
InterferenceRemoval: Removing Interference of Disk
Access for MPI Programs through Data Replication

Xuechen Zhang and Song Jiang
The ECE Department

Wayne State University
Detroit, MI, 48202, USA

{xczhang, sjiang}@wayne.edu

ABSTRACT
As the number of I/O-intensive MPI programs becomes in-
creasingly large, many efforts have been made to improve
I/O performance, on both software and architecture sides.
On the software side, researchers can optimize processes’ ac-
cess patterns, either individually (e.g., by using large and se-
quential requests in each process), or collectively (e.g., by us-
ing collective I/O). On the architecture side, files are striped
over multiple I/O nodes for a high aggregate I/O through-
put. However, a key weakness, the access interference on
each I/O node, remains unaddressed in these efforts. When
requests from multiple processes are served simultaneously
by multiple I/O nodes, one I/O node has to concurrently
serve requests from different processes. Usually the I/O
node stores its data on the hard disks, and different pro-
cess accesses different regions of a data set. When there are
a burst of requests from multiple processes, requests from
different processes to a disk compete with each other for its
single disk head to access data. The disk efficiency can be
significantly reduced due to frequent disk head seeks.

In this paper, we propose a scheme, InterferenceRemoval,
to eliminate I/O interference by taking advantage of opti-
mized access patterns and potentially high throughput pro-
vided by multiple I/O nodes. It identifies segments of files
that could be involved in the interfering accesses and repli-
cates them to their respectively designated I/O nodes. When
the interference is detected at an I/O node, some I/O re-
quests can be re-directed to the replicas on other I/O nodes,
so that each I/O node only serves requests from one or a
limited number of processes. InterferenceRemoval has been
implemented in the MPI library for high portability on top
of the Lustre parallel file system. Our experiments with rep-
resentative benchmarks, such as NPB BTIO and mpi-tile-io,
show that it can significantly improve I/O performance of
MPI programs. For example, the I/O throughput of mpi-
tile-io can be increased by 105% as compared to that without
using collective I/O, and by 23% as compared to that using
collective I/O.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’10, June 2–4, 2010, Tsukuba, Ibaraki, Japan.
Copyright 2010 ACM 978-1-4503-0018-6/10/06 ...$10.00.

Categories and Subject Descriptors
D.4.2 [OPERATING SYSTEMS]: Storage Management—
Secondary storage

General Terms
Design, Performance

Keywords
MPI program, MPI-IO, and I/O Interference

1. INTRODUCTION
I/O-intensive applications are widely used in scientific com-

putation and engineering simulation. For example, running
an astro application for analysis of astronomical data can
easily result in more than 50GB data on disk and 62% of
the total execution time involving disk I/O [13]. Therefore,
efficient I/O support is critical for their performance. With-
out significantly increasing efficiency of accessing data on
disk and ameliorating the I/O bottleneck, the application
performance can hardly benefit from the increasing num-
ber of compute nodes or number of cores on a node, and
the entire system can be seriously underutilized by leaving
many processor cycles idle. While MPI parallel programs
dominate scientific and engineering applications running in
major parallel systems [17], many efforts have been made
over years both on the software side and on the system ar-
chitecture side to improve I/O performance.

The efforts on the software side are mainly on forming
large and sequential requests, which can reduce request pro-
cessing overhead and significantly improve hard disk effi-
ciency. To this end, many middlewares, most in the form of
libraries, have been developed. Programmers can optimize
data access pattern within individual processes, using tech-
niques including data sieving [20], datatype I/O [2], and list
I/O [3], or across processes of an MPI program, such as col-
lective I/O [20, 10, 18, 25]. Using these techniques, requests
sent by a process can become larger and more sequential.
However, requests from different processes are sent to the
storage system in an uncoordinated order. On the hardware
side, today’s high performance computing platform usually
adopts a dedicated storage system, which is composed of
multiple I/O server nodes and managed by parallel file sys-
tems such as Lustre [4], PVFS [16], or GPFS [19]. In these
systems, user files are striped over multiple I/O nodes with
a constant striping unit size. Thus, the data requested in a
large request could span multiple I/O nodes, and the sys-

do cio=1,ncells
do kio=0, cell_size(3,cio)‐1
do jio 0 cell si e(2 cio) 1do jio=0, cell_size(2,cio)‐1
iseek=5*(cell_low(1,cio) +

$ PROBLEM_SIZE*((cell_low(2,cio)+jio) +
$ PROBLEM_SIZE*((cell_low(3,cio)+kio) +_ ((_ ())
$ PROBLEM_SIZE*ii)))

count=5*cell_size(1,cio)

call MPI_File_read_at(fp, iseek,
$ u(1,0,jio,kio,cio),
$ count, MPI_DOUBLE_PRECISION,
$ mstatus, ierr)

if (ierr .ne. MPI_SUCCESS) then
print * 'Error reading back file'print *, Error reading back file
call MPI_File_close(fp, ierr)
stop

endif
enddo

enddo
enddo

(b)

Figure 1: (a) The file offsets that are mapped onto an I/O node (Node 6) and are accessed in a five-second
execution period of program BTIO. Note that the file offsets represent relative on-disk locations assuming
data of a large file are generally contiguously laid out on the disk. (b) A fragment of source code of the MPI
program issuing the requests (wrapped in the box). (c) The corresponding file offsets that are accessed in a
five-second execution period of program BTIO on I/O node 6 with InterferenceRemoval enabled. The small
figures on the upper right corners of figures (a) and (c) illustrate the paths of disk head seeks in the first
seconds in their respective runs1.

tem efficiency is expected to improve through exploring the
parallelism in serving large requests.

