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Abstract—The Internet-of-Things (IoT) attracts great attention
in the past few years. With millions of devices connected to
the network, data are generated at an unprecedented speed
and the data must be stored efficiently in the database to
serve spatial queries. In existing spatial databases that use
space-filling curves to organize the data, they store spatial data
without considering on-road data distribution. This will introduce
unnecessary computation and I/O cost in the service of users’
queries about data on the roads. In this paper, we present a
Road-Aware Spatial Mapping of data to the storage, or RASM
for short, which can be applied in spatial databases for highly
efficient storage and query services for moving objects. Usually,
a space-filling curve, such as the Hilbert curve, is used to map
data in a cell of a geographical area to a segment of linear
storage space. However, in a road-network system where data
are most distributed and queried along the roads, using a generic
square cell as a mapping unit to aggregate data is in conflict
with the data use pattern. In RASM, road segment, instead of
the cell, is used as the unit of space mapping and data storage
so that data requested in a road query can be stored together to
enable efficient I/O. Furthermore, a substantial computation may
be required to identify mapping units covered in a query in a
geometric space. As RASM has grouped data in the road-segment
units, one can efficiently found the units covered in a road query,
which is usually concerned only about data on a few segments of
roads. We implemented a prototype query-serving system using
RASM to map data on road segments to a linear space enabled by
LevelDB, a widely-used key-value store. Experiment results with
real-world traffic data show that with RASM, the road query
time can be reduced by up to 43%, and the I/O traffic can be
reduced by up to 70%. In the meantime, other queries about
geographical regions are well supported in RASM with minimal
performance impacts.

I. INTRODUCTION

Internet-of-Things (IoT) has been widely deployed over the
past few years. Over 57 percent of companies have already
adopted the technology, and by 2019 that number is expected
to reach 85 percent [1]. With millions even billions of GPS-
enabled devices connected to the Internet [2]—[5], the total
amount of spatial data produced by those devices becomes
significant. For example, 15 million rides are generated by
Uber every day, and there are over 5 billion records in their
database [2]. Therefore, those data must be stored efficiently in
the database to serve spatial queries. Space-filling curve [6]-
[8] is a commonly used technique to determine what data
should be stored together to serve queries efficiently. When a
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(a) Query within a circle area (b) Query on a road

Fig. 1: The 8 x 8 space is mapped to a one-dimensional storage
space using a Hilbert curve represented by the orange polyline.
In particular, a cell in the grid is mapped to a block on the line
representing the disk space. An example query is concerned
with a geometric region in green, and the cells overlapping
the region are mapped to multiple blocks (in blue) on the line.

space-filling curve maps spatial data to a one-dimension (stor-
age) space, its objective is to make the data in a geographic
region covered in a query be stored together on the storage.

Among many proposed space-filling curves, such as Z
curve [9] and Peano curve [10], Hilbert curve [11] is often the
preferred one as it achieves the best clustering effect [12], [13]
to enable efficient I/O operations during service of queries.
However, the Hilbert curve shows inadequacies in serving
queries on data about moving objects on the roads with
compromised I/O and computation efficiency.

Weakened spatial locality of accessing data for querying
moving objects on roads. A geometric surface is usually
divided into m x m cells for the Hilbert curve to map and
arrange the spatial data on the disk. These cells are numbered
by the visiting sequence of the Hilbert curve. To serve a region
query, which covers a geographic region (e.g., finding all
yellow taxies within one mile), all the cells that intersect with
the region have to be retrieved. While the curve determines the
distribution of the cell data on the disk, a region of cells can be
mapped to multiple discontiguous segments on the disk, and
accordingly a query on a geographic leads to multiple range
scans, one for a segment of data, on the disk. As illustrated
in Figure la, a query for data within a circle is translated into



two range scans (scans in [6 .. 11] and [53 .. 60]). For the sake
of I/0O efficiency, the fewer the scans on the disk, the better.

