI-
Tile-IO [14]. 

5 Related Work 
 

Numerous researchers have studied techniques to 
optimize data access for parallel scientific applications.  
ROMIO [4] provides the most popular implementation 
of a parallel IO interface, MPI-IO. One of its important 
features for collective IO is extended two-phase IO 
[20], which employs a two-phase strategy to distribute 
IO requests amongst a set of IO aggregator processes, 
thus consolidating many small, noncontiguous IO 
requests into a small number of large, contiguous 
requests for effective collective-IO. Extended two-
phase IO [20] optimizes collective IO only for cases 
with overlapped, non-contiguous accesses. Liao et .al. 
[10, 11] have carried out a series of studies on 
improving collective IO by caching application data at 
the user level. It has also been shown as beneficial at 
the MPI-IO layer [10]. We believe this user-level 
caching optimization is complementary to our work 
because it uses write-back to commit the data to the 
storage, which results in large IO request sizes. 
 
Parallel netCDF (PnetCDF) [9] is a project that 
provides collective IO optimizations for scientific 
applications on top of netCDF. Its main purpose is to 
enable parallelism for netCDF. Its design strategies do 
not take the parallel file system features into account. 
Rather it leaves that to lower programming layers, such 
as MPI-IO.  
 
Tatebe et al. have exploited the concepts of local file 
view in the design of a distributed file system for Grid 
[17, 18]. The idea of local file view is similar to split 
writing in this paper, except our technique is an 

abstraction at the user-level inside MPI-IO, which does 
not require instrumentation into the implementation of 
file system client architecture. Our hierarchical striping 
technique is similar in concept to another technique: 
two-level striping. Two-level striping is a disk striping 
technique used in the implementation of the Panasas 
[7] file system, and is used as an internal storage 
organization policy.  Our hierarchical striping is built 
on top of the user-level file joining feature. It works at 
the level of IO middleware, aimed to reduce the 
overhead of excessive striping. Nonetheless, these two 
techniques are similar in the way they both provide 
another level of striping to reshape the communication 
pattern between storage clients and devices. 
 
MPI-IO/GPFS [13] is an implementation that is similar 
to our work in that it introduces file-system specific 
optimizations to ADIO. It provides an optimized MPI-
IO implementation on top of IBM General Parallel File 
System (GPFS) [16]. Collective data access operations 
in MPI-IO/GPFS are optimized by minimizing 
message exchanges in sparse accesses and by 
overlapping communication with file operations. MPI-
IO/GPFS also takes advantage of GPFS programming 
features, such as data shipping, to achieve effective 
collective IO. 

6 Conclusions 
 
In this paper, we have shown that it is feasible to 
exploit the Lustre file joining feature for effective 
collective IO. We first show that IO middleware and 
programming libraries over Lustre need to be aware of 
its characteristics such as stripe width because 
excessive stripe width may incur significant striping 
overhead for both metadata and file read/write 
operations. We propose split writing and hierarchical 
striping to mitigate the striping cost while still being 
able to cover many storage devices. We have 
prototyped and evaluated these techniques inside a 
Lustre-specific ADIO implementation. Experimental 
results have shown our techniques are able to provide 
effective collective-IO and scalable management 
operations. The performance evaluation on other 
application IO benchmarks, such as BT-IO and MPI-
Tile-IO, suggests that the benefits of Lustre file joining 
can be beneficial to scientific IO patterns, but further 
investigation is needed to increase the applicability of 
our techniques to general workloads and overcome its 
drawback of low performance with an existing joined 
file. 
 
In the future, we intend to investigate how different 
striping policy can reshape the communication pattern 
between IO clients and storage devices, particularly in 



 

 

an ultra-scale environment. We also plan to further 
exploit potential benefits of the two proposed 
techniques by applying a dynamic striping policy in 
Lustre, possibly with hints from applications.  
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