1.1 A Motivating Example
Unfortunately, the I/O throughput experienced by an MPI

program can be still low, even though requests from pro-
cesses, probably with optimized access pattern, are served
simultaneously by multiple I/O nodes. To obtain the in-
sights behind the observation, we run the NAS BTIO bench-
mark [15], an MPI program, on a cluster of 13 nodes. In the
cluster, six nodes are configured as compute nodes and the
other seven as I/O nodes, managed by Lustre parallel file
system. File data is striped over six I/O servers (More de-
tails of the experimental platform can be found in Section
4.). In the experiment, the benchmark spawns nine pro-
cesses using non-collective I/O to write 1.5GB data to one
on-disk file and then read them. We monitor data accesses
at each I/O node and record from which process requests
are issued. Figure 1 (a) shows file offsets that are mapped
onto one particular I/O node and are accessed by each of the
nine processes during a five-second execution period. Fig-
ure 1 (b) shows the corresponding source code issuing the
requests. From Figure 1 (a), we can see that requests made
by each process are well aligned to allow the disk to effi-
ciently serve them if they were the only requests sent to
the disk. However, the multiple processes of the MPI pro-
gram simultaneously send their requests to the I/O node,
causing them to be served on the disk in an interleaving
fashion. That is, the disk head has to move back and forth
to access the requested data, which significantly harms the
efficiency of the disk and the I/O system. To reveal the
severe performance impact of this inter-process interference
in the program’s execution, we run the same program with
our InterferenceRemoval scheme enabled, in which no more
than two processes send their requests to one I/O node.

1We use disk block-level tracing tool blktrace to collect in-
formation on accessed disk locations and access times. The
disk location is represented by its corresponding logical block
number (LBN).

Figure 1 (c) shows file offsets that are accessed on the afore-
mentioned I/O node with the scheme. By having sequential
requests received and efficiently served at each I/O node,
the program execution time is reduced by 3.4X, from 4854
seconds to 1415 seconds.

1.2 Inadequacy of Existing Solutions
The root cause of the inter-process interference is that

each I/O node receives and serves concurrently multiple re-
quests from different processes. When the processes usually
do not coordinate the order for them to issue the requests,
the timings for the requests to be sent depend on the relative
speeds of the processes, which are usually indeterministic .
Therefore, the request arrival order is indeterministic or es-
sentially random, and is likely to cause the disk head to
thrash in accessing these requested data. Furthermore, a
request may span over multiple I/O nodes, and an I/O node
may service only part of the request. This would cause each
I/O node to be more likely to receive requests from multiple
processes.

Currently there are some strategies that could ameliorate
the problem in certain circumstances. If the requests from a
process are for fully contiguous file data, the file prefetching
mechanism on the I/O node can increase the amount of data
read from the disk with each disk head seek, amortizing the
seek overhead. However, it is effective only for large sequen-
tial read. For the BTIO benchmark, the access is mixed with
read and write and is not fully sequential, thus prefetching
would not help. In addition, the overhead for extracting
the sequential access from mixed request streams can be
high [11]. As we know, the disk scheduler can optimize disk
operations by sorting and merging requests when they reach
its dispatch queue for improved I/O efficiency. However, it
requires many requests be available in the queue for its ma-
nipulation. In many cases, requests are synchronously issued
and the next request would not be generated until the com-
pletion of the previous request. Usually it is the request
arrival order that determines how the disk head moves.

Understandably programmers may have taken great ef-

forts in arranging sequential data access. As these efforts
are mostly made within each process’s control flow, it does
not remove the identified interference, which occurs among
requests from different processes. Furthermore, the coordi-
nation among processes’ I/O operations, such as collective
I/O, does not effectively address the issue. Collective I/O
rearranges the data access scope among participating pro-
cesses to form large contiguous requests and synchronizes
the processes before or after issuance of the I/O requests.
Even if the processes are synchronized before sending their
requests, the synchronization does not optimize the order in
which the requests arrive at a disk, which can still be ran-
dom and substantially degrade disk performance [25]. Con-
ceivably, programmers can enforce a request issuance order
friendly to disk efficiency, possibly with the help of middle-
ware, by coordinating the timings of sending requests from
different processes with the goal that requests from processes
for data at lower disk addresses arrive earlier. Unfortunately,
this approach is not feasible or effective. First, as each re-
quest may touch multiple disks, the approach may have to
serialize the issuance of requests to achieve its goal, elimi-
nating the benefits of parallelism available in multiple I/O
nodes. Second, the approach has to synchronize between
pairs of processes, instead of a global synchronization used
in the collective I/O, causing a high overhead. Third, the
order in which requests arrive at the disks can be different
from the order in which requests are sent.

1.3 Opportunities and Our Solution
Though inter-process and across-nodes interference issue

identified in this paper has not been well addressed, the
interference within a hard disk has been well studied, and
many techniques for reducing the interference have been pro-
posed, which are usually to replicate data within one disk
and make the originally distant data close to each other [5,
1]. However, the data requested by processes of an MPI
program may have already been close to each other and the
interference is caused by the random request-arrival order in
an I/O burst. As MPI programs dominate the applications
running on parallel computers, and I/O efficiency becomes
increasingly important on these platforms, removing inter-
ference specifically for this running environment becomes
an urgent issue. Meanwhile, addressing the interference is-
sue specifically in this context provides us with unique op-
portunities for a better solution. First, a production MPI
program is usually executed on a parallel computer for nu-
merous times, possible with different set of data files. As
the data access patterns of its processes are mostly consis-
tent from one run to another run, we can identify segments
of files that are involved in the interference in one run and
expect access of these data would be the source of interfer-
ence in other runs. Thus, we can remove the interference
by eliminating this source identified beforehand. Second, in
the previous studies on the on-disk interference, the focus is
on the rearrangement of the data layout within one disk to
minimize the frequency and distance of its disk head seeks.
As there is only one disk head in a disk, the efficacy of these
efforts for removal of interference is limited. In contrast, the
existence of multiple I/O nodes in a parallel system provides
an opportunity to remove interference detected on each disk
through the coordinated efforts among multiple disks. In
other words, instead of adapting disk layout to predicted re-

quest arrival order2 via data replication within one disk, we
replicate data that can be involved in an interference from
one disk to other disks, so that multiple disk heads can serve
the requests independently without interference.

In this paper, we propose a data replication method, named
as InterferenceRemoval, to eliminate I/O interference among
processes of an MPI program. In the approach, we use a
profiling run of the program to identify segments of files in-
volved in the disk access interference and replicate them to
other I/O nodes. In this work we made the following con-
tributions.