For moving objects, or vehicles on the run, the data are
mostly located on the roads, and most queries are about data
on the roads, such as retrieving the trajectory of an Uber
ride or collecting the traffic data at a crossroad. The type
of spatial queries is named road query, in contrast with the
generic region query. With the help of the Hilbert curve, region
queries can usually receive good performance as the access
locality among objects in a two-dimensional region can be
retained when the corresponding data are stored on the disk.
However, the roads involved in a road query usually intersects
multiple cells which are not concentrated in a small region in
the two-dimensional space. Accordingly, with current use of
the Hilbert curve the data on the roads are not stored together
on the disk. As illustrated in Figure 1b, using the Hilbert curve
makes the data about the objects on a short segment of a road
be scattered in the linear space, requiring many range scans (7
in the example), or many disk-seek operations on a hard disk
to serve the road query. This can significantly compromise I/O
efficiency and degrade the queries’ service quality.

Retrieval of irrelevant data in the service of road queries.
The entire geometry surface is organized as a quad-tree to
facilitate the search for data covered in a query. Each node
of the quad-tree is a cell and each level corresponds to a
space partitioning resolution. At each level of the quad-tree,
the Hilbert curve is applied to encode the cells. Accordingly,
data are partitioned into different groups in the quad-tree and
then mapped to the disk. All spatial queries, including region
queries and road queries, are served by searching the cells
that overlap with the target region or road(s) on the geometry
surface at a given resolution. This searching method is named
region cover [14].

For road queries, the region cover method can cause signif-
icant read amplification as all the data in the overlapped cells
are retrieved from the disk which can include a substantial
amount of irrelevant data. A cell may intersect some road
segments which are not related to our query requests. To
serve a read query, though only data on the relevant road
segments need to be read, all data in the cells intersecting
with the segments are actually read. Additionally, the storage
system may require reading extra data, including that due to a
disk’s block access interface. Instead of directly managing data
on the disks, we use LevelDB [15], a key-value (KV) store
based on Log-Structured Merge Tree (LSM-Tree) [16], to store
and retrieve data to minimize performance impacts of random
writes. The ratio between the amount of data retrieved from the
KV store and that actually used to serve a query quantifies the
read amplification in the query service and represents a source
of overhead.

With a lower resolution, or larger cells, a larger area will
be included and more data are returned. For example, at the
given resolution 50, the read amplification is about 170%.
With a higher resolution to cover a road, the total area of
the cells becomes smaller, and accordingly fewer irrelevant
data will be retrieved to serve a query. Although increasing
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Fig. 2: Read amplification of road queries on real-world traffic
dataset with different resolutions. The data are from 60 million
taxi trips collected in Shenzhen, China. Here resolution is
denoted by the number of cells. With more cells for covering
the road, a more precise covering can be used to depict the
road.

the resolution can reduce irrelevant data retrieved from the
storage, it can compromise the 1/O efficiency because skipping
the non-relevant data introduces more range scans. Figure 2
shows average read amplification of serving road queries with
different resolutions for covering a road. In the measurements,
lookup requests (through SEEK interface) are sent to Level DB
to search for all objects on 4934 roads.

The computation cost for serving spatial queries. In
addition to I/O inefficiency, existing geospatial storage systems
also pay unnecessary computation cost when serving road
queries for moving objects under high resolution. This cost is
introduced for computing region covers, or finding the smallest
set of cells to cover a query region using a recursive algorithm.
The time complexity is proportional to the given resolution.
The algorithm will be discussed in the next section. This road-
to-cells cost is non-negligible for road queries, and we will
show the results in the evaluation section. For road queries, if
we can organize data based on road segments, it may not be
necessary to search for cells to cover data on the roads, and
the corresponding cost can be reduced.

The Road-Aware Spatial Mapping Approach. In this
paper, we present a Road-Aware Spatial Mapping approach,
or RASM for short, to provide highly efficient data stor-
age and management for moving objects. To improve I/O
efficiency, minimize retrieval of irrelevant data, and reduce
the computation cost in the service of road queries, RASM
does not use the fixed cells as the base unit for the Hilbert
curve to visit for mapping. Instead, the base unit is replaced
with road segment, and each segment has a unique encoding
number, named segment ID. All spatial data about the moving
objects are attached to their corresponding road segments,
whose ID serves as the key for data storing and querying.
This design is motivated by two observations. First, to serve
spatial query efficiently, the data distribution should fit the
data access pattern which is determined by the query pattern.
Second, in addition to the region query that searches for the
data in a geometric area, most queries for moving objects
are road queries conforming to the road network distribution.
Therefore, to improve service efficiency of road queries, we
should utilize the road network information in the data storage
so that access locality of data on a road segment can be
retained in the linear space. Since RASM uses the Hilbert
curve to encode the road segments, the locality of nearby



segments is also retained in the linear space. Meanwhile,
RASM serves road queries directly by using the segment ID
without using the region cover algorithms, so the computation
cost is also reduced. With RASM, road queries become more
efficient and the performance for region-based queries is not
compromised.

In summary, we make three major contributions in this
work:

o We reveal inadequacies of existing application of the
Hilbert curve in processing road queries for moving
objects.

e We propose a new approach of data organization that
considers the fact that data about moving objects are
associated with the roads. With this road-aware local data
organization, the Hilbert curve is enabled to lay out data
on the storage device to support efficient spatial query
processing.

o We implement a prototype of the design using LevelDB,
a widely-used key-value store, as its underlying storage
system, and conduct extensive experiments on real-world
traffic datasets. The results show that with RASM, the
road query time can be reduced by up to about 43%.
Further, this improvement of road query efficiency does
not come at the cost of performance and accuracy of
region queries.

II. BACKGROUND AND RELATED WORK

This section presents brielfly background knowledge of
RASM, including geospatial index structures and region query
translation algorithm. Some works related to the paper are also
described.

A. Indexing spatial data

The method to index spatial data can be categorized into
two types, namely data partitioning and space partition-
ing based indices [17]. Data-partitioning-based indexes, such
as R-Tree [18] and its variations R*-Tree [19] and STR-
Tree [20], group spatial data with a Minimum Bounding
Rectangle (MBR), where MBR acts as a node in a tree data
structure. As areas covered by different MBRs may overlap,
serving spatial queries can be expensive since a geometric area
may intersect with many MBRs and all data in these MBRs
need to be retrieved. This would cause high read amplification.
The read amplification can also be excessive in R-tree because
the MBRs are generated based on the data distribution, and
can be very large with a low data density. Space-partitioning-
based indexes, such as Quad-Tree [21] and Grid [22], partition
geospatial space into non-overlap cells. Geohash and space-
filling curves [10], [11] are then used to encode those cells
with unique IDs. Spatial data that fall into the cell will carry
the cell ID. Spatial queries for moving objects in those indexes
suffer from the similar problem with data-partitioning-based
indexes. Under low resolutions, the read amplification can be
high, while under high resolutions too many range scans or
disk-seek operations can be produced, which may become a
major performance bottleneck.

(a) Max # of cells: 10 (b) Max # of cells: 60

Fig. 3: Region Cover Under Different Resolution. The red
rectangle is our target region of a spatial query. The blue
rectangles are the cells chosen by region cover algorithm to
cover the target region. With a higher limit of cell number, a
more precise covering can be found.

B. Region Cover Algorithm

For the service of spatial queries in a geospatial storage
system, a region cover algorithm is used to find all the
cells that overlap with the input geometric area. The Google
S2 [23] library provides an implementation of the region cover
algorithm [24], in which the entire earth surface is mapped
to the six faces of a cube. Each face is split into cells of
different sizes in the form of quad-tree with 30 levels. And
the cell size varies from 7842km to 8mm [25]. To find the
optimal covering of a shape, the algorithm first checks the
six faces and discards ones that do not intersect with the
area of interest. Then it repeatedly chooses the largest cell
that intersects the area and subdivides it. A priority queue
is maintained to store the cells, which is called candidates,
that partially overlaps with the area. Candidates are prioritized
by the cell size (larger cells first). Cells that do not intersect
the area are discarded while cells fully contained within the
area are added to an output buffer. The process continues by
recursively subdividing the top candidates in the queue until
the sum of candidates size and output buffer size reaches the
limit of maximum cell size or the priority queue is empty.
Then all the candidates in the priority queue will be added
to the output buffer. In the end candidate cells in the buffer
collectively represents the identified coverage of the area of
interest. The larger the maximum cell number is, the higher the
covering resolution is. Figure 3 illustrates the optimal coverage
of a rectangle area under different resolution. Figure 3a shows
a case where 10 cells are used to cover the rectangle region,
and in Figure 3b 60 cells are used. Using fewer cells leads
to including significant amount of non-relevant areas in the
coverage. Though increasing number of cells can address
the issue, it will make the algorithm more expensive as the
computation cost is proportional to the cell count.