• We design a method to collect I/O traces in which the
recorded request times are consistent across processes,
allowing us to identify interference at each I/O node.

• The interference is determined based on comparison
of the I/O efficiency between the original striped-data
layout and intended replicated-data layout. To facili-
tate the evaluation, we develop a simulation-based ap-
proach to evaluate their relative efficiency and carry
out only those replications deemed as cost effective.

• As removing interference for each I/O node indepen-
dently through data replication may simply move in-
terference from one node to another node or aggravate
other nodes’ interference, we design a scheme that co-
ordinates the data replication across the nodes with a
concerted effort to minimize number of processes from
which an I/O node receives requests.

• We implemented the interference removal scheme fully
in MPI-IO library in a cluster using the Lustre paral-
lel file system. It is highly portable and can be easily
adopted without assuming any special support from
OS, file system, or I/O nodes. Our experiments with
representative benchmarks, such as BTIO, ior-mpi-io,
mpi-tile-io, coll perf, show that InterferenceRemoval
can improve I/O throughput by up to 33X.

The rest of this paper is organized as follows. Section
2 discusses the related work. Section 3 describes the de-
sign and implementation of InterferenceRemoval. Section
4 describes and analyzes experiment results, and Section 5
concludes the paper.

2. RELATED WORK
As I/O-intensive applications become increasingly impor-

tant on the parallel platforms, a lot of work on the improve-
ment of I/O performance for high-performance computing
has been carried out. This work includes development of
I/O middlewares and optimization of system architecture.
While the hard disk is usually one of the major I/O perfor-
mance bottlenecks in a parallel system, enabling the peak
throughput of the disk is one of the major concerns.

I/O middlewares usually help to turn a large number of
requests for small and non-contiguous pieces of data into a
smaller number of large contiguous requests. In addition to
reducing request processing overhead, this can potentially
allow disks to be accessed sequentially, which is critical for a
disk’s throughput. Data sieving [20] is one of the techniques

2Actually such prediction is hard to be accurate, especially
for requests from different processes.

proposed to aggregate small requests into large ones. In-
stead of accessing each small piece of data separately, data
sieving accesses a large contiguous scope of data that in-
cludes the small pieces of data. If the additional data,
called holes, accessed in data sieving is not excessive, the
benefit can be large. Datatype I/O [2] and list I/O [3] are
the other two techniques that allow users to specify multi-
ple non-contiguous accesses with a single I/O function call.
Between them, datatype I/O is used for accesses with cer-
tain regularity and list I/O can handle a more general case.
Compared with these techniques applied in each individ-
ual process, collective I/O can infer a big picture of access
pattern among multiple processes of an MPI program to en-
able optimization in a greater scope. It aggregates small
requests into large contiguous ones by re-arranging requests
collectively issued by a group of processes. While collective
I/O can incur communication overhead for exchanging data
among participant processes, its performance advantage is
well recognized and the technique has been widely used.

However, the benefits of these techniques could be reduced
or even eliminated in an environment where file data are
striped over multiple I/O node, which is the most popular
I/O system architecture assumed by major parallel file sys-
tems such as PVFS [16] , Lustre [4], and GPFS [19]. In a
study of impact of data striping pattern on the performance
of ROMIO collective I/O implementation, it has been shown
that the I/O throughput of some popular I/O benchmarks
can be reduced to as low as 38% by using collective I/O
[25]. The reason for this large degradation is the on-disk
interference caused by random arrival order at an I/O node
for requests from different processes. By providing an ad-
ditional interference-resistant data layout on the I/O nodes
through selective data replication, we aim to enable the full
potential performance benefits from the I/O middlewares as
well as the I/O parallelism provided by the dedicated I/O
system.

Regarding the performance degradation of the hard disk
due to data access interference, there have been many schemes
proposed to reorganize data layout on a disk [6, 7] or repli-
cate data within the same disk (such as FS2 [5] and BORG [1])
according to detected access patterns. These schemes are ef-
fective when the access patterns are stable, such as the access
patterns exhibited within individual processes or the coor-
dinated issuance requests from distinct processes. For the
interference concerned in our work, it is the unpredictable
timings when the different processes of an MPI program send
their requests that cause the interference. Thus, the order
among requests from different processes is hard to repeat.
By allowing requests from different processes to be served
at different I/O nodes through data replication, our scheme
can avoid the uncertainty in the access order by taking ad-
vantage of existence of multiple I/O nodes in a system.

Anticipatory scheduling is another widely used technique
to remove interference among multiple streams of synchronous
requests to a disk [9]. In the scheduling, after serving a re-
quest from a process, the disk may be temporarily kept from
serving requests from other processes. Instead, it anticipates
additional requests from the same process to reduce disk
head seeks. However, because file data are spread over mul-
tiple I/O nodes and continuous requests can be served at dif-
ferent disks, a disk is not likely to quickly see its next request
from the same process as it anticipated and thus potential
performance gain could be neutralized. In our scheme, the

disk does not have to risk its waiting time by being idle,
because a disk is serving requests from only one or a small
number of processes once interference is detected.

Data replication has been used in the parallel comput-
ing environment. To improve reliability related to data loss
due to the failure of I/O nodes, the replication scheme pro-
posed in [24] coordinates with a job scheduler to replicate
data files, creating a data copy of a different striping pattern
across the I/O nodes. When a failure is detected, replicas
on I/O nodes other than the failed ones can be used to re-
store the original files instead of aborting and resubmitting
the whole job. Their experiment measurements show that
the cost for their replication is affordable. Wang et al. [23]
proposed to replicate frequently accessed data chunks to the
compute nodes’ local disks to reduce data access latency.
The frequently accessed data chunks are identified through
analysis of I/O traces collected in a profiling run. The legit-
imacy of their approach of identifying data of certain access
patterns through profiling runs is built on their observations
that“In scientific applications, file access patterns are gener-
ally independent of the data values stored.” and “When the
number of processes changes or the size of the input data file
changes, the pattern of file accesses changes very predictably,
so re-profiling can be avoided.”. Our profiling-based interfer-
ence detection and data replication are based on the similar
rationale. In addition, the increasingly large hard disk ca-
pacity and under-utilized disk space support the use of idle
disk spaces to trade for higher I/O performance [5].