C. Efforts on improving /O efficiency

Some studies have been focusing on improving I/O ef-
ficiency of the geospatial index. QUILTS [26] proposes a
cost model on a specific query pattern, where the optimal
space-filling-curve-encoding method is proposed to minimize
the number of page accesses for that pattern. However, the
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Fig. 4: Overall structure of the RASM-based storage system.
Raw GPS coordinates are attached to road segments and
then translated to one-dimension keys based on the Hilbert
curve. User issues geospatial query requests by specifying
road names or geo-regions. Those requests are translated to
geometrical shape (polygon or polyline).

method is less practical for real uses because it is difficult to
identify a fixed query pattern or a fixed rectangle region. This
is especially the case for spatial queries for moving objects,
where the queries are based on complicated road networks.

Pyro [27] proposes an adaptive aggregation algorithm to
apply interpolation to fill in the gaps between two position
reads from a disk to minimize disk seek cost. Pyro reduces
the read latency at the block level by allowing higher read
amplification. However, filling the gaps between continous
reads is equivalent to using large cells in region cover, which
can cause high read amplification and increase query time
due to retrieval of a large amount of non-relevant data. Pyro
only considers the query in a square geometric space, so their
method is not effective for serving road query.

D. Leveraging of Road Network

There are some studies on leveraging road network infor-
mation in the geospatial index. [28] proposes an efficient k-
nearest-neighbor (KNN) query algorithm on moving objects
by storing data in the road network graph. Luo et al. [29] build
a distributed index to conduct spatial-keyword queries on road
networks. G-Tree [30] is proposed as a consistent framework
to support single-pair shortest path query, KNN and keyword-
based KNN query in the road network. However, none of these
methods consider efficiency of retrieving data from a storage
device, especially in IoT applications where a large amount of
data are involved and rapid data processing is required.

III. DESIGN

Our primary design goal of RASM is to avoid retrieval
of irrelevant data and improve data locality for better 1I/O
performance in the service of road queries. To achieve the
goal, it is required that spatial data can be stored based on their
coordinate information for preserving the locality and in the
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disk space be separated from other data that are not associated
to roads for their efficient retrieval. In this section we will
first present an overview of the system using RASM. Then
Hilbert curve encoding and RASM encoding are introduced
in Sections III-B and III-C.

A. Overall structure of a RASM-based spatial database

Figure 4 shows the framework of a spatial database based
on RASM. It has two unique features. First, a new trans-
lation layer which translates physical coordinates to road-
related locations is introduced. For each piece of data to be
stored in the database, we associate it with a road segment
its corresponding vehicle runs on. With the translation, or
attaching vehicles to the roads, locality of data about moving
objects on the same road segment is retained in the database.
Second, road queries and region queries are served separately
for better performance. For road queries, the middle points of
road segments are found and the Cell-ID of the middle points
are used as the prefix to generate key ranges. For region query,
region cover algorithm generates appropriate cells to cover the
area and covert the cells to key ranges. By separating road
queries from region queries, the computation cost of region-
cover for road queries can be removed.

B. The Hilbert Encoding

RASM is based on the Hilbert curve encoding. In this
section, we present design of the Hilbert curve. A geometric
surface is indexed by a quad-tree. In each level of the quad-
tree, space is divided into 27 % 2% cells ( R denotes the
resolution). Cells in each level are numbered by the Hilbert
curve of the corresponding order. Using the Hilbert curve to
generate keys for the spatial objects is a recursive procedure.
There are four first-order units, which are (1) canonical, 2)
axes swapped, (3) bits inverted and (4) swapped & inverted as
shown in Figure 5. The number inside each cell in the unit
reflects the order in which the sequence of the cells appear
on the Hilbert curve. The red line in each cell represents the



subdivision rule. Hilbert curve of any order in the correspond-
ing level of the quad-tree can be generated from those four
first-order Hilbert curve unit. For example, after the @—0 cell
is subdivided into four cells, they should follow the rule of (2.
Similarly, (D-1 should follow (1) and (1)-3 should follow (4).
Every next order repeats the process by replacing each cell
with four smaller cells. The subdivision rules are:

HOAOROEIOMNC)

NOFOESORORSO)
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Following the rules above, each cell in the quad-tree will
have a unique Cell-ID. An example of generating third order
Hilbert curve is illustrated in Figure Se. The Cell-ID, which
is the sequence of visiting of the cells in each level of the
quad-tree, is denoted in sequence of bits. And Cell-ID in one
level is the prefix of the ID of the cells in the next level.
For example, in the first order curve, cell 00’s third child has
Cell-ID of 00.10, whose second child has Cell-ID 0010.01.
The data about moving objects will reach to the last level of
the quad-tree, and carry the Cell-ID as the key and the data
is stored as a key-value pair in the database.