3. THE DESIGN AND IMPLEMENTATION
As I/O requests from processes of an MPI program are

served in parallel by multiple I/O nodes, where data files
are striped, the interference at each I/O node among differ-
ent processes’ requests is likely to offset the potential per-
formance benefits from parallelism in the program execution
and I/O service. To eliminate the interference and fully take
advantage of the parallelism, we design a scheme, Interfer-
enceRemoval, for the MPI programs, to detect interference
for individual I/O nodes and conduct data replication for
selected file segments, request scheduling, and management
of replica consistency. To make our scheme portable and be
easily adopted in different systems, we implement all compo-
nents of the scheme in the middleware on the compute-node
side, specifically in the MPI-IO library.

3.1 Detection of Access Interference
To remove the interference, we need a mechanism to de-

tect it, or identify the interaction among continuously served
requests at a hard disk that causes substantial disk perfor-
mance degradation. However, we cannot simply measure the
disk throughput and compare it with its peak throughput to
evaluate the impact of the interaction or determine whether
an interference takes place. A disk’s actual throughout can
be low because of random requests from the same process,
which can be tackled in the program optimization and thus
is not in the scope of this work, or because of low I/O de-
mand. Our method is to use disk simulators to replay the
I/O traces collected in a profiling run of an MPI program.
Simulations are run with the traces against two data layouts.
The first one is the original data layout, in which files are
uniformly striped over the I/O nodes, and the second one is
the layout created by applying our data replication strategy
for interference removal. Then the severity of an interference

can be defined as the potential I/O performance improve-
ment from the interference removal strategy, quantified by
the simulation results. That is, the higher performance im-
provement our strategy can potentially achieve, the higher
interference with the original striping layout. The actual
data replication is carried out only when the estimated im-
provement is larger than a pre-defined threshold and thus
deemed as cost effective.

The I/O behaviors of an MPI program can be profiled by
running it and collecting traces of its I/O requests, which
are used to drive the simulators. As we aim for high porta-
bility by avoiding the involvement of any software on the
I/O nodes and any modification of OS or file systems, we do
not directly measure the arrival times or the arrival order
at an I/O node. Instead, we record the times for requests
to send and to finish observed at each process by modifying
the MPI-IO library. However, the times recorded by each
process are not comparable, if they run on different com-
pute nodes and their clocks are not synced. For this reason,
we run a utility program, which obtains the clock differences
among the compute nodes by running an MPI barrier state-
ment. Though the measurements of the differences have
errors, they are sufficiently accurate to estimate I/O service
times, especially for the times involved in an interference,
which are usually much larger than the errors. With these
differences, the times in the I/O traces collected for each
process are accordingly adjusted to a consistent clock time
so that we can merge the traces into one global trace, which
records request send and finish events, sorted by their ad-
justed times, for the entire program. For each request event
of a process, the accessed file, file offset, and data size are
recorded for the request. As we know how a file is striped
over the I/O nodes, including the start striping node, strip-
ing unit size, and striping depth, we can derive the I/O trace
for every I/O node from the global trace, including process
ID (or rank in the context of MPI programs), file offset, and
data size local to the I/O node for each request event that
this I/O node is involved in.

For the simulation of the performance improvement by our
data replication strategy, which will be described in the next
section, we use DiskSim [22], a widely used disk simulator
producing accurate request response time. DiskSim usually
takes a stream of requests, and for each request it takes the
location of requested data on the disk (Logic Block Number
or LBN) and request size as its input to calculate its disk ser-
vice time. We assign block contiguous in the logic file space
with contiguous LBNs, which is consistent to the disk space
allocation policies used in most file systems. The improve-
ment ratio improvement ratio for an I/O node is calculated
as the ratio of the service time of this I/O-node’s trace on
the data layout before replication (time before replica) and
the service time of this I/O-node’s trace on the data layout
after replication (time after replica). These two times are
derived from the statistics produced by the simulator as fol-
lows .

time before replica =
Pn

i=1[service time(reqi) +
disk speed factor ∗ IO idle time],

time after replica = maxm
j=1(

Pnj

i=1[service time
(reqi, nodej) + disk speed factor ∗ IO idle timej]),

improvement ratio = time before replica
time after replica

.

In the equations, n is the number of requests in the trace,
nj is the number of requests that are re-directed to a partic-
ular I/O node j due to data replication, and usually belong
to one or a small number of processes. m is the number of
I/O nodes. service time(req) is the service time of request
req before replication and service time(req, node) is the ser-
vice time of request req after replication of its data to node.
Both times are calculated by the simulator. The requests in
a trace are fed into the simulator in the order of their finish
times recorded in the trace, reflecting the order for the re-
quests to be processed in the real system. IO idle time is
the total period of times in the trace that are not covered
by any request’s processing period, or the period from the
request’s finish time to the send time of the request next to
it. Similarly, IO idle timej is the period of idle I/O time
for requests re-directed to I/O node j. As we do not assume
any a priori knowledge of the disks in the real I/O nodes in
the configuration of DiskSim simulator for the sake of porta-
bility, the service time produced by DiskSim can be inflated
or deflated compared with actual service time recorded in
the trace. We take the ratio of these two service times as
disk speed factor and use it to correspondingly adjust the
idle times in the formulas. It is noted that we assume one
disk in one I/O node in the description and in our exper-
iment setting, and run one DiskSim instance for one I/O
node. It is straightforward to extend it to I/O nodes with
multiple disks. For the pre-defined threshold improvement
ratio, an estimated ratio larger than the threshold indicates
an interference. Otherwise, it means that no interference is
detected.

To accommodate the scenario where interference appears
only during certain periods of an MPI-program’s execution,
we divide equally a program’s total execution period into
a sequence of time windows, and carry out the aforemen-
tioned interference detection for each window using traces
of requests serviced in the corresponding window. The de-
fault window size in our experiments is one second.

3.2 Replication of Selected File Segments
For every execution window in which an interference is

detected, which hints that an actual deployment of the data
replication strategy probably receives sufficiently high I/O
performance improvement, we carry out the replication for
the window. Figure 2 shows an example scenario: (a) an
original data layout on four I/O nodes, where the interfer-
ence has been detected, and (b) the set of data are replicated
on the selected I/O nodes to separate requests from different
processes to different nodes. To ensure a truly effective repli-
cation, we need to decide effectively what data to replicate
and where to replicate.

While a file is striped over I/O nodes with the striping
unit size, we partition a file evenly into a sequence of regions
whose size equals to the striping unit size, so that each region
is entirely stored in one I/O node. The region size in our
experiments is 64KB. Then we count the number of times
for which a region has been accessed in a time window when
interference is detected. A region whose count is larger than
a threshold value is deemed as the one contributing to the
interference and will be replicated. The threshold is the ratio
between a base threshold value and the window’s estimated
improvement ratio from the simulation. That is, a higher
potential improvement ratio would probably lead to more

the original file the replication file

I/O node 0

I/O node 1

I/O node 2

(a) (b)

I/O node 3

Regions accessed by process 0 Regions accessed by process 1

(a) (b)

Regions accessed by process 2 Regions accessed by process 3

Figure 2: (a) The example data layout on four disks, each in one I/O node. A disk has four data regions,
each accessed by a process. Concurrently serving requests from the processes causes disk head thrashing.
Therefore, the data regions are selected for replication. (b) After replication, the regions accessed by one
process are replicated contiguously on the designated home node of the process.

replicated regions, as it indicates a more serious interference.
In our experiments the default base threshold is 100.

As the interference concerned in the work is due to the
random arrival order of requests from different processes,
we attempt to make replicas for selected file regions on other
I/O nodes so that only requests from one or a small num-
ber of processes would be served at a node, eliminating the
root cause of the interference. Accordingly, the I/O node to
which a selected region is replicated, or the home node of
the region, is determined by the process that sends requests
for the data in the region. Specifically, the home I/O node
number is the process rank moduloed by the number of I/O
nodes. If a file region is accessed by more than one process
in a window, we use the rank of the process that sends the
largest number of requests to the region.

At each I/O node we create a replication file, in which
replicas of selected file regions that take this node as its
home I/O node are stored. The order for the regions to be
laid out in the file depends on their smallest finish times
among requests for the data of the region in the window,
to minimize disk seek time. A region will not be replicated
again if it has been replicated in a previous window. Fig-
ure 2 (b) shows the data layout in the replication file for the
scenario we illustrated.

An important implication of the replication strategy is
that the replication operations for all the I/O nodes in a
time window must be coordinated. That is, either all nodes
do the replications or not. Otherwise, the ones that do the
replications and then re-direct their requests to other nodes
may simply let the re-directed requests interfere with the re-
quests served on the other nodes and essentially shift their
interferences to others. Therefore, when we find that in-
terference is detected at more than half of I/O nodes in a
window, all nodes do the replication. Otherwise, none takes
the action. After replication, the locations of replicas are
recorded in a mapping table, in which all replicas produced
after the profiling run are recorded.

3.3 Request Scheduling and Management of
Replica Consistency

After a profiling run, the mapping table is stored in a
file in the same directory as the MPI program. We modify
the MPI library so that the mapping table is loaded with
MPI Init() and is unloaded with MPI Finalize(). The map-
ping table entries are hashed in memory for efficient table
lookup. With the data that could be involved in the in-
terference replicated, an I/O request from a process of an
MPI program will be re-directed to the process’s home I/O
node, if its requested data can be found there according to
the mapping table. If the write request is re-directed, the
corresponding table entry is marked as dirty, showing that
original copy now is obsolete. To maintain consistency of file
regions with replicas, we direct all read and write requests
for data in these regions to their replica copies. In this way,
we guarantee that an obsolete original copy of the region will
not be read within a program’s run. Furthermore, the only
possible inconsistency among in-memory mapping tables for
different processes is the dirty flag for a table entry, which is
not used until we need to update the original copies of the
regions.

At the end of an MPI-program’s execution, each process
writes back its dirty entries to the program’s mapping table
file. As each profiled MPI program has its mapping table
file, a dirty entry in one table invalidates all replicas recorded
in other tables. For this reason, we maintain a global map-
ping table file in the system, which tracks all replicas, as
well as its validity and dirtiness states, of any file regions
that have been replicated in any programs’ profiling. When
a program’s mapping table is written back, the global table
file will be accordingly updated. Similarly, before a mapping
table is loaded from its file, we validate its entries against
the global table. We also provide tools to maintain the con-
sistency of replicas in an off-line manner, including updating
the original copies for dirty replicas, validating a mapping
table file against the global table file, and removing invali-
dated replicas.

4. PERFORMANCE EVALUATION
To evaluate the performance of InterferenceRemoval (IR

in short hereafter), we set up a cluster with six compute
nodes, six dedicated I/O nodes, and one metadata server
of the parallel file system. All nodes are of identical con-
figuration, each with dual 1.6GHz Pentium processors, 1GB
memory, and a SATA disk (Seagate Barracuda 7200.10) with
NCQ enabled. Each node runs Linux 2.6.21 with default
CFQ I/O scheduler and uses GNU libc 2.6. The cluster is
installed with the Lustre parallel file system version 1.6.6.
We use MPICH2-1.1.1 [14], complied with ROMIO, to gener-
ate executables for MPI programs. All nodes are connected
through a switched Gigabit Ethernet. The striping unit size,
64KB, is used to stripe files over six I/O nodes in the Lustre
file system.

Major components of IR, including those for interference
detection, file region replication, and request redirection based
on the mapping table, are implemented in the MPI library,
mostly in MPI-IO and ADIO libraries, through instrument-
ing MPI functions such as MPI Init(), MPI Finalize(), MPI
File read(), MPI File write(), MPI File read all(), and MPI
File write all(). There are two instrumented libraries, one
for profiling run, another for actual run of the MPI program.
According to the purpose of a particular run, different li-
brary is linked to generate the executable for the run. For
each profiled MPI program, there is a replica file on each I/O
node to store replicated regions. The file is in a directory
dedicated for replica files. We set the striping attributes for
the directory so that the files in it are not striped over more
than one I/O node. IR also includes a set of off-line tools
to manage consistency between runs of a program and that
between runs of different programs, which has been briefly
described in Section 3.3.