C. RASM encoding

A road is stored as a set of segments, each of which includes
two two-dimensional coordinates indicating the start and end
points. A road segment starts from a crossroad and ends at an
adjacent intersection. One big challenge of designing RASM
is how to gather spatial data based on their corresponding
road segments without compromising spatial locality. An ideal
solution would allow one range scan on the disk to retrieve all
the data within the geometric area given a spatial query. This
requires the data distribution follows the query pattern, or the
data should have keys close to each other in the key space so
they can be stored together in the database. To provide efficient
road query, one straightforward way is to use a road name as
the key to store the data. This method is efficient for queries
on a single road. But it can be problematic when we want to
search for the objects at a crossroad or within a geometric area
because the locality cannot maintain in one-dimensional space
with road name as the key. Hence the data scatter in the disk,
and random reads still occur. It will significantly compromise
I/O efficiency when serving region query.

To maintain the data locality within the road segments and
the locality between the segments in the same time, RASM
aggregates the data on the same road segment and uses Hilbert
curve to generate IDs for them. The segment ID is defined as
the Cell-ID of the middle point of the road segment. This
ID serves as the prefix of the key of the data, which ensures
spatial data collected on the same road segment can be kept
in a small range and accordingly stored close to each other on
the disk. Because segment-IDs are named to preserve locality
in the Hilbert curve, nearby road segments will have segment
IDs close to each other. After we sort the segment IDs with
ascending order and encode them from 1 to n ( n is the
total number of segments), space-filling curve under RASM

Fig. 6: Illustration of the space-filling curve under RASM
encoding after replacing the unit of fixed cells with road
segments, which are depicted in black line. Blue dots are
the middle points of the segments. Digital numbers are the
segment IDs. The yellow line represents the curve. Most
nearby segments have IDs close to each other.

encoding is generated, and the locality is well preserved, as
illustrated in Figure 6.

Another issue in designing RASM is how to determine
the maximum length of road segments. The length of road
segments varies considerably in the road network. If the
segment length is short, the localities between segments are
well maintained by the Hilbert curve. However, if the length
is long, it causes high read amplification while a small portion
of the data on the segment is involved in a query. In the
meantime, long segment causes loss of locality because the
middle point of the segment is far from its adjacent one.
Then the spatial data about neighboring objects will scatter
in linear space. So a limit on the segment length is necessary.
Since the segment length varies between cities, the limit should
be decided accordingly to local road network. In RASM, we
analyze the median value of the road segment length and use
it as the limit. If a road segment reaches the limit, we split it
recursively until the remaining part is smaller than the limit.

When the GPS-enabled devices, such as smartphones, gen-
erate spatial data, the only location information is the coor-
dinates, which need to be translated and associated with road
segments for efficient service of road queries. The translation
can be conducted either on the GPS device or in the centralized
server, which is in charge of collecting traffic data from a
number of devices and storing them to the back-end storage
system and answering users’ requests. Since the devices are
powerful enough to do the translation, they can carry out the
task. This distributes the translation on GPS devices, which can
provide maximized concurrency and help to keep the server
from becoming a performance bottleneck.

For the data that are uploaded and about to be stored in
the database, RASM translates the raw location information
of the data to road-related one. For the translation, RASM
needs to store the road information, which is represented as
a set of road segments. Since the road information is almost
static and of of limited size, it is affordable to keep it in the
memory and keep it up-to-date. For example, the size of the



data about road network is about 20MB (including 399178
road segments with attributes like road name and road type)
for Shenzhen, which is a big city in China. In RASM, the road
is organized in a quad-tree-based on roads’ spatial locations
in the space. Some moving objects may appear on a location
without any road networks. To avoid mapping those data to
wrong roads, we define a distance threshold in RASM which
determines whether a piece of data should be attached to a
road. For data whose associated coordinates indicate a distance
larger than the threshold from any nearby road, it is stored to
database directly using Hilbert encoding. In our evaluation,
the threshold is set to be 10 meters because U.S. government
commits to an average error of 7.8 m (25.6 ft.), with 95%
probability [31] of the GPS signal.