We choose three widely used MPI-IO benchmarks to eval-
uate the IR scheme, namely BTIO from the NAS paral-
lel benchmark suite [15], ior-mpi-io from the ASCI Purple
benchmark suite developed at Lawrence Livermore National
Laboratory [8], mpi-tile-io from the Parallel I/O Bench-
marking Consortium at Argonne National Laboratory [12].
We use different input files for profiling runs and for real
runs in the experiments.

4.1 General Performance

4.1.1 Benchmark BTIO

BTIO is an MPI program designed to solve the 3D com-
pressible Navier-Stokes equations using MPI-IO library for
its on-disk data access. We choose to run the program with
an input size coded as B in the benchmark, which generates
a data set of 1.5GB. The program can be configured to use
either non-collective or collective I/O functions for its I/O
operations. We profile the executions of BTIO using either
non-collective I/O or collective I/O with 4, 9, or 16 pro-
cesses, generating region replicas for detected interferences.
Then we run the program with IR using the replicas. We
compare the program’s I/O throughput using IR with that
accessing original striped data in Figure 3.

Let us first look into the improvements by IR for non-
collective version of BTIO. The throughput is improved by
6X, 26X, and 33X, for program runs with 4, 9, and 16 pro-
cesses, respectively. These improvements are dramatic, es-
pecially with runs using a larger number of processes. As
we know, each process of the program periodically issues a

 0

 20

 40

 60

 80

4 9 16

I/O
 T

hr
ou

gh
pu

t (
M

B
/s

)

Number of Processes

Non-collective Original
Non-collective IR

Collective Original
Collective IR

Figure 3: I/O throughputs of the collective-I/O ver-
sion and non-collective-I/O version of benchmark
BTIO when they are executed without IR (Original)
or with IR, and with different number of processes.

number of small sequential write requests and then reads the
data back (request size is mostly around 170Bytes). To illus-
trate the interference on a particular I/O node, we show the
file positions (offsets) that are allocated at I/O node 6 and
are accessed by each of the nine processes in a 9-process run
during a five-second execution period, without IR or with
IR, in Figure 1(a) and (c). Without using IR, there are at
least four different file ranges that are concurrently touched
by the processes at a single disk. From which range the next
request would ask for its data depends on which process is-
sues the next request, which is apparently unpredictable.
The consequent random data access on a disk causes the
disk head thrashing, or interference among requests from the
processes. The interference gets worse with the increasing
number of processes. By applying IR, node 6 only serves
requests from process 6, from low LBN addresses to high
LBN addresses, without any interference.

From figure 3 we can observe that the program’s through-
put with collective I/O performs much better than its non-
collective version. Through profiling we find that the size of
collective-I/O requests is around 40MB, much larger than
size of requests with non-collective I/O. This makes data
accessed at one disk for one request nearly as large as 7MB,
which is large enough to amortize the cost of a disk head
seek and to make the disk work efficiently. Accordingly, IR
for the collective-I/O version cannot detect any interference
and does not make any replicas. Its throughput is the same
as that without using IR, showing that the additional time
overhead of IR is minimal. Furthermore, the throughput of
the non-collective-I/O version with IR is higher than that of
the collective-I/O version without IR for large numbers of
processes (9 and 16).

4.1.2 Benchmark ior-mpi-io

In benchmark ior-mpi-io, each of the m MPI processes
is responsible to read or write 1/m of a file whose size is
8GB. Each process issues continuously sequential requests,
each for a 64KB segment. If collective I/O is used, the pro-
cesses’ requests for data at the same relative offset in each
process’s access scope are organized into one collective-I/O
function call. Figure 4 shows the throughput of two versions
of ior-mpi-io, non-collective I/O and collective I/O, with IR

 0

 50

 100

 150

 200

 250

4 8 16

I/O
 T

hr
ou

gh
pu

t (
M

B
/s

)

Number of Processes

Read

Non-collective Original
Non-collective IR

Collective Original
Collective IR

 0

 50

 100

 150

 200

 250

4 8 16

I/O
 T

hr
ou

gh
pu

t (
M

B
/s

)

Number of Processes

Write

Non-collective Original
Non-collective IR

Collective Original
Collective IR

Figure 4: I/O throughputs of the collective-I/O ver-
sion and non-collective-I/O version of benchmark
ior-mpi-io when they are executed without IR (Orig-
inal) or with IR and with different number of pro-
cesses. The I/O requests are designated either as
read or as write.

or without IR, for different number of processes. The pro-
gram’s I/O can be designated as either read or write. The
throughput for both read and write are shown in Figure 4.
Compared with BTIO, the improvement for ior-mpi-io with
IR is smaller, especially when the number of processes is
small. In ior-mpi-io, the request size is larger (64KB), and
each process accesses contiguous data in its access scope.
When the process count is four, the interference is small
enough to be deemed as not cost-effective to replicate file
regions by IR. Therefore, there is only a few or no regions
replicated in the case. When the process count is 8 or 16,
interference becomes intensive at each I/O node, which is
detected and removed by IR. The I/O throughput improve-
ment ranges from 20.8% to 56.5%. Interestingly, for the
original ior-mpi-io (without using IR) with four processes,
using collective-I/O adversely reduces I/O throughput sig-
nificantly because of the unbalanced I/O load, rather than
interference. Therefore, IR does not help fix the problem.