D. Storing traffic data

In RASM, the server generates a key for each piece of data
uploaded from a GPS device based on the road segment. For
data that is attached to a road segment, coordinates of the
middle point of the segment are chosen and fed into the Hilbert
curve generation function to get a number which indicates the
point’s Cell-ID in the space. For data that have no valid road
information, the Cell-ID is generated directly by feeding its
original coordinates into the function. In our current design
of RASM, we use the Hilbert encoding [26], [32] used in the
Google S2 library to generate a 64-bit Cell-ID for each piece
of data. In the S2 library implementation, the earth surface
is mapped to six faces of a cube and each face is organized
as a quad-tree with 30 levels. In each level, Hilbert curve is
used to number the cells, and the ID in the lower level can be
generated recursively following Hilbert curve generation rules.

The generated Cell-ID, together with a 64-bit timestamp and
a 32-bit device ID, serves as the key of the data. In this way,
data mapped to a single road segment are naturally organized
together. As long as the data are sorted according to their
keys and stored on the disk sequentially like that in LevelDB,
any queries on the road segment can be efficiently served by a
single range scan. Further, any query to a road can be answered
by synthesizing the results of queries of each segment of the
road.

E. Serving region query

With RASM, road queries can be served efficiently as the
data on a road segment are grouped together for storage and
can be retrieved with a single range scan. To also provide
efficient service to region queries, we first classify region
query into two types according to the region shape. One is
district query, whose region is bounded by the road segments
as shown in Figure 7a. The other is arbitrary query, whose
region can be bordered with any lines, as shown in Figure 7b.
In the two types of queries, district query is more common
because most borders of region queries by IoT applications are
defined by roads. For district queries, the RASM encoding has
the same accuracy as the Hilbert encoding because it divides
geographic area with road segments so that all the midpoints of
the road segments within a district can be retrieved. However,

ce

(a) district query

(b) arbitrary query

Fig. 7: (a) depicts the outline of Arlington, Texas. (b) illustrates
the error introduced by mapping data to road segments in
arbitrary query. The geometric area is the rectangle in red,
and the cells used to cover the area is in blue. In this query,
the data on segment AB will be lost since the middle point M
of the road segment AC is out of the range of the cover.

for arbitrary queries RASM needs extra efforts to maintain
query accuracy. When serving an arbitrary query, all the cells
intersecting with the region must be extracted, and all the data
in the cells are retrieved. Since RASM associates data to road
segments for the convenience of serving road queries, it may
risk missing some data on the boundaries in serving arbitrary
query. For the data on a road segment, the middle point of the
segment represents the data’s geometry location and is used to
generate a key for the data to be stored in the storage system.
There is a chance that the original data belongs to the region
covered by a query but the middle point of the segment is out
of the region, as shown in Figure 7b. So some data covered
in the query may not be included in its service.

For an accurate response of an arbitrary query, a correction
is made in RASM to retrieve the data on the segments whose
midpoints are out of range. To this end we use get-crossing-
edges operation in the Google’s S2 Geometry Library to
retrieve all the road segments intersecting with the borders
of the region, on the segment index built with S2’s Muta-
bleS2Shapelndex class. We then merge the segment IDs with
the Cell-IDs to serve this query. In this way, all the road
segments that contain the query data are included.

IV. EVALUATION

In this section, we show some experimental results of
RASM and compare them with those collected on a system
directly applying the Hilbert curve for key generation, which
is a commonly-used approach in existing geospatial storage
systems. Our evaluation will answer three questions: (1) can
RASM improve data access locality for road queries? (2) To
what degree can RASM reduce computation cost and improve
the 1/O efficiency by reducing retrieval of irrelevant data for
serving road queries? and (3) How about RASM’s service
performance for arbitrary query when correction is applied?
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Fig. 8: The service of road query with/without RASM

A. Experiment Setup

The evaluation experiment is conducted on a Dell R630
server running Arch Linux with Intel(R) Xeon(R) CPU ES-
2683 v4 @ 2.10GHz, 64GB RAM, and WD 1TB 7200 RPM
SATA hard disk. We implement RASM on top of Google S2
library and use LevelDB for storing the data. The dataset used
in the experiment is from a real-world traffic analysis system
in Shenzhen, China, which contains 61,924,348 GPS records
collected with taxis on November 1st, 2016.