4.1.3 Benchmark mpi-tile-io

Benchmark mpi-tile-io uses MPI processes to read or write
a file in a tile-by-tile fashion, with two adjacent tiles par-
tially overlapped. Each process accesses 4MB, with 2KB
of overlap between two consecutive accesses. Figure 5 shows
the I/O throughput of the two versions of the program, non-

 0

 20

 40

 60

 80

 100

 120

 140

 160

4 8 16

I/O
 T

hr
ou

gh
pu

t (
M

B
/s

)

Number of Processes

Read

Non-collective Original
Non-collective IR

Collective Original
Collective IR

 0

 20

 40

 60

 80

 100

 120

4 8 16
I/O

 T
hr

ou
gh

pu
t (

M
B

/s
)

Number of Processes

Write

Non-collective Original
Non-collective IR

Collective Original
Collective IR

Figure 5: I/O throughputs of the collective-IO
version and non-collective-I/O version of bench-
mark mpi-tile-io when they are executed without IR
(Original) or with IR, and with different number of
processes. The I/O requests are designated either
as read or as write.

collective I/O and collective I/O, when we increase the num-
ber of processes from 4, 8, to 16, without using IR or with
IR enabled. The results of using non-collective I/O show
that the I/O throughput is reduced with the increasing num-
ber of processes, indicating increasingly severe interference
among requests from a larger number of processes at each
I/O node. In contrast, the runs with IR consistently increase
the throughput, up to a 105% increase over its counterpart.
With increasing process count, IR maintains high through-
put by removing interference and taking advantage of higher
process parallelism. This is accompanied with 0%, 30%, and
60% of the file regions replicated with process count of 4, 8,
and 16, respectively. From figure 5 we can also observe that
the program with collective I/O achieves higher throughput
than its non-collective I/O version because of the increased
size of collective I/O request (32KB). As a result, the perfor-
mance improvement is marginal by using IR for the program
with collective I/O optimization.

4.2 Impact of the Replicated Data Amount on
IR’s Effectiveness

In this section, we study how the effectiveness of IR de-
pends on the amount of data replicated, or how IR is cost
effective. As we described in Section 3, a base threshold im-
provement ratio is used to determine how large an estimated

 0

 25

 50

 75

 100

 125

 150

 175

 200

0% 20% 40% 60% 80% 100%

I/O
 T

hr
ou

gh
pu

t (
M

B
/s

)

Data Replication Ratio

BTIO
ior-mpi-io

Figure 6: I/O throughputs of programs BTIO and
ior-mpi-io with different data replication ratios.

I/O improvement ratio, obtained from the simulations, has
to be for an interference to be detected. The larger the
base threshold value is, the more difficult for an interaction
among requests to be identified as interference. In other
words, the higher the threshold, the smaller the data repli-
cation ratio, which is defined as the percentage of total ac-
cessed file regions that have been replicated. We incremen-
tally change the base threshold improvement ratio to get the
relationship between the amount of replicated data and the
performance improvement. Figure 6 shows the relationship
for programs BTIO and ior-mpi-io. For BTIO benchmark,
we use nine processes and its non-collective version. For
ior-mpi-io, we use 16 processes and its non-collective ver-
sion. In the figure, the throughputs for 0% are actually the
ones for the programs’ runs without using IR. The results
show that generally high replication ratio leads to higher
I/O performance improvement. However, not all replication
ratios are available, such as 20%, 40%, and 80% for ior-
mpi-io in the figure. This is because not all estimated I/O
improvement ratios are available, as shown in Figure 7. Fig-
ure 7 shows estimated throughput improvement ratios for
each window in the programs’ executions. As the ratios are
not evenly distributed across the space, especially for ior-
mpi-io, we have either little replication or more than half of
file regions replicated when we increase the base threshold
improvement ratio. This indicates that in some scenarios, a
relatively high cost is needed to enable IR. For BTIO, we see
that the replication ratio, as well as the throughput, keeps
increasing when we continuously reduce the threshold.

4.3 The Effectiveness of IR with I/O Interfer-
ence from other Programs

As IR is intended to identify and remove interference for
one MPI program, there may be interference caused by com-
peting I/O requests from other programs concurrently run-
ning in the system. To see the impact of this interference on
the effectiveness of IR, we choose S3aSim, a program widely
used in the computational biology for sequence similarity
search [21], to keep generating interfering I/O requests in
background. The program’s I/O intensity can be adjusted
by setting its compute speedup parameter. A larger compute
speedup produces a higher I/O intensity. In the experiments
we test three speedup values (1, 1.5, and 2), where each
value roughly doubles the I/O intensity associated with its

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400 1600

E
st

im
at

ed
 I/

O
 Im

pr
ov

em
en

t R
at

io

Time Window Number

ior-mpi-io

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
E

st
im

at
ed

 I/
O

 Im
pr

ov
em

en
t R

at
io

Time Window Number

BTIO

Figure 7: Estimated I/O improvement ratios ob-
tained from the DiskSim simulator for each exe-
cution window in running programs ior-mpi-io and
BTIO.

preceding value.
Figure 8 shows the I/O read throughput of program ior-

mpi-io with 16 processes using non-collective I/O. From the
figure we can see that when I/O interference from the back-
ground program is low (speedup 1), both the run of the
original program and the run with IR experience little per-
formance loss, compared with the throughputs in their dedi-
cated runs. However, as the interference from S3aSim keeps
increasing, the throughputs of both runs are reduced as some
of the I/O nodes’ bandwidth is taken by S3aSim. However,
the reductions for the runs with IR are apparently larger,
to the extent that the performance improvement from IR
disappears (for speedup 2). When the interference from the
other program becomes dominant in affecting a disk’s effi-
ciency, removing interference within a single MPI program
does not help improve this program’s I/O performance. As
IR is designed to remove the I/O interference within an MPI
program, it is effective only when this type of interference is
the major cause of low disk efficiency.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we describe the design and implementa-

tion of the InterferenceRemoval scheme to identify and re-
move I/O interference at each I/O node caused by serv-
ing requests simultaneously sent by multiple processes of
an MPI program. This is achieved in principle by direct-
ing requests from different processes to different I/O nodes
through replicating selected file regions. To justify the cost

 100

 120

 140

 160

 180

 200

Dedicated Speedup1Speedup1.5Speedup2

I/O
 T

hr
ou

gh
pu

t (
M

B
/s

)
ior-mpi-io Original

ior-mpi-io IR

Figure 8: I/O throughputs of program ior-mpi-io
without IR (Original) and with IR in their respec-
tive dedicated runs and runs under interference from
another program of varying I/O intensity. A larger
compute speedup represents a higher I/O intensity.

associated with the data replication, we replicate data only
when a true interference is detected using accurate trace-
driven simulations. InterferenceRemoval is implemented in
the ROMIO MPI library. Our experimental evaluation of
the scheme on top of the Lustre file system with representa-
tive benchmarks, such as NPB BTIO, and mpi-tile-io, shows
that it can significantly improve I/O performance. However,
as we have shown, currently the scheme is designed specific
for one MPI program. When interference among concur-
rently running MPI programs dominates the efficiency of
I/O nodes, a scheme to detect and remove this type of in-
terference must be designed and applied for entire system’s
I/O performance. We plan to study the issue as one of our
future work, possibly by extending some methods proposed
in this paper.

6. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive

comments. This work was supported by US National Science
Foundation under grants CCF 0702500 and CAREER CCF
0845711.

7. REFERENCES
[1] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J.

Liptak, R. Rangaswami, and V. Hristidis,
“BORG:Block-reORGanization for Self-optimizing Storage
Systems”, In Proceedings of the 7th USENIX Conference
on File and Storage Technologies , San Fancisco, CA, 2009.

[2] A. Ching, A. Choudhary, W. Liao, R. Ross, and W. Gropp,
“Efficient Structured Data Access in Parallel File System”,
In Proceedings of IEEE International Conference on
Cluster Computing, Hong Kong, China, 2003.

[3] A. Ching, A. Choudhary, K. Coloma, and W. Liao,
“Noncontiguous I/O Accesses Through MPI-IO”, In
Proceedings of IEEE International Symposium on Cluster,
Cloud, and Grid Computing, Tokyo, Japan, 2003.

[4] Cluster File Systems, Inc. Lustre. “Lustre: A scalable,
robust, highly-available cluster file system”,
http://www.lustre.org/. Online-document, 2010.

[5] H. Huang, W. Hung, and K. Shin, “FS2: Dynamic Data
Replication in Free Disk Space for Improving Disk
Performance and Energy Consumption”, In Proceedings of

ACM Symposium on Operating Systems Principles,
Brighton, UK, 2005.

[6] W. Hsu, A. Smith, H. Young, “The Automatic
Improvement of Locality in Storage Systems”, ACM
Transactions on Computer Systems, Volume 23, Issue 4,
Nov. 2006, Pages 424-473.

[7] W. Hsu, A. Smith, H. Young, “The Automatic
Improvement of Locality in Storage Systems”, Technical
Report CSD-03-1264, UC Berkeley, Jul. 2003.

[8] Interleaved or Random (IOR) benchmarks,
http://www.cs.dartmouth.edu/pario/examples.html,
Online-document, 2008.

[9] S. Iyer and P. Druschel, “Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in
synchronous I/O”, In Proceedings of ACM Symposium on
Operating Systems Principles, Banff, Canada, 2001.

[10] D. Kotz, “Disk-directed I/O for MIMD Multiprocessors.”,
ACM Transactions on Computer Systems, Volume 15,
Issue 1, Feb. 1997, pages 41-74.

[11] S. Liang, S. Jiang, and X. Zhang, “STEP:Sequentiality and
Thrashing Detection Based Prefetching to Improve
Performance of Networked Storage Servers.”, In Proceedings
of International Conference on Distributed Computing
Systems, Toronto, Canada, 2007.

[12] Mpi-tile-io Benchmark, http:
www-unix.mcs.anl.gov/thakur/pio-benchmarks.html.
Online-document, 2009.

[13] M. Kandemir, S. Son, M. Karakoy, “Improving I/O
Performance of Applications through Compiler-Directed
Code Restructuring”, In Proceedings of the 6th USENIX
Conference on File and Storage Technologies, San Jose,
CA, 2008.

[14] MPICH2, Argonne National Laboratory,
http://www.mcs.anl.gov/research-/projects/mpich2/.
Online-document, 2009.

[15] NAS Parallel Benchmarks, NASA AMES Research Center,
http://www.nas.nasa.gov/Software/NPB/.
Online-document, 2009.

[16] PVFS, http://www.pvfs.org. Online-document, 2010.

[17] P. Pacheco, “Parallel Programming with MPI”, Morgran
Kaufmann Publishers, pages 137-178, 1997.

[18] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M.
Winslett, “Server-directed collective I/O in Panda”, In
Proceedings of Supercomputing, San Diego, CA, 1995.

[19] F. Schmuck and R. Haskin, “GPFS:A shared-disk file
system for large computing clusters.”, In Proceedings of the
1st USENIX Conference on File and Storage Technologies,
Monterey, CA, 2002, Monterey, CA, USA.

[20] R. Thakur, W. Gropp and E. Lusk, “Data Sieving and
Collective I/O in ROMIO”, In Proceedings of the 7th
Symposium on the Frontiers of Massively Parallel
Computation, Annapolis, MD, 1999.

[21] S3aSim I/O Benchmark, http://www-
unix.mcs.anl.gov/thakur/s3asim.html. Online-document,
2009.

[22] The DiskSim Simulation Environment(v4.0), Parallel Data
Lab, http://www.pdl.cmu.edu/DiskSim/.
Online-document, 2009.

[23] Y. Wang and D. Kaeli, “Profile-Guided I/O Partitioning”,
In Proceedings of International Conference on
Supercomputing, San Fancisco, CA, 2003.

[24] C. Wang, Z. Zhang, X. Ma, S. Vazhkudai, and F. Mueller,
“Improving the Availability of Supercomputer Job Input
Data Using Temporal Replication”, In Proceedings of
International Supercomputing Conference, Hamburg,
Germany, 2009.

[25] X. Zhang, S. Jiang, and K. Davis, “Making Resonance a
Common Case: A High-performance Implementation of
Collective I/O on Parallel File Systems”, In Proceedings of
IEEE International Parallel & Distributed Processing
Symposium, Rome, Italy, 2009.