Compared to the amount of data processed by an extensive
spatial database, the dataset used in our evaluation is small.
To avoid the impact of data caching by the large memory of
the server on the I/O performance evaluation, we use cgroups
tool [33] to limit the amount of memory space used in the
experiments. The test environment ensures that the dataset
is 10X larger than the memory space, which is a reasonable
setting considering the dataset size stored on the large disks
and usable memory size in a real system.

B. Experiment Results

To answer the first two questions, we randomly load data
about 500 roads from the OpenStreetMap [34], and conduct
road queries separately on both systems using Hilbert and
RASM encoding. Those roads consist of segments whose
length distribution is shown in Figure 8a. The median is 37
meters, and for the segments whose length is larger than this
value, we recursively split them.

The results are illustrated in Figure 8b-8d. They show
speedup and amount of data retrieved for serving each road
request. In the Hilbert encoding, spatial data are stored without
being attached to any road segments, and road queries are
served similarly as region queries. To answer a road query,
the system employs region-cover algorithm to generate all
cells that overlap the roads and uses the Cell-ID to generate
a key prefix and send a range scan request to the LevelDB
to retrieve all data whose keys share the key prefix. We set
a limit of the maximum number of cells allowed to cover
the road (different resolutions) in the region cover algorithm
and change it in different runs and compare the experimental
results with RASM encoding. The results show that with
RASM the average time of serving each road request can
be reduced by up to 43%. Compared to the Hilbert encoding
with small cell number, the amount of data retrieved can be
reduced by up to 70%. A larger cell number limit can help to

reduce the amount of irrelevant data retrieved when serving
road queries for Hilbert encoding. However, the performance
becomes even worse as shown in Figure 8b. The green line
depicts the time reduced by RASM compared to Hilbert. With
maximum cell limit of 400, Hilbert encoding is 43% slower,
while with the limit of 50 it is 30% slower. With a larger cell
number limit, the number of range scans for retrieving the
data increases as shown in Figure 8c, which results in more
disk seek operations. The performance of the hard disk can be
significantly compromised due to frequent disk head seek.

To understand the cause of the time reduction, we measure
the time spent on each phase when serving a road request.
As shown in Figure 8d, with Hilbert encoding, the service
time is spent on three phases: region-cover, range-seek, and
data-retrieval. In the region-cover phase RASM calculates all
regions overlapping with the road. In the range-seek phase
RASM locates the data on the disk for the regions produced
by the region-cover phase. In the data-retrieval phase RASM
reads all data from the location returned in the range-seek
phase and performs data filtering. For RASM, the computation
cost is negligible because the region-cover phase is removed
and RASM only calculates the cell IDs for middle points of the
road segments to translate road query from two-dimensional
space to one-dimensional space. As shown in Figure 8d, with
Hilbert encoding using a small cell number limit introduces a
longer data retrieval time as more irrelevant data are read,
while with a larger cell number limit the range-seek time
increases as more range scans occur in the storage system.
With RASM encoding, the computational cost is 0.Ims on
average, and the range-seek cost reduces up to 27%. RASM
retains data access locality, reduces computation cost, and
achieves high I/O efficiency.

With RASM, the performance of road queries can be
considerably improved, while we need to ensure it imposes
only a negligible impact on arbitrary queries. To answer the
third question, we randomly choose 50 rectangle regions, each
of size 1km x 1km, in Shenzhen. The average service time
and the amount of data are measured, as shown in Figure 9. If
no corrections are applied for returning 100% accurate query
results, the service time is reduced because fewer data are
returned. With corrections, the average service time increases
by 3.3%. The extra time cost comes from two sources. One is
the cost of get-crossing-edges operation, which is negligible
and stays blow 2ms. Another is the cost to retrieve additional
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data on the road segments that intersect the outline.

V. CONCLUSION

In this paper, we present RASM, a road-aware spatial
mapping for moving objects. In RASM, spatial data are
associated to road segments and stored in the storage systems
based on their segment IDs, which accelerates service of road
queries due to improved spatial locality and reduces the cost
of computing region cover. Meanwhile, the performance for
district query is retained. The negative performance impact on
arbitrary queries is very limited. Our experiment results on
real-world traffic dataset show that RASM reduces the road
query time by up to 43% and the I/O traffic can be reduced
by up to 70%.
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